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Introduction

Plan:

I Outline of Stochastic Filtering

I Projecting ODEs and SDEs

I Ito SDEs on manifolds

I Introducing the Ito projection

I Numerical results

I Geometric interpretation of SDE and projection



Example: Stocks with stochastic drift

Filtering example:

dµt = θ(µ−M)dt + η dW 1
t

dst = (µ− σ2

2
) dt + σdW 2

t

st = log(St)

I We have a prior probability distribution for µ0.

I What is the probability distribution for µt?

Remarks:

I Stepping stone to solving optimal investment problem

I Stochastic volatility is not a continuous time filtering problem

I This is a linear filtering problem



General filtering problem

dXt = f (Xt , t)dt + σ(Xt , t)dWt

dYt = b(Xt , t) dt + dVt

Q: We have a prior distribution p0 for X . What is pt?
A: (Ignoring all technicalities) The Zakai equation

dp = L∗p dt + pbTdYt

where p is the likelihood a.k.a. the unnormalized density.
Alternatively, the Kushner-Stratonovich equation:

dp = L∗p + p(b − Ep(b))(dYt − Ep(b)dt)



Justification

dp = L∗p dt + pbTdYt

= prediction + correction

Prior

Prediction

Likelihood

Correction

Note that for linear filter, Gaussian stays Gaussian



Problem

Solution approaches:

I Finite difference methods

I Spectral methods

I Monte Carlo (particle filters)

I . . .

Solution goals:

I Moderate dimensions

I Moderate accuracy

I Rapid calculation



Idea: Projection



Stochastic projection: Very naive version

dX = a(X , t) dt + b(X , t) dWt

Π ρ

Projected equation?

dX = ρ(X )Π(X )a(X , t) dt + ρ(X )Π(X )b(X , t) dWt



Stochastic projection: Stratonovich version
Fix? Use Stratonovich SDE:

dX = a(X , t)dt + b(X , t) ◦ dWt

Π ρ

Projected equation?

dX = ρ(X )Π(X )a(X , t)dt + ρ(X )Π(X )b(X , t) ◦ dWt



The space of densities?

We need a Hilbert space to define projection. Obvious choices are:

I The space of densities with the L2 metric: P ⊆ L2(Rn)

〈p, q〉L2 =

∫
p(x)q(x)dx

I The space of densities with the Hellinger metric: P ′

〈p, q〉H =

∫ √
p(x)q(x)dx

P ′ ⊆ L2(Rn) via p → √p
I Hellinger metric is independent of parameterizations of Rn

and exists for all measures, not just densities.

I L2 metric works well for mixture families (preserves linearity)

I Hellinger metric works well for exponential families (correction
step exact)



Stratonovich projection works well

Stratonovich projection of the filtering equation has been tried for
the following manifolds in the space of densities:

I Project onto a linear subspace = Galerkin method

I Project onto an exponential family, e.g.

p(x) = exp(a0 + a1x + a2x
2 + a3x

3 + . . .+ anx
n)

an < 0, n even,

∫
p(x) = 1

I Project onto a mixture of Gaussians, e.g.

p(x) =
∑
i

πiN(x , µi , σi )

∑
i

πi = 1



Theoretical Results

I What theoretical results back this idea up?
I Galerkin method converges in many circumstances
I Projection onto exponential families is accurate for close to

linear problems with small observation noise.

I For ODE’s its easy to prove that projection gives “closest”
approximation.

I Is the Stratonovich projection the “closest” approximation on
M?



Differential geometry 101 - Charts



Differential geometry 101 - Vector Fields

A vector field can be defined as an equivalence class of pairs
(chart, vector field on Rn)



Definition of vector fields

I Vector field is equivalence class (φ,X ) where φ is a chart and
X is the vector field on Rr .

I We must choose the equivalence class so that the solutions of
one ODE are mapped to the solutions of the other ODE by
the transition functions.

I So by the chain rule, the correct definition is:

(φ1,X ) ∼ (φ2,Y )

if

X i =
∑
j

∂τ i

∂x j
Y j

= (∂jτ
i )Y j

where we’re using the Einstein summation convention.



Stochastic differential equations manifolds

I Define an SDE on a manifold as an equivalence classes of

(W t , φ, a, b)

in such a way that the solutions of one SDE:

dXt = a(X , t)dt + b(X , t) dW t

are mapped to the solutions of the other by the transition
functions.

I So by Ito’s lemma, the correct definition is:

(Wt , φ, a, b) ∼ (Vt ,Φ,A,B) if
Wt = Vt

Aj = ai∂iτ
j +

1

2
biαb

k
β[W α,W β]t∂i∂kτ

j

B j
α = biα∂jτ

i

where we’re using the Einstein summation convention.



Stratonovich approach

I You can use Stratonovich SDE’s if you prefer, but your
definition of an SDE will be essentially equivalent.

I It is not true that you have to use Stratonovich calculus on
manifolds when using the intrinsic approach (i.e. charts)

I Stratonovich calculus allows a crisper definition in the intrinsic
approach, a Strat SDE has vector fields as coefficients.

I If you use the extrinsic approach, Stratonovich calculus is
intuitive because:

I An SDE on M is an SDE on Rr whose solutions starting from
a point in M stay on M with probability 1.

I An SDE on M is an SDE on Rr whose Strat coefficients at a
point x ∈ M lie in the tangent space TxM.



Equation in larger space Rr : Equation in chart:
dX = a(X , t) dt + b(X , t)dWt dY = A(Y , t)dt + b(Y , t)dWt

Ito Taylor series estimates:

E (|Xt − φ(Yt)|) = |b0 − φ∗B0|
√
t + O(t)

|E (Xt − φ(Yt))| =

∣∣∣∣a0 − φ∗A0 −
1

2
(∇Bα,0φ∗)Bβ,0[W α,W β]

∣∣∣∣ t
+ O(t2)



Ito Projection

To minimize first estimate:

φ∗B = Πb

If we define B like this for whole chart, second estimate is
minimized when:

φ∗A = Πa− 1

2
Π(∇Bαφ∗)Bβ[W α,W β]

I Given φ, define A and B using these equations

I This defines an SDE on the manifold

I We call this the Ito projection

I It is different from the Stratonovich projection



Discussion

I Have we found the “right” estimates to optimize?
I We have two estimates:

I Estimate one is on the expectation of the absolute value. This
determines the martingale part of our equation

I Estimate two is on the absolute value of the expectation. This
determines the bounded variation part of our equation

I Estimate one determines the short term behaviour
I Estimate two determines the long term behaviour

I Conjecture that Stratonovich projection arises from estimating
errors in

(Xt − X−t)− (φ(Yt)− φ(Y−t))

i.e. Stratonovich projection is time symmetric.



Numerical experiments

Engineers have been using Gaussian approximations to non-linear
filters for decades

I Extended Kalman Filter (based on linearization)

I Ito Assumed Density Filter (based on heuristic moment
matching arguments)

I Stratonovich Assumed Density Filter

I Stratonovich Projection Filter

We expect the Ito projection to filter to outperform these filters.
At least for short time Ito projection filter should be optimal.



Residuals for cubic sensor, L2 metric
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How to draw Ito SDE’s with 1-d noise

dX = a dt + b dWt

⇔ dX = a (dWt)
2 + b dWt

⇒ δX ≈ a(δWt)
2 + b δWt

The coefficients of an SDE can be thought of as the 2-jet of a
path γ : R→ M.



2-jets of paths obey Ito’s lemma



Remark: Ito’s lemma

Associate a path γx starting at x with every point x ∈ Rr .
Consider numerical scheme:

δX = γx(δWt)

= b δWt + a δW 2
t + O(δW 3

t )

= b δWt + a δt + O(δW 3
t )

I In the limit as δt → 0 we obtain SDE.

I Conclusion: 2-jet of path at every point ≡ SDE

I Consider g : Rr → Rs . g ◦ γ is a path at every point in Rr .
Induced SDE is SDE for g(X ).

I Therefore transformation law of SDE = Transformation law of
2-jets.

I Ito’s lemma can be interpreted as the transformation law of
2-jets of paths.



Coordinate free definition of SDE on a manifold

I One can define an Ito SDE in terms of 2-jets of paths

I Very clean in case of 1-d noise as we’ve seen

I Some redundancy for higher dimensional noise since
(dW 1

t )2 = (dW 2
t )2 = dt.

I Working with Ito formulation of SDE’s on manifolds has
numerous advantages (e.g. Taylor series, Martingale properties
etc.). 2-jets allow this formulation to be handled in a
coordinate free manner.

I There is no need to use Stratonovich formulation of SDE’s
just because one wishes to use coordinate free formulations.



Intrinsic projection
Let π be smooth projection defined on a tubular neighbourhood of
M:

I Consider 2-jets of paths γx : R→ Rr that define the SDE on
Rr

I At a point x ∈ M the map π ◦ γx defines the intrinsic Ito
projection



Conclusions

I Ito projection gives the optimal lower dimensional
approximation to an SDE over short time horizons.

I Numerical experiments confirm that Ito projection outperforms
known approximation methods over short time horizons.

I Stratonovich projection lacks such a convincing optimality
property, but in practice it is close to the Ito projection so still
performs well.

I Only shown results for L2 projection onto Gaussian family.
But projecting onto manifolds has been shown to be effective
for a number of much more interesting statistical families and
it generalizes the Galerkin method.
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