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Overview

I Goal: explain how symmetry of markets is related to mutual
fund theorems.

I Part 1: A geometric account of Markowitz’s Theory and the
classical two fund theorem.

I Part 2: Symmetry and one period complete markets

I Part 3: Symmetry and continuous time markets

I Example consequence: The n-dimensional
Black–Scholes–Merton can always be simplified to a model
with a single traded asset.



Part I

Markowitz Markets



Algebraic Definition

Definition
A non-degenerate Markowitz market is:

I a vector space V of portfolios

I a positive definite symmetric bilinear form r : V × V → R
representing the covariance

I two linearly independent linear functionals
I c representing the cost of a portfolio
I p representing the mean payoff of a portfolio

Degenerate markets don’t satisfy the independence and definiteness
assumptions. I’ll skip the words non-degenerate from now on.

Definition
Two Markowitz markets are isomorphic if their is a vector space
isomorphism preserving r , c and p.



Category Theory

I Category theory formalizes the concept of “isomorphism” and
“homomorphism”.

I A category consists of
I objects: in this case Markowitz Markets
I morphisms with a source object and target object: in this case

Markowtiz isomorphisms
I a composition operation: in this case composition of

isomorphisms

I It must satisfy various axioms, for example the existence of
identity morphisms.

I Two objects are isomorphic if there are invertible morphisms
between the two.

I The theory is ultra general. In most examples morphisms will
be functions and composition will be function composition.



Examples of categories
Object Morphisms

Vector Space Linear Transformations
Group Homomorphisms
Topological Space Homeomorphism
Metric Space Isometry
Banach Space Bounded Linear Transformation
Markowitz Market Markowitz isomorphism

I Two objects are isomorphic if they are “identical as far as your
category is concerned”.

I Example: A sphere and a cube are isomorphic topologically,
but not as metric spaces.

I “Interesting” properties of an object should be invariant under
isomorphisms

I Example: Two five pound notes are isomorphic. Their serial
numbers are not interesting, only their purchasing power. (A
five pound note is also isomorphic to five pound coins.)



The Markowitz Category

I We have defined our category in terms of a vector space V , a
bilinear form r and two linear functions c and p.

I We are effectively saying that any features of the market that
cannot be expressed invariantly in terms of V , r , c and p are
not “financially interesting”.

I We have not specified a basis of n special vectors representing
the assets traded. This implies that we don’t consider the
distinction between a traded asset and a portfolio of assets to
be financially interesting.

I We have not specified the payoff distribution of our assets,
only the expected value and covariance structure. We are
asserting that anything “financially interesting” can be
discovered by mean variance analysis. Hence the quotes.

I The Markowitz category encapsulates mathematically what
can be understood about a market through mean variance
analysis alone.



Classification Theorems

I Once you have defined a category, you can try to classify
objects up to isomorphism.

I All finite dimensional real vector spaces are isomorphic to Rn.
I All finite dimensional real vector spaces with a positive

definite symmetric bilinear form are isomorphic to Rn with
bilinear form r(u, v) = u · v .
I Equivalently, finite dimensional inner product spaces are

isomorphic.
I Equivalently, Euclid’s axioms completely determine the

geometry of n-dimensional space.
I Proof: Using the Gram–Schmidt process you can find an

orthornomal basis {e1, e2, . . . , en}. Writing r with respect to
this basis it is isomorphic to the dot product.

I In particular, as an inner product space, any Markowitz
market is isomorphic to Euclidean space.



Financial consequence

I In any Markowitz market we can find n uncorrelated portfolios
of standard deviation 1.

I Using these portfolios as a basis for the market, we can
represent any portfolio as a point in Rn with the standard
deviation corresponding to the distance from the origin.

I We can solve portfolio optimization problems using Euclidean
geometry.



Geometry of linear functionals

The cost c of a portfolio can be represented geometrically by its
contours. These are the hyperplanes of constant cost. There is a
portfolio c∗ that minimizes the risk among portfolios of cost 1.
The vector c∗ is a normal to the hyperplane of cost 1.
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Geometry of linear functionals

The mean payoff p of a portfolio can be represented geometrically
by its contours too. There is a portfolio p∗ that minimizes the risk
among portfolios of mean payoff 1.



The two fund theorem: 1

The portfolios of cost 1 and mean payoff 1 lie in the intersection, L,
of the hyperplanes orthogonal to p∗ and c∗. Portfolios of another
given cost and given mean payoff lie in a parallel hyperplane, L′.



The two fund theorem: 2

Any linear combination of c∗ and p∗ is orthogonal to all vector in
L′. In particular the intersection of the plane Oc∗p∗ and L′ is
orthogonal to L′ and so minimizes risk among all points on L′.



The two fund theorem: 3

The conclusion financially is that any risk minimizing portfolio of
given cost and mean payoff can be expressed as a linear
combination of any two “mutual funds” given by linearly
independent portfolios in the plane Oc∗p∗.



Classification of markets

We can rotate the plane in Rn so it is spanned by e1 and e2. We
can further rotate so c∗ lies along the e1 axis. The isomorphism
class of the market is now uniquely determined by the length of c∗

and the coordinates of p∗.



The efficient frontier

I The base plane is the plane of efficient portfolios.

I The cone is a graph of the risk of each portfolio, which is
given by the distanct from the origin.

I The thick red line contains the portfolios of cost 1.
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Symmetry

The reflection in the plane of efficient portfolios

(x1, x2, x3, . . . , xn)→ (x1, x2,−x3, . . . ,−xn)

is an automorphism of the market. Therefore all invariant
portfolios lie in the plane of efficient portfolios.

Figure:



Invariantly defined objects

I An “invariantly defined” object is something you can describe
using the data in your category without making an arbitrary
choice.

I Example: The origin is an invariantly defined element in the
category of vector spaces.

I Example: The origin is not an invariantly defined element in
the category of topological spaces.

I Example: The serial number of a five pound note is not
invariantly defined.

I The formal language of category theory can be used to give a
rigorous definition of an “invariantly defined object” and then
prove these statements.



A complex invariantly defined object

I Given a Markowitz market, consider the space D of probability
densities on V that have a Wasserstein distance less than 0.01
from the Gaussian distribution on V ∗ with mean p and
covariance matrix given by r . This set of densities is
“invariantly defined”.

I The optimal portfolios for a robust utility optimization
problem when considering all measures in D will also be
“invariantly defined”

I This is proved formally by showing if one combines invariantly
defined sets using any of the constructions of set theory other
than the axiom of choice, one will obtain an invariantly
defined set.



Relation to Symmetry

Lemma
An object is invariantly defined only if it invariant under the
appropriate action of automorphism group.

Corollary

Any invariantly defined portfolio must lie in the plane of efficient
portfolios.

Corollary

If the complex robust optimization problem has a unique solution,
it lies in the plane of efficient portfolios.



Relation to Convexity

Lemma
Any convex subset C of a vector space V which is invariant under
a compact Lie group, G , acting linearly on V contains an invariant
element.

Convex, S1-invariant Non-convex, S1-invariant



Proof.
Pick a point v in the set. Compute the average point under the
action of G (the required measure exists by compactness of G ).
For h ∈ G

h
1

|G |

∫
G
g v dg =

1

|G |

∫
G
hg v dg =

1

|G |

∫
G
g v dg

by substitution. So
1

|G |

∫
G
g v dg

is an invariant element of C .



Two fund theorem revisited

Corollary

We have found an action of Z2 on any Markowitz market. Hence
any invariant convex set of portfolios contains an efficient portfolio.
Hence the solution to any convex portfolio optimization problem in
a Markowitz market can be taken to be an efficient portfolio.

I This argument is extremely general.

I If we consider other categories of markets and can find
automorphisms of our markets we will find more mutual fund
theorems.



Part II

General one period markets



Category: Probability Spaces

I Objects: Probability spaces (Ω, σ,P)

I Morphisms: mod 0 isomorphisms.

φ : Ω1 \ N1 → Ω2 \ N2

I N1 and N2 are null sets
I φ is a bijection
I φ is measurable
I φ−1 is measurable

Definition
A probability space (Ω, σ,P) is standard if it is isomorphic mod 0
to either: the Lebesgue measure on [0, 1]; a probability space on a
finite or countable number of atoms; a convex combination of
both.



Properties of standard probability spaces

I Itô: “all probability spaces appearing in practical applications
are standard”

I Kolmogorov: Perhaps we should add an axiom.

I Regular measures on Rn are standard

I The Wiener measure on C 0[0,∞) is standard

I Countable products of standard probability spaces are standard

I Non-null measurable subsets of standard probability spaces are
standard when given the conditional measure.

I Non standard probability spaces require either very large Ω or
the axiom of choice to construct.

I History: von Neumann, Rohklin.



Category: One period financial market

Definition
A one period financial market ((Ω, σ,P), c) consists of: a
probability space (Ω, σ,P); a function c : L0(Ω;R)→ R ∪ {±∞}.
We will call c−1(R ∪ {−∞}) the domain of c , denoted dom c .
Isomorphisms of markets are mod 0 isomorphisms that preserve c .

I Random variables represent possible asset payoffs

I Random variables in dom c are traded assets.

I c needn’t be linear.

I Arbitrage may occur.

I Typically interested in restricted classes of markets, e.g. P
standard.

I Dual to our algebraic definition. Portfolios, V , correspond to
a subspace of V ⊆ L0(Ω;R). So Ω corresponds to V ∗.



Complete markets

Definition
A complete market is a market where

I P is standard.

I There exists Q equivalent to P such that

c(X ) = γEQ(X )

for some discount factor γ > 0.

I Example: A casino S1 has Ω = S1 (the circle) and
P = Q = Lebesgue.

I FdQ
dP

is an invariant of the market.

I Given a FX c.d.f. of a positive random variable X of mean 1
define a market MFX

by Ω = [0, 1], P = Lebesgue and

Q(A) =

∫
A
F−1X (x)dx for A ⊂ [0, 1].

I Mean 1 ensures
∫
[0,1] dQ = 1



Classification of complete markets

Theorem
Let M be a complete market then

M × S1 ∼= MFX
× S1

for some positive random variable X of mean 1

Theorem
The solution of any convex optimization problem for a random
variable on a complete market can be taken to be of the form
X = f (dQdP ).

Proof.
I The result is true on MFX

× C as S1 is a compact Lie group.

I The resulting investment depends only on dQ
dP , so the asset

can be defined in M. Hence the flexibility of investing in a
casino provides no advantage.



Part III

Continuous time markets



Category: Multi-period markets

Definition
A multi-period market consists of

(i) A filtered probability space (Ω,Ft ,P) where t ∈ T ⊆ [0,T ]
for some index set T containing both 0 and T . We write
F = FT . We require F0 = {∅,Ω}.

(ii) For each X ∈ L0(Ω;R), an Ft adapted process ct(X ) defined
for t in T \ T .

Random variables X ∈ L0(Ω,FT ;R) are interpreted as contracts
which have payoff X at time T . The cost of this contract at time
t is ct(X ).

Definition
A filtration isomorphism of filtered spaces (Ω,F ,Ft ,P) where
t ∈ T for some index set T is a mod 0 isomorphism for F which is
also a mod 0 isomorphism for each Fp. An isomorphism of
multi-period markets is a filtration isomorphism that preserves the
cost functions.



Complete Continuous Time Markets
Harrison and Pliska show we can associate a complete market to
an SDE of the form

dXt = µ(Xt , t) dt + σ(Xt , t) dWt . (1)

Together with a risk-free rate r .

Example

The Black–Scholes–Merton market is given by

µ(Xt , t) = diag(Xt)µ̃

σ(Xt , t) = diag(Xt)σ̃

Example

The Bachelier market is given by

µ(Xt , t) = rXt + µ̃(t)

σ(Xt , t) = σ̃



Invariants of Continuous Time Markets

I The diameter of a Riemannian manifold is an invariant.

I The curvature of a Riemannian manifold is a local invariant.
It is easily calculated in terms of the derivatives of the metric
at a point.

I The distribution of dQ
dP at time t is an invariant.

I Can we find local invariants in terms of µ and σ and their
derivatives analagous to curvature?



Absolute Market Price of Risk

Definition
If Xt is an adapted process

driftP(X )t := lim
h→0

E
(
Xt+h − Xt

h

)
.

if this exists.

Definition

Qt := EP

(
dQ
dP
| Ft

)
.

AMPRt =
√
−2driftP(logQt). (2)

Lemma

AMPRt = |σ−1(rXt − µ)|



Theorem (The test case)

Let M be a continuous time complete market with risk free rate r ,
time period T based on a Wiener space of dimension n and with
AMPR given by

AMPRt = A(t) ≥ 0

for a bounded measurable function of time A(t). Suppose that the
process Qt is continuous. In these circumstances M is isomorphic
to the Bachelier market with

dXt = (rXt + A(t) e1) dt + dWt

and X0 = 0. Here {ei} is the standard basis for Rn. We will call
markets of this form canonical Bachelier markets.



Proof sketch - part 1
I Motivation: We expect the market to be essentially one

dimensional, with a non-zero market price of risk for W̃ 1
t . So

any fluctuations in Qt should be correlated with W̃ 1
t but not

any of the W̃ i
t for t ≥ 0. We should therefore be able to

express W̃ 1
t in terms of Qt .

I Required expressions are:

Z̃t = logQt +
1

2

∫ t

0
A(s)2ds.

W̃ 1
t = −

∫ t

0

1

A(s)
dZ̃s .

I Compute the quadratic variation of W̃ 1
t and simplify using the

expression
AMPRt = A(t) ≥ 0.

=⇒ [W̃ 1, W̃ 1]t = t

I By Levy’s characterisation of Brownian motion, W̃ 1
t is

Brownian motion.



Proof sketch - part 2

I Combine the idea of the Gram–Schmidt process with the
Martingale representation to extend W̃ 1

t to an n-dimensional
Brownian motion W̃t with covariance matrix idn.

I Compute Q̃t = E(dQdP |Ft) for the market

dXt = (rXt + A(t) e1) dt + dW̃t

and show it coincides with Qt .

I Therefore prices coincide in these markets, hence the markets
are isomorphic.



Consequences

I Black–Scholes–Merton markets are Bachelier markets in
disguise. This explains the surprising tractability of the
Merton problem.

I We have the symmetry

(W̃ 1
t , W̃

2
t , W̃

3
t , . . . W̃

n
t )→ (W̃ 1

t ,−W̃ 2
t ,−W̃ 3

t , . . .− W̃ n
t )

in a canonical Bachelier market, so the only invariant asset is
asset X 1.

I In a canonical Bachelier market only X 1 has a non-trivial
market price of risk. Investing in the other n-assets gives risk
without reward, so is clearly foolish.

I In markets that are merely isomorphic to this, X 1 may not an
exchange traded asset, but can be replicated by a continuous
time trading strategy.



Continuous Time Mutual Fund Theorem

Theorem
In continuous time markets with deterministic, bounded, absolute
market price of risk, any non-empty convex set of martingales
contains an element which can be replicated by a continuous time
trading strategy in the risk-free asset and a portfolio with
quantities α in each asset given by

α = (σσ>)−1(rXt − µ).

I Example: The classical Merton-problem

I Example: Optimal investment of a Collective Defined
Contribution pension fund in a Black–Scholes–Merton market
when other risk factors such as lifecycle events (birth, death,
marriage etc.) are independent of the market.

I We can generally reduce an apparently intractable
n-dimensional problem to a tractable 1-dimensional problem.
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