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S-shaped utility and the ineffectiveness expected shortfall

ρ-arbitrage and ineffective risk constraints

Does ρ arbitrage exist in practice?



Kahneman and Tversky proposed modelling observed human
behaviour as maximization of expected S-shaped utility.

Terminal Wealth

Utility

Definition
A utility function is risk-seeking in the left tail if ∃N ≤ 0, η ∈ (0, 1)
and c > 0 such that

u(x) > −c|x|η ∀x ≤ N.

Example: A trader with limited liability.



Theorem ([AB19a])
Let (Ω,P,Q) be a one-period complete market satisfying

ess sup
dQ
dP

=∞

Let u be a utility function that is risk-seeking in the left tail. Let C
be a cost constraint, and L be an expected shortfall risk limit at
confidence level α. Then

sup
{
EP(u(X)) | X ∈ L1(Ω), EQ(X) ≤ C and ESα(X) ≤ L

}
= sup

{
EP(u(X)) | X ∈ L1(Ω), EQ(X) ≤ C

}
.

i.e. rogue traders are not materially affected by Expected Shortfall
constraints.

In particular this applies to one period investments in
Black–Scholes–Merton market since this market satisfies the
ess sup condition.



Definition
Two complete markets are isomorphic if there is a measurable map
which is a bijection up to null sets which preserves both P and Q.

Definition
A standard probability space is isomorphic to the union of an
interval with a number of atoms.

Definition
A casino is the complete market C := ([0, 1],P,Q) with P = Q
being the Lebesgue measure.

Theorem (Classification of complete markets [Arm18a])
Let (Ω,P,Q) and (Ω′,P′,Q′) be one period complete markets on a
standard probability space, then

(Ω,P,Q)× C ∼= (Ω′,P′,Q′)× C

if and only if
FdQ

dP
= FdQ′

dP′
.



(Proof idea to show that ES constraints are ineffective) WLOG we
may write the optimal investment problem as finding the payoff
function φ : [0, 1]2 → R to

maximize
∫
[0,1]2

u(φ(x, y)) dxdy

subject to
∫
[0,1]2

q(x)φ(x, y) dx dy ≤ e−rtC

and ESα(f) ≤ L

for positive decreasing q with limx→0 q(x) =∞. q corresponds to
the Radon-Nikodym derivative dQ

dP .
Now consider payoffs functions f(x, y) = f(x) of this form



Summary
Expected shortfall, and hence VaR, at any confidence level is
ineffective as a risk-constraint in typical complete markets.

Questions for the remainder of the talk:
I Q: What is it about expected shortfall that makes it ineffective?

A: It is a positively homogeneous (coherent) risk measure.
I What about incomplete markets?

A: In incomplete markets there will be a minimum confidence
level α such that ESα is ineffective. In realistic examples this
may be 0.01% or lower.



Definition ([Pen11], [Pen12])
A market consists of a probability space (Ω,P) and a price function
P mapping random variables (representing asset payoffs) to
R ∪ {+∞}. The domain of P defines the set of traded assets. In
most classical markets P is linear on its domain, but we relax this
assumption.

The market is positive-homogeneous if P(λX) = λP(X) for
λ ≥ 0. We only require positive homogeneity to allow a bid ask
spread.

The market is coherent if: it is positive homogeneous; a portfolio
costs no more than its components parts, i.e.

P(X + Y ) ≤ P(X + Y );

and there is a risk-free asset, possibly with a bid-ask spread, i.e.

P(1) <∞, P(−1) <∞.



Definition
A trading constraint, A, is a subset of the set of random variables
of finite price representing the assets a trader is allowed to
purchase.

Definition
Let ũ(x) = x+. This is a “worst case” version of an S-shaped
utility. A trading constraint A is ineffective if for any cost C ∈ R

sup
X∈A,P(X)≤C

E(ũ(X)) =∞.



Definition ([ADEH99])
A coherent risk measure ρ : L∞(Ω;R)→ R satisfies

(i) Normalization: ρ(0) = 0

(ii) Montonicity: ρ(X) ≥ ρ(Y ) if X ≤ Y almost surely.

(iii) Sub-additivity: ρ(X1 +X2) ≤ ρ(X1) + ρ(X2).

(iv) Translation invariance: ρ(X + a) = ρ(X)− a for a ∈ R.

(v) Positive homogeneity: ρ(λX) = λρ(X) for λ ∈ R+.

Definition
If ρ is function on the space of random variables, then a random
variable is called a ρ-arbitrage if P(X) ≤ 0, ρ(X) ≤ 0 and X has a
positive probability of taking a positive value.

If ρc assigns the value c > 0 to any random variable which takes
negative values with positive probability, then a classical arbitrage
is equivalent to a ρc-arbitrage. This justifies the name ρ-arbitrage.



Theorem ([AB19b])
Let ρ be a coherent risk-measure. If a coherent market contains a
ρ-arbitrage X then for any random variable Y of finite expectation

lim
λ→∞

E(ũ(Y + λX)) =∞ (1)

P(Y + λX) ≤ P(Y ) (2)

ρ(Y + λX) ≤ ρ(Y ). (3)

i.e. Given a financial positive X, you may add a multiple of Y to
obtain a new position that meets your constraints with arbitrarily
high E(ũ).

If risk free assets in this market have a finite price, then the
constraint

Aρ,α := {Y | ρ(Y ) ≤ α}

is ineffective for all α. Conversely if Aρ,α is ineffective then the
market admits a ρ-arbitrage.



The previous theorem shows that ρ-arbitrage opportunities are
good for the trader. The next theorem shows they are bad the
risk-manager.

Theorem ([AB19b])
Let ρ be a coherent risk-measure. Let uR be any concave
increasing utility function satisfying

lim
λ→∞

uR(−λ)

λ
= −∞, (4)

If X is a ρ-arbitrage and not a true arbitrage, and if both E(|X|)
and E(uR(−βY )) are finite for some β > 0 then

lim
λ→∞

E(uR(Y + λX)) = −∞. (5)



To detect whether a ρ-arbitrage, solve the convex optimization
problem

minimize
X∈L0(Ω;R)

ess inf −X

subject to P(X) ≤ 0
and ρ(X) ≤ 0.

The convexity of the problem ensures that this is easy to solve in
practice (unlike the S-shaped utility maximization problems we
started with).

Theorem ([AB19b])
In complete markets an ESα-arbitrage exists if and only if

P
(

dQ
dP
≥ 1

α

)
> 0.

In complete markets it is easy to out-manouevre ESα limits by
financial engineering.



Definition
Two markets (Ω,P,P) and (Ω,P,P ′) are isomorphic if there is a
probability space isomorphism which preserves the price functions.

Theorem ([Arm18b])
Markowitz markets are classified up to
isomorphism by their efficient frontiers.

Theorem ([AB19b])
A Markowitz market admits an ESα-arbitrage
for α < 0.5 if and only if either i < 0 or
g > Φ−1(α).

In realistic Markowitz markets there will not
be any ESα-arbitrage at the level α = 0.01.

Return

Risk

m

i-1

gradient = g



Exchange traded options
The market of exchange traded options on the S&P 500 is nearly
complete.

On a given day we downloaded the end of day bid and ask prices
at all available strikes.

We calibrated a GARCH-(1,1) model to the historic index data. We
then used a Monte Carlo simulation of this model to obtain a
plausible, discrete P measure model for that day.

Letting p be the vector of prices and x the vector of portfolio
weights we then solved:

minimize
x

ESα(x)

subject to

cost constraint p · x ≤ 0,

quantity constraints 0 ≤ xi ≤ 1 (1 ≤ i ≤ NI).

(6)

The minimizing portfolio will be an ESα arbitrage portfolio if and
only if an ESα arbitrage portfolio exists.



Rockafellar and Uryasev [RU+00] showed how expected shortfall
optimization problems with a discrete probability measure can be
solved by performing linear programming.

Date GARCH(1, 1) run 1 GARCH(1, 1) run 2 Mixture

10 Feb < 0.01% 0.19% < 0.01%
11 Feb 0.29% < 0.01% < 0.01%
12 Feb 0.33% 0.39% < 0.01%
13 Feb < 0.01% < 0.01% < 0.01%
14 Feb 0.26% < 0.30% < 0.01%

The table above shows the minimum α values for which an ESα
arbitrage existed. Our conclusion is that ESα-arbitrage
opportunities do not occur every day, but did occur on 13 Feb.

We also calibrated a mixture model to the data, in which case
ESα-arbitrage existed for low α every day.



Conclusions

I The coherence of expected shortfall means that ρ-arbitrage
opportunities can be exploited.

I Whether ρ-arbitrage exists depends upon
I How complete the market is.
I How large a discrepancy exists between the P and Q

measures.

I The problem can be eliminated by using convex rather than
coherent risk measures.
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