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Geometry of SDEs

Motivation:

I SDEs = Analysis + Geometry

I Itô: Brownian motion on a manifold

I How do you draw an SDE?

Applications:

I Visualisation tools

I Pedagogy

I Elegant reformulation of Itô’s lemma

I Geometric interpretation of Fokker-Planck

I Asymptotic properties of SDEs

I Projection of SDEs

Analogy:

I Maxwell’s equations easier in terms of differential forms

I Drawing differential forms is illuminating



Existing work

Not the first people to consider coordinate free stochastic
differential geometry

I Coordinate free operator formalism for diffusions

I Coordinate free approach best on Stratonovich calculus

I Emery’s approach based on the Schwarz-Morphism

What’s new?

I Very straightforward

I Based on Itô calculus so has good probabilistic properties

I Simple intrepretation in terms of numerical schemes

I Pictures!



Outline

I Differential geometry 101
I Manifolds
I Different perspectives on vectors
I “Coordinate free” geometry

I Drawing SDEs (1)

I Itô’s Lemma

I Differential operators

I Drawing SDEs (2)

I Stratonovich calculus

I Drawing SDEs (3)



Manifolds



Manifold Definition

Very informally a manifold is:

I A set of charts covering the manifold.

I Smooth coordinate change rules from one chart to another

Formally:

I A paracompact Hausdorff topological space M

I A family of charts φi : Ui → Rn. Each chart is a
homeomorphism defined on an open set U.

I The transition functions φi ◦ φ−1j are smooth on their domain
of definition.

I ∪Ui = M.

Example: 2 charts needed for sphere
Example: London



Vector Fields

A vector field can be defined as an equivalence class of pairs
(chart, vector field on Rn)



Vector fields: coordinate definition

I Vector field is equivalence class (φ,X ) where φ is a chart and
X is the vector field on Rr .

I We must choose the equivalence class so that the solutions of
one ODE are mapped to the solutions of the other ODE by
the transition functions.

I So by the chain rule, the correct definition is:

(φ1,X ) ∼ (φ2,Y )

if

X i =
∑
j

∂τ i

∂x j
Y j

= (∂jτ
i )Y j

where we’re using the Einstein summation convention.



Vector: 1-jet definition

I A k-jet of a smooth path is defined as an equivalence class of
paths with the same Taylor series up to given order.

I Given two paths γ1, γ2 : R→ M satisfying γi (0) = x we say

jk(γ1) = jk(γ2)

if γ1 and γ2 have the same Taylor series expansion (in any
chart) up to order k .

I A vector is a 1-jet of a path



Vector: Operator definition

Derivation:
I A function D : C∞(x)→ R satisfying:

I D(a f + b g) = aD(f ) + b D(g) when a, b ∈ R
I D(fg) = f ,D(g) + g D(f ) when f , g ∈ C∞(x)

I where C∞(x) is set of germs of smooth functions

I Germ at x : f ∼ g if f (y) = g(y) for all y in some
neighbourhood U 3 x

Example

1. ∂
∂x is a derivation.

2. Given a vector V ∈ Rn

V (f ) := lim
h→0

f (x + hV )− f (x)

h

is a derivation on Rn.



Vectors: Summary
1. First order ODEs on a manifold.

2. Vector fields defined as equivalence classes under change of
coordinates

3. A smoothly varying choice of a 1-jet at each point of a
manifold

4. Linear operators on germs satisfying the Leibniz rule (a.k.a.
derivations)

I All of these view points are helpful.

I 3 is the most “visual”. 3 + 4 are “coordinate free”.



Euler Scheme

I All being well in the limit the Euler scheme

δXt = a(X ) δt + b(X ) δWt

converges to a solution of the SDE

dXt = a(X )dt + b(X ) dWt

I d, δ, + imply vector space structure

I This is highly coordinate dependent

I (Analysis + Geometry)



Curved Scheme
Let γx be a choice of curve at each point x of M. γx(0) = x .
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Consider the scheme

Xt+δt = γXt (δWt) X0



Concrete example

γE(x1,x2)(t) = (x1, x2) + t(−x2, x1) + 3t2(x1, x2)

-2 -1 0 1 2 3

-2

-1

0

1

2

3

I First order term is rotational vector

I Second order term is axial vector



Concrete example

γE(x1,x2)(s) = (x1, x2) + s(−x2, x1) + 3s2(x1, x2)
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I First order term is rotational vector

I Second order term is axial vector



Simulation: Large time step

γE(x1,x2)(s) = (x1, x2) + s(−x2, x1) + 3s2(x1, x2)



Simulation: Smaller time step

γE(x1,x2)(s) = (x1, x2) + s(−x2, x1) + 3s2(x1, x2)



Simulation: Even smaller

γE(x1,x2)(s) = (x1, x2) + s(−x2, x1) + 3s2(x1, x2)



Simulation: Convergence

γE(x1,x2)(s) = (x1, x2) + s(−x2, x1) + 3s2(x1, x2)



Formal argument
Write:

γx(s) = x + γ′x(0)s +
1

2
γ′′x (0)s2 + O(s3)

Then:

Xt+δt = γt(δWt)

= Xt + γ′Xt
(0)δWt +

1

2
γ′′Xt(0)(δWt)

2 + O
(
(δWt)

3
)

Rearranging:

δXt = Xt+δt − Xt = γ′Xt
(0)δWt +

1

2
γ′′Xt(0)(δWt)

2 + O
(
(δWt)

3
)

Taking the limit:

dXt = b(X )dWt + a(X )(dWt)
2 + O

(
(dWt)

3
)

= b(X )dWt + a(X )dt

where
b(X ) = γ′X (0)

a(X ) = γ′′X (0)/2



Comments

I The curved scheme depends only on the 2-jet of the curve

I SDEs driven by 1-d Brownian motion are determined by 2-jets
of curves

I The first derivative determines the volatility term

I The second derivative determines the drift term

ODEs correspond to 1-jets of curves
SDEs correspond to 2-jets of curves

I Rigorous proof of convergence of quadratic scheme can be
proved using standard results on Euler scheme

dXt = a(X )dt + b(X )dWt

= a(X )
(
d(W 2

t )− 2Wtd(Wt)
)

+ b(X )dWt

≈ a(X )
(
(δWt)

2
)

+ b(X )dWt

I For general curved schemes some analysis needed.



Itô’s lemma

Given a family of curves γx we will write:

Xt ^ j2 (γx(dWt))

if Xt is the limit of our scheme.
If

Xt ^ j2 (γx(dWt))

and f : X → Y then:

f (X )t ^ j2 (f ◦ γx(dWt))

Itô’s lemma is simply composition of functions.



Usual formulation

Xt ^ j2 (γx(dWt))

Is equivalent to:

dXt = a(X )dt + b(X )dWt , a(X ) =
1

2
γ′′X (0), b(X ) = γ′X (0)

We calculate the first two derivatives of f ◦ γX :

(f ◦ γX )′(t) =
n∑

i=1

∂f

∂xi
(γX (t))

dγX
dt

(f ◦ γX )′′(t) =
n∑

j=1

n∑
i=1

∂2f

∂xi∂xj
(γX (t))

dγ iX
dt

dγjX
dt

+
n∑

i=1

∂f

∂xi
(γX (t))

d2γX
dt2

So f (Xt) ^ j2 (f ◦ γx(dWt)) is equivalent to standard Itô’s formula



Example

γE(x1,x2)(s) = (x1, x2) + s(−x2, x1) + 3s2(x1, x2)
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Clearly polar coordinates might be a good idea. So consider the
transformation φ : R2/{0} → [−π, π]× R by:

φ(exp(s) cos(θ), exp(s) sin(θ)) = (θ, s),



The process j2(φ ◦ γE ) plotted using image manipulation software

The process j2(φ ◦ γE ) plotted by applying Itô’s lemma

d(θ, s) =

(
0,

7

2

)
dt + (1, 0) dWt .



Drawing SDEs

The following diagram commutes:

SDE for X SDE for f (X )

Picture of SDE for X in Rn f (Picture of SDE for X)

Itô’s lemma

Draw Draw
f



Outline

I Differential geometry 101
I Manifolds
I Different perspectives on vectors
I “Coordinate free” geometry

I Drawing SDEs (1)

I Itô’s Lemma

I Differential operators

I Drawing SDEs (2)

I Stratonovich calculus

I Drawing SDEs (3)



ODEs vs SDEs

We have the following interpretations of ODEs/Vectors:

1. Vector fields defined as equivalence classes under change of
coordinates

2. A smoothly varying choice of a 1-jet at each point of a
manifold

3. Linear operators on germs satisfying the Leibniz rule (a.k.a.
derivations)

Correspondingly we can understand SDEs as:

1. An equivalence class of coefficients that obey Itô’s lemma
under change of coordinates

2. A smoothly varying choice of a 2-jet at each point of a
manifold

3. Diffusion operators



Local coordinates/2-jets



Operators associated with SDEs

Coordinate free definition of L
I Let γx be a field of curves at each point of a manifold. i.e.

j2(γx) defines an SDE

I Let f : M → R be a smooth map

I f ◦ γx defines an SDE on R.

I Let Lγf be the drift term of this SDE.

Lγf (X ) =
1

2
(f ◦ γ)′′(0)

Lγf determines short time asymptotics of expectation of f (X ). If:

Xt ^ γ(dWt)

and X0 is known, then

δE(f (Xt)) ≈ (Lγf (X0))δt



Generalizing to higher dimensional noise

Coordinate free definition of L
I Let γx : Rk → M at each point x with γx(0) = x . an SDE

I Let f : M → R be a smooth map

I f ◦ γx defines an SDE on R.

I Let Lγf be the drift term of this SDE.

Lγf (X ) =
1

2
∆(γ ◦ f )(0)

Lγf determines short time asymptotics of expectation of f (X ). If:

Xt ^ γ(dWt)

and X0 is known, then

δE(f (Xt)) ≈ (Lγf (X0))δt



Other tensor fields

Recall a vector can be defined as a set of equivalence classes of
pairs

(v , φ)

where v ∈ Rn and φ is a chart.

(v1, φ1) ∼ (v2, φ2) ⇐⇒ (φ1 ◦ φ−12 )∗(v2) = v1

Note:
(φ1 ◦ φ−12 )∗ ∈ GL(n,R)

Suppose τ : GL(n,R)→ Aut(V ) is a group homomorphism. Define
associated tensor bundle V by:

(v1, φ1) ∼ (v2, φ2) ⇐⇒ τ((φ1 ◦ φ−12 )∗)(v2) = v1

where v ∈ V and φ is a chart.



Densities

Definition
A density is a tensor field associated with:

τ(g)v = | det g |v

for v ∈ R.



Integration

I Probability density functions are densities.

I Integration = Calculation of expectations.

I Integrate f by computing values at each point.



Adjoint operator

I If:
Xt ^ γ(dWt)

and X0 is known, then

δE(f (Xt)) ≈ (Lγf (X0))δt

I If X0 is distributed with density ρ then:

∂

∂t

∫
f ρ =

∫
(Lγf )ρ

I So formal adjoint satisfies:

∂ρ

∂t
= L∗γρ



Remarks

I Functions and densities have different transformation laws

I L acts on functions and appears e.g. in Feynman–Kac formula

I L∗ acts on densities and appears e.g. in Fokker–Planck
equation

Our treatment of L has been entirely coordinate free.



Drawing higher dimensional ODEs

I Two jet of map γx : Rk → M at each point x with γx(0) = x .

I dW 2
1 = dW 2

2 = . . . = dW 2
k so there is some redundancy

I Solutions are the same if 1-jets are the same and L is the
same. i.e. volatility and drift terms match.

I Solutions are weakly equivalent if the paths are rotationally
equivalent. Equivalently if L is the same.



The Heston model

dSt = µStdt +
√
νtStdW

1
t

dνt = κ(θ − νt)dt + ξ
√
νt (ρdW 1

t +
√

1− ρ2dW 2
t )

(1)
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ξ = 1, θ = 0.4, κ = 1, µ = 0.1, ρ = 0.5



Riemannian metrics and Brownian motion

Non degenerate SDE = Riemannian metric + Drift



ODEs vs SDEs

We have four interpretations of ODEs/Vectors:

1. Vector fields defined as equivalence classes under change of
coordinates

2. A smoothly varying choice of a 1-jet at each point of a
manifold

3. Linear operators on germs satisfying the Leibniz rule (a.k.a.
derivations)

4. Infinitesimal diffeomorphisms

Correspondingly we can understand SDEs as:

1. An equivalence class of coefficients that obey Itô’s lemma
under change of coordinates

2. A smoothly varying choice of a 2-jet at each point of a
manifold

3. Diffusion operators

4. Stratonovich drift and volatility vector fields



Flows of vector fields

I Given a vector field X write Φt
X for the diffeomorphism at

time t associated with the flow.

I Note that defining the flow requires a vector field and not just
a vector.



Stratonovich Calculus

I Given two vector fields A and B define a curve at each point
by:

γx(s) = Φs2

A (Φs
B(x))

I The SDE defined by this field of 2-jets is equivalent to the
SDE defined by:

dXt = A(X )dt + B(X ) ◦ dWt

I In smoothly varying families of n-jets of curves can be
described by n vector fields.

I Note that we need the entire vector field for this
correspondence.

I Stratonovich and Ito calculus are just alternative coordinate
system for the infinite dimensional space of 2-jets of curves.



Drawing 1-d processes

Observations

I Our current diagrams are aesthetically unsatisfying in 1-d.

I The Itô drift is not a coordinate dependent vector because it
represents infinitesimal changes of mean.

E (f (X )) 6= f (E (X ))

I On the other hand, for order preserving f :

percentilep(f (X )) = f (percentilep(X ))



Fan diagram
A fan diagram for a stock price (geometric Brownian motion)
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5-95% percentiles



2-jets and fan diagrams
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Γx(s) = (s2, γx(s))



SDE as a fan diagram



Stratonovich calculus and fan diagrams
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Mean = Ito

Median = Stratonovich

Mode



Sketch proof

I All 1-d Riemannian manifolds are isometric

I We cam make a coordinate change such that the volatility is
constant (Lamperti transform)

I The SDE is now constant coefficient to second order

I Therefore we can write down first term of asymptotic
expansion for solution of Fokker–Planck

I Transform the coordinates back again and read off the result.

This can be generalized since “geodesic normal coordinates”
always make a metric constant up to second order.



Summary
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