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Motivation
I Standard XVA methodology uses risk-neutral pricing,

assumes all risk can be hedged. This is a questionable
assumption, e.g. for KVA (see [7]).

I We wish to consider indifference pricing. Indifference price P I

of liability L solves:

sup
strategies

E(u(X)) = sup
strategies

E(u(X + L+ P I))

where X is the payoff achieved by following a strategy.
I We will focus on the question of how to compute

sup
strategies

E(u(X))

I Challenge: shareholders have limited liability so their utility
function will not be concave.

I Our results will have implications that go beyond XVA
calculation.
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S-shaped utility I

In [14], Kahneman & Tversky ob-
served that individuals appear to
have preferences governed by an
S-shaped utility function u.

(i) u is increasing

(ii) strictly convex on the left

(iii) strictly concave on the right

(iv) non-differentiable at the
origin

(v) asymmetrical: negative
events are considered
worse than positive events
are considered good.

Terminal Wealth

Utility
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S-shaped utility II
An increasing function u : R −→ R (to be thought of as a utility
function) is said to be “risk-seeking in the left tail” if there exist
constants N ≤ 0, η ∈ (0, 1) and c > 0 such that:

u(x) > −c|x|η ∀x ≤ N. (1)

Similarly u is said to be “risk-averse in the right tail” if there exists
N ≥ 0, η ∈ (0, 1) and c > 0 such that

u(x) < c|x|η ∀x ≥ N. (2)

The standard pictures of “S-shaped” utility functions in the
literature appear to have these properties. Furthermore the
S-shaped utility functions that would arise due to a limited liability
would be bounded below and so would certainly be risk-seeking in
the left tail.
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S-shaped utility III
We give a formal definition of S-shaped for the purposes of this
work.

u is “S-shaped” if

1. u is increasing

2. u(x) ≤ 0 for x ≤ 0

3. u(x) ≥ 0 for x ≥ 0

4. u(x) concave for
x ≥ 0.

5. u risk-seeking in the
left tail.

6. u risk-averse in the
right tail.

NR

NL

Terminal Wealth

Utility
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S-shaped utility IV
Example
Limited liability:

u+(x) = max{u(x), 0}

Terminal Wealth

Utility

Solving optimization problems for expected concave utility typically
yields convex optimization problems.
Our optimal utility problem will be non-convex, but we can still
solve it.
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Law invariant portfolio optimization

Let (Ω,F ,P) be a probability space and let dQ
dP be a positive

random variable with
∫

Ω
dQ
dP dP(ω) = 1.

We will use this model to represent a complete financial market as
follows:

(i) We assume there is a fixed deterministic risk free interest rate
r.

(ii) Given a random variable f , one can purchase a derivative
security with payoff at maturity T (simple claim) given by f(ω)
for the price

EQ[e−rT f ] :=

∫
Ω
e−rT f(ω)

dQ
dP

(ω) dP (3)

assuming that this integral exists.
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Law invariant portfolio optimization

I Investor preferences are law-invariant. i.e. The investor’s
preferences are encoded by some function

v :M1(R)→ R

whereM1(R) is the space of probability measures on R, so
that an investor will prefer a security with payoff f over a
security with payoff g iff v(Ff ) > v(Fg) (F is the cdf).

I Risk constraints are law-invarant. i.e. whether a payoff f is
acceptable depends only on Ff . Examples include VaR and
CVaR constraints.

I We have a cost constraint.
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The optimization problem

In summary, our investor wishes to solve the optimization problem:

sup
f∈L0(Ω,P)

v(Ff )

subject to a price constraint
∫

Ω
e−rT f(ω)

dQ
dP

(ω) dP(ω) ≤ C

risk management constraints Ff ∈ A ⊆M1(R).
(4)
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Rearrangement Theorem

Theorem (Rearrangement)
Assume Ω is non-atomic. Then there exists a standard uniformly
distributed random variable U such that:

(i) dQ
dP = (1− FdQ

dP
)−1 ◦ U almost surely.

(ii) If f satisfies the price and risk management constraints of our
problem then

ϕ(U) = F−1
f ◦ U

also satisfies the constraints of our problem and is equal to f
in distribution, and hence has the same objective value as f .

The implication of this is that we can simplify our market model so
that we are simply betting on the final value of a single uniform
variable U . We may assume that the payoff of our investment is an
increasing function of U , while dQ

dP is a decreasing function of U .
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Example: The Black-Scholes case
Consider derivatives in a Black Scholes market with (deterministic)
r, we can write the log-stock price as

sT = s0 + (µ− 1

2
σ2)T + σ

√
TN−1(U)

The P and Q measure densities are

p{q}BS(sT ) =
1

σ
√

2πT
exp

(
−

(sT − (s0 + (µ{r} − 1
2σ

2)T ))2

2σ2T

)
.
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Equivalent problem
Let q(U) = dQ

dP (U) then we can reduce our optimization problem to
solving

sup
ϕ:[0,1]→R,ϕ increasing

F(ϕ) :=

∫ 1

0
u(ϕ(x)) dx

(5)

subject to the price constraint
∫ 1

0
ϕ(x)q(x) dx ≤ C (6)

and risk management constraints Fϕ ∈ A ⊆M1(R). (7)

I The only feature of the market that is relevant is the
decreasing function q(U).

I Intuition: dP
dQ is a measure of how good value you think a bet is

compared to the market. You should place your bets on
events where dP

dQ is high. Nothing else matters.
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Example: expected shortfall
Consider the optimization problem with expected shortfall
constraints

sup
ϕ:[0,1]→R,ϕ increasing

F(ϕ) :=

∫ 1

0
u(ϕ(x)) dx

(8)

subject to the price constraint
∫ 1

0
ϕ(x)q(x) dx ≤ C (9)

and the expected shortfall constraint
1

p

∫ p

0
ϕ(x) dx ≥ L. (10)

Theorem
If u is risk seeking in the tail and q(x) is essentially unbounded,
then the supremum of this problem is equal to supu. i.e. investors
with S-shaped utility are untroubled by expected shortfall
constraints.
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Sketch proof
Consider the payoff

φ(x) =

{
k2 when x < α

k1 otherwise

Since q(U)→∞ as U → 0, the market contains events of
arbitrarily good value:

I The price constraint requires roughly k2 . − c1
αq(α)k1.

I The ES constraint requires roughly k2 & − c′

αk1.
By taking α small enough we can find k2 meeting our constraints
whatever we choose for k1. By the ES constraint

E(u) = αu(k1) + (1− α)u(k2) & −α
(
c′

α
k1

)η
+ (1− α)u(k1)

→ u(k1) as α→ 0.
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Implications

I In the Black–Scholes model with µ 6= r, an investor with
S-shaped utility subject to just Expected Shortfall constraints
will be unconcerned by these constrains.

I In the Black–Scholes model µ 6= r, an investor with S-shaped
utility subject to just Value at Risk constraints will be
unconcerned by these constrains.

I In fact, in any reasonable complete market model with
non-zero market price of risk we expect that Expected
Shortfall constraints and Value at Risk constraints will be
ineffective.

I In general indifference prices cannot be defined for an
investor with S-shaped utility subject only to price, expected
shortfall constraints and value at risk constraints.
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Optimization with limited liability & utility constraints

We now specialize to the
case of an investor with
limited liability uI & We
suppose a regulator is in-
different if portfolio payoff
is positive, and imposes
risk constraint with 2nd util-
ity uR on negative payoff
part.

-2 -1 1 2
Payoff

-4

-3

-2

-1

1

Utility

uⅈ

uR

Risk constraint is
E(uR) ≥ L
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Solving the optimization problem

We know the optimal payoff function φ is increasing, so it must be
negative for values less than some p ∈ [0, 1] and positive for
values greater than p.
Given p ∈ [0, 1], define C1(p) and V (p) as
C1(p) = inf

f1:[0,p]→ (−∞,0), with f1 increasing

∫ p

0
f1(x)q(x)dx

subject to
∫ p

0
uR(f1(x)) dx ≥ L.

(11)

V (p) = sup
f2:[p,1]→[0,∞), with f2 increasing

∫ 1

p
uI(f2(x))dx

subject to
∫ 1

p
f2(x)q(x)dx ≤ erTC − C1(p)

(12)
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Theorem
The supremum of the optimization problem for an investor with
limited liability subject to a concave utility constraint on the loss is
supp∈[0,1] V (p).

I The value of the theorem comes from the fact that the
optimization problems to compute C1(p) and V (p) are convex
problems and so are easy to solve by standard techniques.

I We may then compute supp∈[0,1] V (p) by line search.
I Unlike the case of expected shortfall, these utility constraints

are typically binding.
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Implications

I Utility constraints are typically effective in constraining
investors with S-shaped utility.

I In typical cases, for example in the Black-Scholes model when
uI is unbounded, an investor with S-shaped utility will choose
investments with infinitely bad uR utility if they are not subject
to uR constraints but only expected shortfall constraints.

I Indifference prices can be defined and calculated if we
consider investors with limited liability under utility constraints.
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Example: the Black–Scholes case

The optimal payoff function is plotted against the stock price for the
Black-Scholes model. We also show the P and Q measure density
functions.
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Example: the Black–Scholes case
This figure shows how the strategies vary as the risk limit is
changed.
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In black we see a portfolio with positive payoff, negative expected
shortfall and negative price. An investor with limited liability could
purchase an arbitrary quantity of this asset to achieve any desired
utility.
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Proof of Rearrangement Theorem I

Consider a finite probability space where each atomic event has
the same P measure. We show a graph of dQ

dP in purple and the
payoff f of some option in orange (LHS).

→
The x-axis corresponds to the different events. The choice of the
x-axis completely arbitrary, so we might as well choose our plot so
that dQ

dP is decreasing (RHS).
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Proof of Rearrangement Theorem II

Now swap the order of the payoff columns so that we get taller
bars on the right. Swapping bars doesn’t change the P distribution
of the payoff, but clearly lowers the price.

→
We have a cheaper portfolio with identical P distribution. Our
objective and risk-management constraints are law invariant, so
the payoff on the right meets all our constraints.
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Proof of Rearrangement Theorem III

To generalize this to the continuous case we need to define what
we mean by rearrangement.

Definition 1
Given random variables X, f ∈ L0(Ω,R) with X having a
continuous distribution we define the X-rearrangement of f ,
denoted fX by:

fX(ω) = F−1
f (P(X ≤ X(ω))) = F−1

f (FX(X(ω))).

We know that X = F−1
X (U) for some uniformly distributed U

I fX is equal to f in distribution
I fX depends on U alone
I fX is an increasing function of U
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Proof of Rearrangement Theorem IV
To prove our theorem we will take an arbitrary payoff f and replace
it with the rearranged payoff f−

dQ
dP .

(We assume for simplicity that dQ
dP has a continuous distribution. A

minor technical lemma is needed to prove the general case.)
Our rearrangement theorem will then follow from:

Lemma 2
If f, g ∈ L0(Ω;R) and:

(i)
∫
fg dP > −∞;

(ii) g ≥ 0;

(iii)
∫

Ω g dP exists;

(iv) X has a continuous distribution;

then
−∞ <

∫
Ω
fg dP ≤

∫
Ω
fXgX dP ≤ ∞.
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Proof of Rearrangement Theorem V

For simplicity assume that dQ
dP and payoff are defined on [0, 1], with

f and g also taking values in [0, 1]. We consider the layer cake
representations like

f(U) =

∫ 1

0
1f(U)≥`d`, g(U) =

∫ 1

0
1g(U)≥`d`

this is depicted below (LHS).
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Proof of Rearrangement Theorem VI

∫
f(U)g(U)dU =

∫ ∫ 1

0

∫ 1

0
1f(U)≥`1g(U)≥kdk d`dU

=

∫ ∫ 1

0

∫ 1

0
1f(U)≥` and g(U)≥k dk d`dU

So the integral aggregates the intersections of the layers.
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Proof of Rearrangement Theorem VII
The layer cake representations for fU and gU look as shown

This increases the integral of the product is because this
rearrangement increases the amount any layers intersect as
shown below

Hence ∫
fU (U)gU (U)dU ≥

∫
f(U)g(U)dU.
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Proof of Rearrangement Theorem VIII

This layer cake argu-
ment is due to Hardy and
Littlewood who used it
to prove their inequality
on so-called “symmetric
decreasing rearrange-
ments”. We use exactly
the same idea, but ap-
plied to a notion we call
X-rearrangement.
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Summary
I Indifference pricing provides a pricing methodology that can

be used when not all risks can be perfectly hedged.
I The key to indifference pricing is computing optimal

investment strategies.
I Market players may have limited liability and hence

non-concave utility functions, nevertheless we can apply
rearrangement to obtain tractable optimization problems.

I Expected shortfall and value at risk constraints typically do
not constrain investors with S-shaped utility functions.

I Utility constraints typically do constrain investors with
S-shaped utility functions.

I Future Research 1: Investigate S-shaped utility optimization in
incomplete market models.

I Future Research 2: Apply these techniques to indifference
pricing of XVA type liabilities. See [7] for initial results in this
area.
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