Geometric projection of stochastic differential equations

John Armstrong (King's College London)
Damiano Brigo (Imperial)

November 2, 2018

Idea: Projection

Idea: Projection

- Projection gives a method of systematically reducing the dimension of an ODE
- Projection onto a linear subspace is the standard numerical method for solving PDEs
- Projecting onto a curved manifold may be more effective if we know the solution is close to this manifold
- e.g. perhaps the known soliton solutions to the KdV equation might give good approximations to solutions to a pertubed KdeV equation?

This talk

- Question: How should the notion of projection be extended to stochastic differential equations?
- Answer:
- There is a Stratonovich Projection which is best understood using Stratonovich calculus.
- There is an Extrinsic Ito Projection which is best understood using Ito calculus.
- There is an Intrinsic Ito Projection which is best understood by using jet bundles.
- We will
- Define these various notions of projection and discuss their motivation and theoretical justifications
- Describe a geometric formulation of SDEs using 2-jets to understand the Intrinsic Ito projection
- Look at some numerical results when projection is applied to nonlinear filtering

Setup

- M is a submanifold of \mathbb{R}^{r}
- $\psi: U \rightarrow \mathbb{R}^{n}$ is a chart for M
- $\phi=\psi^{-1}$
- We have an SDE on \mathbb{R}^{r}

$$
\mathrm{d} X_{t}=a \mathrm{~d} t+\sum_{\alpha} b_{\alpha} \mathrm{d} W_{t}^{\alpha}, \quad X_{0}
$$

and want to approximate this using an SDE on \mathbb{R}^{n}.

Definition: Stratonovich projection

1. Write the SDE in Stratonovich form

$$
\mathrm{d} X_{t}=\overline{a\left(X_{t}\right)} \mathrm{d} t+\sum_{\alpha} b_{\alpha}\left(X_{t}\right) \circ \mathrm{d} W_{t}^{\alpha}, \quad X_{0}
$$

2. Apply the projection operator Π to each coefficient to obtain an SDE on M

$$
\mathrm{d} X_{t}=\Pi_{X_{t}} \overline{a\left(X_{t}\right)} \mathrm{d} t+\sum_{\alpha} \Pi_{X_{t}} b_{\alpha}\left(X_{t}\right) \circ \mathrm{d} W_{t}^{\alpha}, \quad \psi\left(X_{0}\right)
$$

Justifications

What are the justifications for using the Stratonovich projection?

- It is clearly a well defined SDE. (Contrast with projecting Itô coefficients)
- It is clearly generalizes projection of ODEs - i.e. when $b=0$ we get ODE projection.
- It gives good numerical results when applied to the filtering problem
- It generalizes the Galerkin method which can be interpreted as projection onto a linear subspace.

A justification for ODE projection

- Consider an ODE on \mathbb{R}^{r}

$$
\frac{\mathrm{d} X}{\mathrm{~d} t}=a(X), \quad X_{0}
$$

- Look for an ODE on \mathbb{R}^{n} of the form

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=a(x), \quad \psi\left(X_{0}\right)
$$

such that

$$
\left|\phi\left(x_{t}\right)-X_{t}\right|^{2}
$$

is as small as possible.

A justification for ODE projection

- Compute Taylor expansion to see that leading term is minimized when:

$$
a\left(\psi\left(x_{0}\right)\right)=\psi_{*} \Pi_{X_{0}} A\left(x_{0}\right)
$$

- Therefore ODE projection is the unique asymptotically optimal ODE approximating the original ODE at all points on M.
- (Linear projection operator gives solution to a quadratic optimization problem)

Repeat idea for SDEs

Equation in larger space \mathbb{R}^{r} : Equation in chart:

$$
\mathrm{d} X=a(X, t) \mathrm{d} t+b(X, t) \mathrm{d} W_{t} \quad \mathrm{~d} x=A(x, t) \mathrm{d} t+B(x, t) \mathrm{d} W_{t}
$$

We have Itô Taylor series estimates (Kloeden and Platen):

$$
\begin{aligned}
E\left(\left|X_{t}-\phi\left(x_{t}\right)\right|\right)= & \left|b_{0}-\phi_{*} B_{0}\right| \sqrt{t}+O(t) \\
\left|E\left(X_{t}-\phi\left(x_{t}\right)\right)\right|= & \left|a_{0}-\phi_{*} A_{0}-\frac{1}{2}\left(\nabla_{B_{\alpha, 0}} \phi_{*}\right) B_{\beta, 0}\left[W^{\alpha}, W^{\beta}\right]\right| t \\
& +O\left(t^{2}\right)
\end{aligned}
$$

Extrinsic Ito Projection

To minimize first estimate:

$$
\phi_{*} B=\Pi b
$$

If we define B like this for whole chart, second estimate is minimized when:

$$
\phi_{*} A=\Pi a-\frac{1}{2} \Pi\left(\nabla_{B_{\alpha}} \phi_{*}\right) B_{\beta}\left[W^{\alpha}, W^{\beta}\right]
$$

- Given ϕ, define A and B using these equations
- This defines an SDE on the manifold
- We call this the Extrinsic Itô projection
- It is different from the Stratonovich projection

Discussion

- The Extinsic Itô Projection is optimal in the sense that it asymptotically minimizes two measures of the divergence of the approximation to the SDE from the true solution.
- Measure one is on the expectation of the absolute value. This determines the martingale part of our equation
- Measure two is on the absolute value of the expectation. This determines the bounded variation part of our equation
- The Extrinsic Itô Projection is "greedy" in that it finds the best approximation over short time horizons and hopes they will do well over long time horizons.
- Numerical test on the filtering problem indicate that it slightly outperforms the Stratonovich projection in practice over moderate time horizons.
- Over longer time horizons, it is random which performs better.

Geodesic projection map

Let π denote the smooth map defined on a tubular neighbourhood of 11 tloat

An alternative justification for ODE projection

- Consider an ODE on \mathbb{R}^{r}

$$
\frac{\mathrm{d} X}{\mathrm{~d} t}=a(X), \quad X_{0}
$$

- Look for an ODE on \mathbb{R}^{n} of the form

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=a(x), \quad \psi\left(X_{0}\right)
$$

such that

$$
\begin{gathered}
\left|\phi\left(x_{t}\right)-X_{t}\right|^{2} \\
d\left(x_{t}, \psi \circ \pi\left(X_{t}\right)\right)
\end{gathered}
$$

is as small as possible. d is induced Riemannian distance.

Intrinsic Itô projection

Repeating the ideas used to derive the Extrinsic Itô projection:

Definition

The Intrinsic Itô projection is the best approximation to $\pi\left(X_{t}\right)$ in the sense that it asymptotically minimizes both:

$$
\begin{gathered}
E\left(d\left(x_{t}, \psi \circ \pi\left(\left(X_{t}\right)\right)\right)\right. \\
d\left(E\left(x_{t}\right), E\left(\psi \circ \pi\left(X_{t}\right)\right)\right)
\end{gathered}
$$

Discussion

All three projections are distinct. Which is better?
Lemma
(Factorizable SDEs) Suppose that S is an SDE for X on \mathbb{R}^{r} such that $\pi(X)$ solves an SDE S^{\prime} on M then the Stratonovich and intrinic Itô projections are both equal to S^{\prime}. However, the extrinsic projection may be different.

Example

The SDE S on \mathbb{R}^{2}

$$
\begin{aligned}
\mathrm{d} X_{t} & =\sigma Y_{t} \mathrm{~d} W_{t} \\
\mathrm{~d} Y_{t} & =\sigma X_{t} \mathrm{~d} W_{t}
\end{aligned}
$$

In polar coordinates, solutions satisfy:

$$
\mathrm{d} \theta=-\frac{1}{2} \sigma^{2} \sin (4 \theta) \mathrm{d} t+\sigma \cos (2 \theta) \mathrm{d} W_{t}
$$

Understanding the Intrinsic Itô projection

Definition

The Intrinsic Itô projection is the best approximation to $\pi\left(X_{t}\right)$ in the sense that it asymptotically minimizes both:

$$
\begin{gathered}
E\left(d\left(x_{t}, \psi \circ \pi\left(\left(X_{t}\right)\right)\right)\right. \\
d\left(E\left(x_{t}\right), E\left(\psi \circ \pi\left(X_{t}\right)\right)\right)
\end{gathered}
$$

- For applications, one must calculate this in local coordinates, but the resulting expression is complex
- One can understand this projection more intuitively, and express the answer more elegantly, using the language of 2-jets.

Euler Scheme

- All being well in the limit the Euler scheme

$$
\delta X_{t}=a(X) \delta t+b(X) \delta W_{t}
$$

converges to a solution of the SDE

$$
\mathrm{d} X_{t}=a(X) \mathrm{d} t+b(X) \mathrm{d} W_{t}
$$

- $\mathrm{d}, \delta,+$ imply vector space structure
- This is highly coordinate dependent

Curved Scheme

Let γ_{x} be a choice of curve at each point x of $M . \gamma_{x}(0)=x$.

Consider the scheme

$$
X_{t+\delta t}=\gamma_{X_{t}}\left(\delta W_{t}\right) \quad X_{0}
$$

Concrete example

$$
\gamma_{\left(x_{1}, x_{2}\right)}^{E}(s)=\left(x_{1}, x_{2}\right)+s\left(-x_{2}, x_{1}\right)+3 s^{2}\left(x_{1}, x_{2}\right)
$$

- First order term is rotational vector
- Second order term is axial vector

Simulation: Large time step

$$
\gamma_{\left(x_{1}, x_{2}\right)}^{E}(s)=\left(x_{1}, x_{2}\right)+s\left(-x_{2}, x_{1}\right)+3 s^{2}\left(x_{1}, x_{2}\right)
$$

Simulation: Smaller time step

$$
\gamma_{\left(x_{1}, x_{2}\right)}^{E}(s)=\left(x_{1}, x_{2}\right)+s\left(-x_{2}, x_{1}\right)+3 s^{2}\left(x_{1}, x_{2}\right)
$$

Simulation: Even smaller

$$
\gamma_{\left(x_{1}, x_{2}\right)}^{E}(s)=\left(x_{1}, x_{2}\right)+s\left(-x_{2}, x_{1}\right)+3 s^{2}\left(x_{1}, x_{2}\right)
$$

Simulation: Convergence

$$
\gamma_{\left(x_{1}, x_{2}\right)}^{E}(s)=\left(x_{1}, x_{2}\right)+s\left(-x_{2}, x_{1}\right)+3 s^{2}\left(x_{1}, x_{2}\right)
$$

Formal argument

Write:

$$
\gamma_{x}(s)=x+\gamma_{x}^{\prime}(0) s+\frac{1}{2} \gamma_{x}^{\prime \prime}(0) s^{2}+O\left(s^{3}\right)
$$

Then:

$$
\begin{aligned}
X_{t+\delta t} & =\gamma_{t}\left(\delta W_{t}\right) \\
& =X_{t}+\gamma_{X_{t}}^{\prime}(0) \delta W_{t}+\frac{1}{2} \gamma^{\prime \prime} X_{t}(0)\left(\delta W_{t}\right)^{2}+O\left(\left(\delta W_{t}\right)^{3}\right)
\end{aligned}
$$

Rearranging:

$$
\delta X_{t}=X_{t+\delta t}-X_{t}=\gamma_{X_{t}}^{\prime}(0) \delta W_{t}+\frac{1}{2} \gamma^{\prime \prime} X_{t}(0)\left(\delta W_{t}\right)^{2}+O\left(\left(\delta W_{t}\right)^{3}\right)
$$

Taking the limit:

$$
\begin{aligned}
\mathrm{d} X_{t} & =b(X) \mathrm{d} W_{t}+a(X)\left(\mathrm{d} W_{t}\right)^{2}+O\left(\left(\mathrm{~d} W_{t}\right)^{3}\right) \\
& =b(X) \mathrm{d} W_{t}+a(X) \mathrm{d} t
\end{aligned}
$$

where

$$
\begin{gathered}
b(X)=\gamma_{X}^{\prime}(0) \\
a(X)=\gamma_{X}^{\prime \prime}(0) / 2
\end{gathered}
$$

Comments

- The curved scheme depends only on the 2-jet of the curve
- SDEs driven by 1-d Brownian motion are determined by 2-jets of curves
- The first derivative determines the volatility term
- The second derivative determines the drift term

ODEs correspond to 1 -jets of curves
SDEs correspond to 2-jets of curves

- Rigorous proof of convergence of quadratic scheme can be proved using standard results on Euler scheme

$$
\begin{aligned}
\mathrm{d} X_{t} & =a(X) \mathrm{d} t+b(X) \mathrm{d} W_{t} \\
& =a(X)\left(\mathrm{d}\left(W_{t}^{2}\right)-2 W_{t} \mathrm{~d}\left(W_{t}\right)\right)+b(X) \mathrm{d} W_{t} \\
& \approx a(X)\left(\delta\left(W_{t}^{2}\right)-2 W_{t} \delta\left(W_{t}\right)\right)+b(X) \delta W_{t} \\
& =a(X)\left(\left(\delta W_{t}\right)^{2}\right)+b(X) \delta W_{t}
\end{aligned}
$$

- For general curved schemes some analysis needed.

Itô's lemma

Given a family of curves γ_{x} we will write:

$$
X_{t} \smile j_{2}\left(\gamma_{x}\left(\mathrm{~d} W_{t}\right)\right)
$$

if X_{t} is the limit of our scheme.
If

$$
X_{t} \smile j_{2}\left(\gamma_{x}\left(\mathrm{~d} W_{t}\right)\right)
$$

and $f: X \rightarrow Y$ then:

$$
f(X)_{t} \smile j_{2}\left(f \circ \gamma_{x}\left(\mathrm{~d} W_{t}\right)\right)
$$

Itô's lemma is simply composition of functions.

Usual formulation

$$
X_{t} \smile j_{2}\left(\gamma_{x}\left(\mathrm{~d} W_{t}\right)\right)
$$

Is equivalent to:

$$
\mathrm{d} X_{t}=a(X) \mathrm{d} t+b(X) \mathrm{d} W_{t}, \quad a(X)=\frac{1}{2} \gamma_{X}^{\prime \prime}(0), \quad b(X)=\gamma_{X}^{\prime}(0)
$$

We calculate the first two derivatives of $f \circ \gamma_{X}$:

$$
\begin{aligned}
\left(f \circ \gamma_{X}\right)^{\prime}(t)= & \sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}\left(\gamma_{X}(t)\right) \frac{\mathrm{d} \gamma_{X}}{\mathrm{~d} t} \\
\left(f \circ \gamma_{X}\right)^{\prime \prime}(t)= & \sum_{j=1}^{n} \sum_{i=1}^{n} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\left(\gamma_{X}(t)\right) \frac{\mathrm{d} \gamma_{X}^{i}}{\mathrm{~d} t} \frac{\mathrm{~d} \gamma_{X}^{j}}{\mathrm{~d} t} \\
& +\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}\left(\gamma_{X}(t)\right) \frac{\mathrm{d}^{2} \gamma_{X}}{\mathrm{~d} t^{2}}
\end{aligned}
$$

So $f\left(X_{t}\right) \smile j_{2}\left(f \circ \gamma_{x}\left(\mathrm{~d} W_{t}\right)\right)$ is equivalent to standard Itô's formula

Example

$$
\gamma_{\left(x_{1}, x_{2}\right)}^{E}(s)=\left(x_{1}, x_{2}\right)+s\left(-x_{2}, x_{1}\right)+3 s^{2}\left(x_{1}, x_{2}\right)
$$

Clearly polar coordinates might be a good idea. So consider the transformation $\phi: \mathbb{R}^{2} /\{0\} \rightarrow[-\pi, \pi] \times \mathbb{R}$ by:

$$
\phi(\exp (s) \cos (\theta), \exp (s) \sin (\theta))=(\theta, s)
$$

The process $j_{2}\left(\phi \circ \gamma^{E}\right)$ plotted using image manipulation software

The process $j_{2}\left(\phi \circ \gamma^{E}\right)$ plotted by applying Itô's lemma

$$
\mathrm{d}(\theta, s)=\left(0, \frac{7}{2}\right) \mathrm{d} t+(1,0) \mathrm{d} W_{t}
$$

Drawing SDEs

The following diagram commutes:

Intrinsic Itô Projection: 2-jet formulation
If original SDE is:

$$
X_{t} \smile j_{2}\left(\gamma_{x}\left(\mathrm{~d} W_{t}\right)\right)
$$

then intrinsic Itô projection is:

Local coordinate formulation

Calculate Taylor series for π to second order to compute:

$$
\mathrm{d} x=A \mathrm{~d} t+B_{\alpha} \mathrm{d} W_{t}^{\alpha}, \quad x_{0}
$$

where:

$$
B_{\alpha}^{i}=\left(\pi_{*}\right)_{\beta}^{i} b_{\alpha}^{\beta}
$$

and:

$$
\begin{aligned}
A^{i}= & \left(\pi_{*}\right)_{\alpha}^{i} a^{\alpha}+ \\
& \left(-\frac{1}{2} \frac{\partial^{2} \phi^{\gamma}}{\partial x^{\alpha} \partial x^{\beta}}\left(\pi_{*}\right)_{\gamma}^{a}\left(\pi_{*}\right)_{\delta}^{\alpha}\left(\pi_{*}\right)_{\epsilon}^{\beta}\right. \\
& \left.+\frac{\partial^{2} \phi^{\epsilon}}{\partial x^{\alpha} \partial x^{\beta}}\left(\pi_{*}\right)_{\delta}^{\beta} h^{a \alpha}-\frac{\partial^{2} \phi^{\gamma}}{\partial x^{\alpha} \partial x^{\beta}}\left(\pi_{*}\right)_{\epsilon}^{\beta}\left(\pi_{*}\right)_{\gamma}^{\eta}\left(\pi_{*}\right)_{\delta}^{\zeta} h_{\eta \zeta} h^{a \alpha}\right) \\
& \times b_{\kappa}^{\delta} b_{l}^{\epsilon}\left[W^{\kappa}, W^{\iota}\right]_{t} .
\end{aligned}
$$

Numerical example

- The linear filtering problem has solutions given by Gaussian distributions
- Maybe approximately linear filtering problems can be well approximated by Gaussian distributions?
- Heuristic algorithms:
- Extended Kalman Filter
- Itô Assumed Density Filter
- Stratonovich Assumed Density Filter
- Stratonovich Projection Filter
- Algortihms based on optimization arguments:
- Extrinsic Itô Projection Filter
- Intrinsic Itô Projection Filter

Relative performance (Hellinger Residuals)

All projections performed w.r.t. the Hellinger metric.

Summary - projection methods

	Extrinsic Ito	Intrinsic Ito	Stratonovich
Optimal?	Yes	Yes	
Factorizable SDE	Surprising	Expected	Expected
Aesthetics		Elegant	
Practice	Best short term	Best medium term	Acceptable

- Note that our notion of optimal is based on expectation of squared residuals
- Other "risk measures" could be used

Summary - 2 jets

- 2-jets allow you to draw pictures of SDEs
- They provide an intuitive and elegant reformulation of Itô's lemma
- They provide an alternative route to coordinate free stochastic differential geometry to operator opproaches

