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Section 1

Coordinate free SDEs



Coordinate free SDEs

Approaches to SDEs on manifolds

I Itô: coordinate based approach.

I Elworthy: Stratonovich calculus

I Schwarz, Emery: second order tangent vectors, diffusors and
Schwartz morphism.

I Y. Belopolskaja and Y. Dalecky, Gliklikh: Itô-bundle

I This talk: 2-jets.

Goals:

I Can we give a formulation of SDEs that makes their geometry
more apparent?

I Can we understand SDEs using familiar geometric objects?



Applications

What are the applications?

I We can draw a picture of an SDE.

I We obtain new numerical schemes for solving SDEs on
manifolds.

I We can define a new, optimal, notion of projection that allows
us to approximate high-dimensional SDEs with low
dimensional SDEs.



Tangent vectors (hence ODEs on manifolds)

The coordinate based approach:

Definition
Let Mn be an n-dimensional manifold. A tangent vector at a point
x ∈ M is defined to be an equivalence class of pairs:

(v , φ) = ((v1, v2, . . . vn), φ)

where v is a vector in Rn and φ is a chart.

(v , φ) ∼ (w ,Φ)

if and only if v j =
∑
i

∂τ j

∂x i
w i ,

where τ = Φ ◦ φ−1 is the transition function.



Pictorial representation
Vector fields are pairs of a components charts that transform
correctly from one coordinate system to another.

Figure:



SDE on manifold

Itô’s approach:

Definition
Let Mn be an n-dimensional manifold. An SDE at a point x ∈ M
is defined to be an equivalence class of quadruples: (Wt , φ, a, b)

(Wt , φ, a, b) ∼ (Vt ,Φ,A,B) if


Wt = Vt

Aj = aj∂jτ
i +

1

2
bjαb

k
βg

αβ∂j∂kτ
i

B j = bjα∂jτ
i

for the transition function τ = Φ ◦ φ−1.

Here gαβ = [W α,W β]t denotes the quadratic covariation of W α

and W β. We are using the Einstein summation convention.



Vector: Operator definition

Derivation:
I A function D : C∞(x)→ R satisfying:

I D(a f + b g) = aD(f ) + b D(g) when a, b ∈ R
I D(fg) = f ,D(g) + g D(f ) when f , g ∈ C∞(x)

I where C∞(x) is set of germs of smooth functions

I Germ at x : f ∼ g if f (y) = g(y) for all y in some
neighbourhood U 3 x

Example

1. ∂
∂x is a derivation.

2. Given a vector V ∈ Rn

V (f ) := lim
h→0

f (x + hV )− f (x)

h

is a derivation on Rn.



SDE: Operator definitions

I To an SDE we can associate the forward and backwards
diffusion operators acting on, respectively, densities and
functions.

I We can read off the coefficients of an SDE from the the
coefficients of the operator.



Jets

I A k-jet of a smooth path is defined as an equivalence class of
paths with the same Taylor series up to given order.

I Given two smooth functions f , g : M → N satisfying
f (0) = g(0) we say

jk(f ) = jk(g)

if f and g have the same Taylor series expansion (in any
charts) up to order k .

0-jet 1-jet 2-jet



Vectors as jets. Vector fields as infinitesimal
diffeomorphisms

Definition
A vector at x is a 1-jet of a path starting at x .

A vector field defines a flow, i.e. a 1-parameter family of
diffeomorphisms.



Definitions of tangent vectors and SDEs

Approach ODE SDE

Coordinates Index notation Itô’s definition
Operators Derivations Diffusion operators, 2nd or-

der tangent vectors
Jets 1-jets 2-jets

Diffeomorphisms Vector flows Stratonovich Calculus



Euler Scheme

I All being well in the limit the Euler scheme

δXt = a(X ) δt + b(X ) δWt

converges to a solution of the SDE

dXt = a(X )dt + b(X ) dWt

I d, δ, + imply vector space structure

I This is highly coordinate dependent



Curved Scheme
Let γx be a choice of curve at each point x of M. γx(0) = x .
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Consider the scheme

Xt+δt = γXt (δWt) X0



Concrete example

γE(x1,x2)(s) = (x1, x2) + s(−x2, x1) + 3s2(x1, x2)
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I First order term is rotational vector

I Second order term is axial vector



Simulation: Large time step

γE(x1,x2)(s) = (x1, x2) + s(−x2, x1) + 3s2(x1, x2)



Simulation: Smaller time step

γE(x1,x2)(s) = (x1, x2) + s(−x2, x1) + 3s2(x1, x2)



Simulation: Even smaller

γE(x1,x2)(s) = (x1, x2) + s(−x2, x1) + 3s2(x1, x2)



Simulation: Convergence

γE(x1,x2)(s) = (x1, x2) + s(−x2, x1) + 3s2(x1, x2)



Formal argument
Write:

γx(s) = x + γ′x(0)s +
1

2
γ′′x (0)s2 + O(s3)

Then:

Xt+δt = γt(δWt)

= Xt + γ′Xt
(0)δWt +

1

2
γ′′Xt(0)(δWt)

2 + O
(
(δWt)

3
)

Rearranging:

δXt = Xt+δt − Xt = γ′Xt
(0)δWt +

1

2
γ′′Xt(0)(δWt)

2 + O
(
(δWt)

3
)

Taking the limit:

dXt = b(X )dWt + a(X )(dWt)
2 + O

(
(dWt)

3
)

= b(X )dWt + a(X )dt

where
b(X ) = γ′X (0)

a(X ) = γ′′X (0)/2



Comments

I The curved scheme depends only on the 2-jet of the curve

I SDEs driven by 1-d Brownian motion are determined by 2-jets
of curves

I The first derivative determines the volatility term

I The second derivative determines the drift term

ODEs correspond to 1-jets of curves
SDEs correspond to 2-jets of curves

I Rigorous proof of convergence of quadratic scheme can be
proved using standard results on Euler scheme

dXt = a(X )dt + b(X )dWt

= a(X )
(
d(W 2

t )− 2Wtd(Wt)
)

+ b(X )dWt

≈ a(X )
(
δ(W 2

t )− 2Wtδ(Wt)
)

+ b(X )δWt

= a(X )
(
(δWt)

2
)

+ b(X )δWt

I For general curved schemes some analysis needed.



Itô’s lemma

Given a family of curves γx we will write:

Xt ^ j2 (γx(dWt))

if Xt is the limit of our scheme.
If

Xt ^ j2 (γx(dWt))

and f : X → Y then:

f (X )t ^ j2 (f ◦ γx(dWt))

Itô’s lemma is simply composition of functions.



Usual formulation

Xt ^ j2 (γx(dWt))

Is equivalent to:

dXt = a(X )dt + b(X )dWt , a(X ) =
1

2
γ′′X (0), b(X ) = γ′X (0)

We calculate the first two derivatives of f ◦ γX :

(f ◦ γX )′(t) =
n∑

i=1

∂f

∂xi
(γX (t))

dγX
dt

(f ◦ γX )′′(t) =
n∑

j=1

n∑
i=1

∂2f

∂xi∂xj
(γX (t))

dγ iX
dt

dγjX
dt

+
n∑

i=1

∂f

∂xi
(γX (t))

d2γX
dt2

So f (Xt) ^ j2 (f ◦ γx(dWt)) is equivalent to standard Itô’s formula



Example

γE(x1,x2)(s) = (x1, x2) + s(−x2, x1) + 3s2(x1, x2)
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Clearly polar coordinates might be a good idea. So consider the
transformation φ : R2/{0} → [−π, π]× R by:

φ(exp(s) cos(θ), exp(s) sin(θ)) = (θ, s),



The process j2(φ ◦ γE ) plotted using image manipulation software

The process j2(φ ◦ γE ) plotted by applying Itô’s lemma

d(θ, s) =

(
0,

7

2

)
dt + (1, 0) dWt .



Drawing SDEs

The following diagram commutes:

SDE for X SDE for f (X )

Picture of SDE for X in Rn f (Picture of SDE for X)

Itô’s lemma

Draw Draw
f



Stratonovich formulation

I Let a and b be vector fields on M.

I Define
γx(s) = Φa

s2

(
Φb
s (x)

)
where ΦX

s is the flow associated with a vector field X .

I This defines a field of curves and hence an SDE

I This is a geometric interpretation of the relation between
Stratonovich and Itô calculus.

I Application: following these flows should give numerical
approximations to SDEs which stay closer to an embedded
manifold than the Euler scheme.



Definitions of tangent vectors and SDEs

Approach ODE SDE

Coordinates Index notation Itô’s definition
Operators Derivations Diffusion operators, 2nd or-

der tangent vectors
Jets 1-jets 2-jets

Diffeomorphisms Vector flows Stratonovich Calculus
I’ve only discussed SDEs driven by 1-d Brownian motion.
Considering 2-jets of maps Rk → M gives a similar theory for
higher dimensional drivers.



Section 2

Projection



Idea: Projection



Idea: Projection

I Projection gives a method of systematically reducing the
dimension of an ODE

I Projection onto a linear subspace is the standard numerical
method for solving PDEs

I Projecting onto a curved manifold may be more effective if we
know the solution is close to this manifold

I e.g. perhaps the known soliton solutions to the KdV equation
might give good approximations to solutions to a pertubed
KdeV equation?



Projecting SDEs

I Question: How should the notion of projection be extended to
stochastic differential equations?

I Answer:
I There is a Stratonovich Projection which is best understood

using Stratonovich calculus.
I There is an Itô-vector Projection which is best understood

using Itô’s coordinate formulation.
I There is an Itô-jet Projection which is best understood by

using 2-jets.



Setup

I M is a submanifold of Rr

I ψ : U → Rn is a chart for M
I φ = ψ−1

I We have an SDE on Rr

dXt = a dt +
∑
α

bα dW
α
t , X0

and want to approximate this using an SDE on Rn.



Definition: Stratonovich projection

1. Write the SDE in Stratonovich form

dXt = a(Xt)dt +
∑
α

bα(Xt) ◦ dW α
t , X0

2. Apply the projection operator Π to each coefficient to obtain
an SDE on M

dXt = ΠXta(Xt) dt +
∑
α

ΠXtbα(Xt) ◦ dW α
t , ψ(X0)



Justifications

What are the justifications for using the Stratonovich projection?

I It is clearly a well defined SDE. (Contrast with projecting Itô
coefficients)

I It is clearly generalizes projection of ODEs - i.e. when b = 0
we get ODE projection.

I It gives good numerical results when applied to the filtering
problem

I It generalizes the Galerkin method which can be interpreted as
projection onto a linear subspace.



A justification for ODE projection

I Consider an ODE on Rr

dX

dt
= a(X ), X0

I Look for an ODE on Rn of the form

dx

dt
= a(x), ψ(X0)

such that
|φ(xt)− Xt |2

is as small as possible.



A justification for ODE projection

I Compute Taylor expansion to see that leading term is
minimized when:

a(ψ(x0)) = ψ∗ΠX0A(x0)

I Therefore ODE projection is the unique asymptotically optimal
ODE approximating the original ODE at all points on M.

I (Linear projection operator gives solution to a quadratic
optimization problem)



Repeat idea for SDEs

Equation in larger space Rr : Equation in chart:
dX = a(X , t) dt + b(X , t)dWt dx = A(x , t)dt + B(x , t) dWt

We have Itô Taylor series estimates (Kloeden and Platen):

E (|Xt − φ(xt)|) = |b0 − φ∗B0|
√
t + O(t)

|E (Xt − φ(xt))| =

∣∣∣∣a0 − φ∗A0 −
1

2
(∇Bα,0φ∗)Bβ,0[W α,W β]

∣∣∣∣ t
+ O(t2)



Itô-Vector Projection

To minimize first estimate:

φ∗B = Πb

If we define B like this for whole chart, second estimate is
minimized when:

φ∗A = Πa− 1

2
Π(∇Bαφ∗)Bβ[W α,W β]

I Given φ, define A and B using these equations

I This defines an SDE on the manifold

I We call this the Itô-vector projection

I It is different from the Stratonovich projection



Alternative

I The use of a weak estimate seems somewhat unsatisfactory.

I An alternative derivation is to compute the strong Itô-Taylor
series to one extra order and to try to minimize the coefficient
of t.

I This again yields the Itô-vector projection

I Note that this is also somewhat unsatisfactory: whey
minimize a term of order t if you can’t get the term of order

t
1
2 to vanish?



Metric projection map

Let π denote the smooth map defined on a tubular neighbourhood
of M that projects Rr onto M along geodesics.



An alternative justification for ODE projection

I Consider an ODE on Rr

dX

dt
= a(X ), X0

I Look for an ODE on Rn of the form
dx

dt
= a(x), ψ(X0)

such that
|φ(xt)− Xt |2

|φ(xt)− π(Xt)|2

is as small as possible.



Itô-jet projection

Definition
If original SDE is:

Xt ^ j2 (γx(dWt))

then intrinsic Itô projection is:

xt ^ j2 (π ◦ γx(dWt))



Itô-jet projection

Repeating the ideas used to derive the Itô-vector projection:

Theorem
The Itô-jet projection is the best approximation to π(Xt) in the
sense that it asymptotically minimizes the coefficients in the Taylor
series for:

E (|φ(xt)− π(Xt)|)

Note that the term of O(t
1
2 ) can be made to vanish. You get the

same result if distance is measured using geodesic distance on M
in the induced metric.



Local coordinate formulation
Calculate Taylor series for π to second order to compute Itô-jet
projection in local coordinates:

dx = Adt + Bα dW
α
t , x0

where:
B i
α = (π∗)

i
βb

β
α

and:

Ai = (π∗)
i
αa

α+(
−1

2

∂2φγ

∂xα∂xβ
(π∗)

a
γ(π∗)

α
δ (π∗)

β
ε

+
∂2φε

∂xα∂xβ
(π∗)

β
δ h

aα − ∂2φγ

∂xα∂xβ
(π∗)

β
ε (π∗)

η
γ(π∗)

ζ
δhηζh

aα

)
× bδκb

ε
ι [W

κ,W ι]t .

h is the induced metric tensor. π∗ is the first order projection
operator.



Discussion

All three projections are distinct. Which is better?

Lemma
Suppose that S is an SDE for X on Rr such that π(X ) solves an
SDE S ′ on M then the Stratonovich and Itô-jet projections are
both equal to S ′. However, the Itô-vector projection may be
different.

Example

The “cross diffusion” SDE S on R2

dXt = σYt dWt

dYt = σXt dWt

In polar coordinates, solutions satisfy:

dθ = −1

2
σ2 sin(4θ) dt + σ cos(2θ) dWt



Section 3

An application to filtering



The filtering problem

The state of a system evolves according to an SDE:

dXt = f (Xt , t)dt + σ(Xt , t)dWt

with X0 drawn from some prior distribution. We can only observe

dYt = b(Xt , t) dt + dVt

then, if the coefficients are nice enough, the conditional probability
density p satisfies:

dp = L∗p dt + p[b − Ep(b)]T [dY − Ep(b)dt].

This is the Kushner–Stratonovich equation.
If f and b are linear in X and σ is a deterministic function of time
then this is called a linear filter. We can find exact solution given
by Gaussians, the so-called Kalman filter.



Numerical example

I The linear filtering problem has solutions given by Gaussian
distributions

I Maybe approximately linear filtering problems can be well
approximated by Gaussian distributions?

I Heuristic algorithms:
I Extended Kalman Filter
I Itô Assumed Density Filter
I Stratonovich Assumed Density Filter
I Stratonovich Projection Filter

I Algorithms based on optimization arguments:
I Itô-vector Projection Filter
I Itô-jet Projection Filter



L2 projection

I Suppose that the density can be shown to lie in L2(R)

I Consider the 2-d submanifold of L2(R) given by the family of
Gaussian distributions.

I This is a curved family of distributions. The induced metric is
the hyperbolic metric.

I Idea: project the infinite-dimensional Kushner-Stratonovich
equation onto the family of Gaussian distributions.

I Generalizations: higher dimensional Gaussians, project onto
higher dimensional submanifolds of L2 to obtain more accurate
approximations, e.g. mixture families or exponential families.



Hellinger projection

I Define the Hellinger distance between two probability
measures P and Q by:

H(P,Q)2 =
1

2

∫ (√
dP

dλ
−
√

dQ

dλ

)2

dλ

where λ is a measure s.t. both P and Q are absolutely
continuous w.r.t. λ.

I If P and Q have densities p and q then:

H(P,Q)2 =
1

2

∫
(
√
p(x)−

√
q(x))2 dx = |√p −√q|22

I We can compute projection w.r.t. Hellinger metric



Example: a cubic sensor

State equation:
dXt = dWt .

Measurement equation:

dYt = (Xt + εX 3
t )dt + dVt

ε is small (ε = 0.05)



Relative performance (Hellinger Residuals)

All projections performed w.r.t. the Hellinger metric.
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Summary - projection methods

Ito-vector Ito-jet Stratonovich

Optimal? Yes Yes
SDE fibres over π Surprising Expected Expected

Aesthetics Elegant
Practice Best short term Best medium term Acceptable

I Note that our notions of optimal are based on expectation of
squared residuals



Summary - 2 jets

I 2-jets allow you to draw pictures of SDEs

I They provide an intuitive and elegant reformulation of Itô’s
lemma

I They provide an alternative route to coordinate free stochastic
differential geometry to operator approaches and have found
concrete applications.



Higher dimensional jets

γA0 (x , y) = x(1, 0) + 2y(0, 1) + 2x2(1, 0),

γB0 (x , y) = x(1, 0) + 2y(0, 1) + 2y2(1, 0),

γC0 (x , y) = x(1, 0) + 2y(0, 1) + (x2 + y2)(1, 0).
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