Expected shortfall is ineffective against tail-risk seekers Statistical arbitrage of coherent risk measures.

John Armstrong Dept. of Mathematics King's College London

Joint work with Damiano Brigo Dept. of Mathematics, Imperial College London

9AMaMeF, June 2019

Agenda

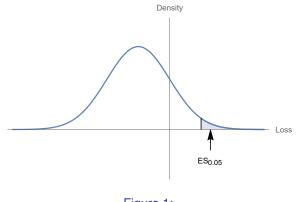
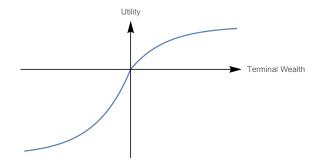


Figure 1:

S-shaped utility and the ineffectiveness expected shortfall ρ -arbitrage and ineffective risk constraints Does ρ arbitrage exist in practice? Kahneman and Tversky proposed modelling observed human behaviour as maximization of expected S-shaped utility.



Definition

A utility function is risk-seeking in the left tail if $\exists N \leq 0, \eta \in (0, 1)$ and c > 0 such that

$$u(x) > -c|x|^{\eta} \qquad \quad \forall x \le N.$$

Example: A trader with limited liability.

Theorem ([AB19a])

Let $(\Omega, \mathbb{P}, \mathbb{Q})$ be a one-period complete market satisfying

$$\operatorname{ess\,sup} \frac{\mathrm{d}\mathbb{Q}}{\mathrm{d}\mathbb{P}} = \infty$$

Let u be a utility function that is risk-seeking in the left tail. Let C be a cost constraint, and L be an expected shortfall risk limit at confidence level α . Then

 $\sup \left\{ \mathbb{E}_{\mathbb{P}}(u(X)) \mid X \in L^{1}(\Omega), \mathbb{E}_{\mathbb{Q}}(X) \leq C \text{ and } \mathsf{ES}_{\alpha}(X) \leq L \right\}$ $= \sup \left\{ \mathbb{E}_{\mathbb{P}}(u(X)) \mid X \in L^{1}(\Omega), \mathbb{E}_{\mathbb{Q}}(X) \leq C \right\}.$

i.e. rogue traders are not materially affected by Expected Shortfall constraints.

In particular this applies to one period investments in Black–Scholes–Merton market since this market satisfies the ess sup condition.

Definition

Two complete markets are isomorphic if there is a measurable map which is a bijection up to null sets which preserves both \mathbb{P} and \mathbb{Q} .

Definition

A standard probability space is isomorphic to the union of an interval with a number of atoms.

Definition

A casino is the complete market $C := ([0, 1], \mathbb{P}, \mathbb{Q})$ with $\mathbb{P} = \mathbb{Q}$ being the Lebesgue measure.

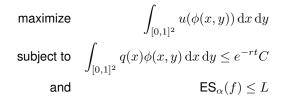
Theorem (Classification of complete markets [Arm18a]) Let $(\Omega, \mathbb{P}, \mathbb{Q})$ and $(\Omega', \mathbb{P}', \mathbb{Q}')$ be one period complete markets on a standard probability space, then

$$(\Omega, \mathbb{P}, \mathbb{Q}) \times \mathcal{C} \cong (\Omega', \mathbb{P}', \mathbb{Q}') \times \mathcal{C}$$

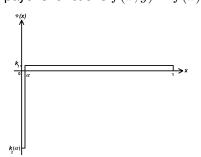
if and only if

$$F_{\frac{\mathrm{d}\mathbb{Q}}{\mathrm{d}\mathbb{P}}} = F_{\frac{\mathrm{d}\mathbb{Q}'}{\mathrm{d}\mathbb{P}'}}.$$

(Proof idea to show that ES constraints are ineffective) WLOG we may write the optimal investment problem as finding the payoff function $\phi : [0,1]^2 \to \mathbb{R}$ to



for positive decreasing q with $\lim_{x\to 0} q(x) = \infty$. q corresponds to the Radon-Nikodym derivative $\frac{d\mathbb{Q}}{d\mathbb{P}}$. Now consider payoffs functions f(x, y) = f(x) of this form



Summary

Expected shortfall, and hence VaR, at any confidence level is ineffective as a risk-constraint in typical complete markets.

Questions for the remainder of the talk:

- Q: What is it about expected shortfall that makes it ineffective? A: It is a positively homogeneous (coherent) risk measure.
- What about incomplete markets? A: In incomplete markets there will be a minimum confidence level α such that ES_α is ineffective. In realistic examples this may be 0.01% or lower.

Definition ([Pen11], [Pen12])

A market consists of a probability space (Ω, \mathbb{P}) and a price function \mathcal{P} mapping random variables (representing asset payoffs) to $\mathbb{R} \cup \{+\infty\}$. The domain of \mathcal{P} defines the set of traded assets. In most classical markets \mathcal{P} is linear on its domain, but we relax this assumption.

The market is positive-homogeneous if $\mathcal{P}(\lambda X) = \lambda \mathcal{P}(X)$ for $\lambda \geq 0$. We only require positive homogeneity to allow a bid ask spread.

The market is coherent if: it is positive homogeneous; a portfolio costs no more than its components parts, i.e.

$$\mathcal{P}(X+Y) \le \mathcal{P}(X+Y);$$

and there is a risk-free asset, possibly with a bid-ask spread, i.e.

$$\mathcal{P}(1) < \infty, \qquad \mathcal{P}(-1) < \infty.$$

Definition

A trading constraint, A, is a subset of the set of random variables of finite price representing the assets a trader is allowed to purchase.

Definition

Let $\tilde{u}(x) = x^+$. This is a "worst case" version of an S-shaped utility. A trading constraint A is ineffective if for any cost $C \in \mathbb{R}$

$$\sup_{X \in \mathcal{A}, \mathcal{P}(X) \le C} E(\tilde{u}(X)) = \infty.$$

Definition ([ADEH99])

A coherent risk measure $\rho: L^{\infty}(\Omega; \mathbb{R}) \to \mathbb{R}$ satisfies

- (i) Normalization: $\rho(0) = 0$
- (ii) Montonicity: $\rho(X) \ge \rho(Y)$ if $X \le Y$ almost surely.
- (iii) Sub-additivity: $\rho(X_1 + X_2) \le \rho(X_1) + \rho(X_2)$.
- (iv) Translation invariance: $\rho(X + a) = \rho(X) a$ for $a \in \mathbb{R}$.
- (v) Positive homogeneity: $\rho(\lambda X) = \lambda \rho(X)$ for $\lambda \in \mathbb{R}^+$.

Definition

If ρ is function on the space of random variables, then a random variable is called a ρ -arbitrage if $\mathcal{P}(X) \leq 0$, $\rho(X) \leq 0$ and X has a positive probability of taking a positive value.

If ρ^c assigns the value c > 0 to any random variable which takes negative values with positive probability, then a classical arbitrage is equivalent to a ρ^c -arbitrage. This justifies the name ρ -arbitrage. Theorem ([AB19b])

Let ρ be a coherent risk-measure. If a coherent market contains a ρ -arbitrage X then for any random variable Y of finite expectation

$$\lim_{\lambda \to \infty} \mathbb{E}(\tilde{u}(Y + \lambda X)) = \infty \tag{1}$$

$$\mathcal{P}(Y + \lambda X) \le \mathcal{P}(Y)$$
 (2)

$$\rho(Y + \lambda X) \le \rho(Y). \tag{3}$$

i.e. Given a financial positive X, you may add a multiple of Y to obtain a new position that meets your constraints with arbitrarily high $\mathbb{E}(\tilde{u})$.

If risk free assets in this market have a finite price, then the constraint

 $\mathcal{A}^{\rho,\alpha} := \{Y \mid \rho(Y) \le \alpha\}$

is ineffective for all α . Conversely if $\mathcal{A}^{\rho,\alpha}$ is ineffective then the market admits a ρ -arbitrage.

The previous theorem shows that ρ -arbitrage opportunities are good for the trader. The next theorem shows they are bad the risk-manager.

Theorem ([AB19b])

Let ρ be a coherent risk-measure. Let u_R be any concave increasing utility function satisfying

$$\lim_{\lambda \to \infty} \frac{u_R(-\lambda)}{\lambda} = -\infty,$$
(4)

If *X* is a ρ -arbitrage and not a true arbitrage, and if both $\mathbb{E}(|X|)$ and $\mathbb{E}(u_R(-\beta Y))$ are finite for some $\beta > 0$ then

$$\lim_{\lambda \to \infty} \mathbb{E}(u_R(Y + \lambda X)) = -\infty.$$
 (5)

To detect whether a ρ -arbitrage, solve the convex optimization problem

minimize $X \in L^0(\Omega; \mathbb{R})$	essinf - X
subject to	$\mathcal{P}(X) \le 0$
and	$\rho(X) \le 0.$

The convexity of the problem ensures that this is easy to solve in practice (unlike the S-shaped utility maximization problems we started with).

Theorem ([AB19b])

In complete markets an ES_{α} -arbitrage exists if and only if

$$\mathbb{P}\left(\frac{\mathrm{d}\mathbb{Q}}{\mathrm{d}\mathbb{P}} \ge \frac{1}{\alpha}\right) > 0.$$

In complete markets it is easy to out-manouevre ES_α limits by financial engineering.

Definition

Two markets $(\Omega, \mathbb{P}, \mathcal{P})$ and $(\Omega, \mathbb{P}, \mathcal{P}')$ are isomorphic if there is a probability space isomorphism which preserves the price functions.

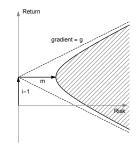
Theorem ([Arm18b])

Markowitz markets are classified up to isomorphism by their efficient frontiers.

Theorem ([AB19b])

A Markowitz market admits an ES_{α}-arbitrage for $\alpha < 0.5$ if and only if either i < 0 or $g > \Phi^{-1}(\alpha)$.

In realistic Markowitz markets there will not be any ES_{α} -arbitrage at the level $\alpha = 0.01$.



Exchange traded options

The market of exchange traded options on the S&P 500 is nearly complete.

On a given day we downloaded the end of day bid and ask prices at all available strikes.

We calibrated a GARCH-(1,1) model to the historic index data. We then used a Monte Carlo simulation of this model to obtain a plausible, discrete \mathbb{P} measure model for that day.

Letting ${\bf p}$ be the vector of prices and ${\bf x}$ the vector of portfolio weights we then solved:

 $\begin{array}{ccc} \underset{\mathbf{x}}{\text{minimize}} & ES_{\alpha}(\mathbf{x}) \\ & \text{subject to} \\ & \text{cost constraint} & \mathbf{p} \cdot \mathbf{x} \leq 0, \\ \text{quantity constraints} & 0 \leq x_i \leq 1 & (1 \leq i \leq N_I). \end{array}$ (6)

The minimizing portfolio will be an ES_{α} arbitrage portfolio if and only if an ES_{α} arbitrage portfolio exists.

Rockafellar and Uryasev [RU⁺00] showed how expected shortfall optimization problems with a discrete probability measure can be solved by performing linear programming.

Date	GARCH(1,1) run 1	$GARCH(1,1) \ \mathrm{run} \ 2$	Mixture
10 Feb	< 0.01%	0.19%	< 0.01%
11 Feb	0.29%	< 0.01%	< 0.01%
12 Feb	0.33%	0.39%	< 0.01%
13 Feb	< 0.01%	< 0.01%	< 0.01%
14 Feb	0.26%	< 0.30%	< 0.01%

The table above shows the minimum α values for which an ES $_{\alpha}$ arbitrage existed. Our conclusion is that ES $_{\alpha}$ -arbitrage opportunities do not occur every day, but did occur on 13 Feb.

We also calibrated a mixture model to the data, in which case ES_{α} -arbitrage existed for low α every day.

Conclusions

- The coherence of expected shortfall means that ρ-arbitrage opportunities can be exploited.
- Whether ρ-arbitrage exists depends upon
 - How complete the market is.
 - How large a discrepancy exists between the P and Q measures.
- The problem can be eliminated by using convex rather than coherent risk measures.

References I

- [AB19a] J. Armstrong and D. Brigo, *Risk managing tail-risk* seekers: VaR and expected shortfall vs S-shaped utility, Journal of Banking and Finance (2019).
- [AB19b] J. Armstrong and D. Brigo, Statistical arbitrage of coherent risk measures, arXiv e-prints (2019), arXiv:1902.10015.
- [ADEH99] P. Artzner, F. Delbaen, J.-M. Eber, and D. Heath, *Coherent measures of risk*, Mathematical finance **9** (1999), no. 3, 203–228.
- [Arm18a] J. Armstrong, *Classifying Markets up to Isomorphism*, arXiv e-prints (2018), arXiv:1810.03546.
- [Arm18b] J. Armstrong, *The Markowitz category*, SIAM Journal on Financial Mathematics **9** (2018), no. 3, 994–1016.

References II

- [Pen11] T. Pennanen, Convex duality in stochastic optimization and mathematical finance, Mathematics of Operations Research 36 (2011), no. 2, 340–362.
- [Pen12] _____, Introduction to convex optimization in financial markets, Mathematical programming 134 (2012), no. 1, 157–186.
- [RU⁺00] R. T. Rockafellar, S. Uryasev, et al., Optimization of conditional value-at-risk, Journal of risk 2 (2000), 21–42.