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Idea: Projection



Idea: Projection

I Projection gives a method of systematically reducing the
dimension of an ODE

I Projection onto a linear subspace is the standard numerical
method for solving PDEs

I Projecting onto a curved manifold may be more effective if we
know the solution is close to this manifold

I e.g. perhaps the known soliton solutions to the KdV equation
might give good approximations to solutions to a pertubed
KdeV equation?



This talk

I Question: How should the notion of projection be extended to
stochastic differential equations?

I Answer:
I There is a Stratonovich Projection which is best understood

using Stratonovich calculus.
I There is an Extrinsic Ito Projection which is best understood

using Ito calculus.
I There is an Intrinsic Ito Projection which is best understood by

using jet bundles.
I . . .

I We will
I Define these various notions of projection and discuss their

motivation and theoretical justifications
I Describe a geometric formulation of SDEs using 2-jets to

understand the Intrinsic Ito projection
I Look at some numerical results when projection is applied to

nonlinear filtering



Setup

I M is a submanifold of Rr

I ψ : U → Rn is a chart for M
I φ = ψ−1

I We have an SDE on Rr

dXt = a dt +
∑
α

bα dW
α
t , X0

and want to approximate this using an SDE on Rn.



Definition: Stratonovich projection

1. Write the SDE in Stratonovich form

dXt = a(Xt)dt +
∑
α

bα(Xt) ◦ dW α
t , X0

2. Apply the projection operator Π to each coefficient to obtain
an SDE on M

dXt = ΠXta(Xt) dt +
∑
α

ΠXtbα(Xt) ◦ dW α
t , ψ(X0)



Justifications

What are the justifications for using the Stratonovich projection?

I It is clearly a well defined SDE. (Contrast with projecting Itô
coefficients)

I It is clearly generalizes projection of ODEs - i.e. when b = 0
we get ODE projection.

I It gives good numerical results when applied to the filtering
problem

I It generalizes the Galerkin method which can be interpreted as
projection onto a linear subspace.



A justification for ODE projection

I Consider an ODE on Rr

dX

dt
= a(X ), X0

I Look for an ODE on Rn of the form

dx

dt
= a(x), ψ(X0)

such that
|φ(xt)− Xt |2

is as small as possible.



A justification for ODE projection

I Compute Taylor expansion to see that leading term is
minimized when:

a(ψ(x0)) = ψ∗ΠX0A(x0)

I Therefore ODE projection is the unique asymptotically optimal
ODE approximating the original ODE at all points on M.

I (Linear projection operator gives solution to a quadratic
optimization problem)



Repeat idea for SDEs

Equation in larger space Rr : Equation in chart:
dX = a(X , t) dt + b(X , t)dWt dx = A(x , t)dt + B(x , t) dWt

We have Itô Taylor series estimates (Kloeden and Platen):

E (|Xt − φ(xt)|) = |b0 − φ∗B0|
√
t + O(t)

|E (Xt − φ(xt))| =

∣∣∣∣a0 − φ∗A0 −
1

2
(∇Bα,0φ∗)Bβ,0[W α,W β]

∣∣∣∣ t
+ O(t2)



Extrinsic Ito Projection

To minimize first estimate:

φ∗B = Πb

If we define B like this for whole chart, second estimate is
minimized when:

φ∗A = Πa− 1

2
Π(∇Bαφ∗)Bβ[W α,W β]

I Given φ, define A and B using these equations

I This defines an SDE on the manifold

I We call this the Extrinsic Itô projection

I It is different from the Stratonovich projection



Discussion

I The Extinsic Itô Projection is optimal in the sense that it
asymptotically minimizes two measures of the divergence of
the approximation to the SDE from the true solution.

I Measure one is on the expectation of the absolute value. This
determines the martingale part of our equation

I Measure two is on the absolute value of the expectation. This
determines the bounded variation part of our equation

I The Extrinsic Itô Projection is “greedy” in that it finds the
best approximation over short time horizons and hopes they
will do well over long time horizons.

I Numerical test on the filtering problem indicate that it slightly
outperforms the Stratonovich projection in practice over
moderate time horizons.

I Over longer time horizons, it is random which performs better.



Geodesic projection map

Let π denote the smooth map defined on a tubular neighbourhood
of M that projects Rr onto M along geodesics.



An alternative justification for ODE projection

I Consider an ODE on Rr

dX

dt
= a(X ), X0

I Look for an ODE on Rn of the form
dx

dt
= a(x), ψ(X0)

such that
|φ(xt)− Xt |2

d(xt , ψ ◦ π(Xt))

is as small as possible. d is induced Riemannian distance.



Intrinsic Itô projection

Repeating the ideas used to derive the Extrinsic Itô projection:

Definition
The Intrinsic Itô projection is the best approximation to π(Xt) in
the sense that it asymptotically minimizes both:

E (d(xt , ψ ◦ π((Xt)))

d(E (xt),E (ψ ◦ π(Xt)))



Discussion

All three projections are distinct. Which is better?

Lemma
(Factorizable SDEs) Suppose that S is an SDE for X on Rr such
that π(X ) solves an SDE S ′ on M then the Stratonovich and
intrinic Itô projections are both equal to S ′. However, the extrinsic
projection may be different.

Example

The SDE S on R2

dXt = σYt dWt

dYt = σXt dWt

In polar coordinates, solutions satisfy:

dθ = −1

2
σ2 sin(4θ) dt + σ cos(2θ) dWt



Understanding the Intrinsic Itô projection

Definition
The Intrinsic Itô projection is the best approximation to π(Xt) in
the sense that it asymptotically minimizes both:

E (d(xt , ψ ◦ π((Xt)))

d(E (xt),E (ψ ◦ π(Xt)))

I For applications, one must calculate this in local coordinates,
but the resulting expression is complex

I One can understand this projection more intuitively, and
express the answer more elegantly, using the language of
2-jets.



Euler Scheme

I All being well in the limit the Euler scheme

δXt = a(X ) δt + b(X ) δWt

converges to a solution of the SDE

dXt = a(X )dt + b(X ) dWt

I d, δ, + imply vector space structure

I This is highly coordinate dependent



Curved Scheme
Let γx be a choice of curve at each point x of M. γx(0) = x .
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Consider the scheme

Xt+δt = γXt (δWt) X0



Concrete example

γE(x1,x2)(s) = (x1, x2) + s(−x2, x1) + 3s2(x1, x2)
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I First order term is rotational vector

I Second order term is axial vector



Simulation: Large time step

γE(x1,x2)(s) = (x1, x2) + s(−x2, x1) + 3s2(x1, x2)



Simulation: Smaller time step

γE(x1,x2)(s) = (x1, x2) + s(−x2, x1) + 3s2(x1, x2)



Simulation: Even smaller

γE(x1,x2)(s) = (x1, x2) + s(−x2, x1) + 3s2(x1, x2)



Simulation: Convergence

γE(x1,x2)(s) = (x1, x2) + s(−x2, x1) + 3s2(x1, x2)



Formal argument
Write:

γx(s) = x + γ′x(0)s +
1

2
γ′′x (0)s2 + O(s3)

Then:

Xt+δt = γt(δWt)

= Xt + γ′Xt
(0)δWt +

1

2
γ′′Xt(0)(δWt)

2 + O
(
(δWt)

3
)

Rearranging:

δXt = Xt+δt − Xt = γ′Xt
(0)δWt +

1

2
γ′′Xt(0)(δWt)

2 + O
(
(δWt)

3
)

Taking the limit:

dXt = b(X )dWt + a(X )(dWt)
2 + O

(
(dWt)

3
)

= b(X )dWt + a(X )dt

where
b(X ) = γ′X (0)

a(X ) = γ′′X (0)/2



Comments

I The curved scheme depends only on the 2-jet of the curve

I SDEs driven by 1-d Brownian motion are determined by 2-jets
of curves

I The first derivative determines the volatility term

I The second derivative determines the drift term

ODEs correspond to 1-jets of curves
SDEs correspond to 2-jets of curves

I Rigorous proof of convergence of quadratic scheme can be
proved using standard results on Euler scheme

dXt = a(X )dt + b(X )dWt

= a(X )
(
d(W 2

t )− 2Wtd(Wt)
)

+ b(X )dWt

≈ a(X )
(
δ(W 2

t )− 2Wtδ(Wt)
)

+ b(X )δWt

= a(X )
(
(δWt)

2
)

+ b(X )δWt

I For general curved schemes some analysis needed.



Itô’s lemma

Given a family of curves γx we will write:

Xt ^ j2 (γx(dWt))

if Xt is the limit of our scheme.
If

Xt ^ j2 (γx(dWt))

and f : X → Y then:

f (X )t ^ j2 (f ◦ γx(dWt))

Itô’s lemma is simply composition of functions.



Usual formulation

Xt ^ j2 (γx(dWt))

Is equivalent to:

dXt = a(X )dt + b(X )dWt , a(X ) =
1

2
γ′′X (0), b(X ) = γ′X (0)

We calculate the first two derivatives of f ◦ γX :

(f ◦ γX )′(t) =
n∑

i=1

∂f

∂xi
(γX (t))

dγX
dt

(f ◦ γX )′′(t) =
n∑

j=1

n∑
i=1

∂2f

∂xi∂xj
(γX (t))

dγ iX
dt

dγjX
dt

+
n∑

i=1

∂f

∂xi
(γX (t))

d2γX
dt2

So f (Xt) ^ j2 (f ◦ γx(dWt)) is equivalent to standard Itô’s formula



Example

γE(x1,x2)(s) = (x1, x2) + s(−x2, x1) + 3s2(x1, x2)
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Clearly polar coordinates might be a good idea. So consider the
transformation φ : R2/{0} → [−π, π]× R by:

φ(exp(s) cos(θ), exp(s) sin(θ)) = (θ, s),



The process j2(φ ◦ γE ) plotted using image manipulation software

The process j2(φ ◦ γE ) plotted by applying Itô’s lemma

d(θ, s) =

(
0,

7

2

)
dt + (1, 0) dWt .



Drawing SDEs

The following diagram commutes:

SDE for X SDE for f (X )

Picture of SDE for X in Rn f (Picture of SDE for X)

Itô’s lemma

Draw Draw
f



Intrinsic Itô Projection: 2-jet formulation
If original SDE is:

Xt ^ j2 (γx(dWt))

then intrinsic Itô projection is:

xt ^ j2 (π ◦ γx(dWt))



Local coordinate formulation

Calculate Taylor series for π to second order to compute:

dx = Adt + Bα dW
α
t , x0

where:
B i
α = (π∗)

i
βb

β
α

and:

Ai = (π∗)
i
αa

α+(
−1

2

∂2φγ

∂xα∂xβ
(π∗)

a
γ(π∗)

α
δ (π∗)

β
ε

+
∂2φε

∂xα∂xβ
(π∗)

β
δ h

aα − ∂2φγ

∂xα∂xβ
(π∗)

β
ε (π∗)

η
γ(π∗)

ζ
δhηζh

aα

)
× bδκb

ε
ι [W

κ,W ι]t .



Numerical example

I The linear filtering problem has solutions given by Gaussian
distributions

I Maybe approximately linear filtering problems can be well
approximated by Gaussian distributions?

I Heuristic algorithms:
I Extended Kalman Filter
I Itô Assumed Density Filter
I Stratonovich Assumed Density Filter
I Stratonovich Projection Filter

I Algortihms based on optimization arguments:
I Extrinsic Itô Projection Filter
I Intrinsic Itô Projection Filter



Relative performance (Hellinger Residuals)

All projections performed w.r.t. the Hellinger metric.
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Summary - projection methods

Extrinsic Ito Intrinsic Ito Stratonovich

Optimal? Yes Yes
Factorizable SDE Surprising Expected Expected

Aesthetics Elegant
Practice Best short term Best medium term Acceptable

I Note that our notion of optimal is based on expectation of
squared residuals

I Other “risk measures” could be used



Summary - 2 jets

I 2-jets allow you to draw pictures of SDEs

I They provide an intuitive and elegant reformulation of Itô’s
lemma

I They provide an alternative route to coordinate free stochastic
differential geometry to operator opproaches


	Projection

