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Geometry of SDEs

Motivation:
» SDEs = Analysis + Geometry
» [t6: Brownian motion on a manifold
» How do you draw an SDE?
Applications:
» Visualisation tools
> Pedagogy
» Elegant reformulation of It6's lemma
» Geometric interpretation of Fokker-Planck
» Asymptotic properties of SDEs
» Projection of SDEs
Analogy:
> Maxwell's equations easier in terms of differential forms

» Drawing differential forms is illuminating



Existing work

Not the first people to consider coordinate free stochastic
differential geometry

» Coordinate free operator formalism for diffusions

» Coordinate free approach best on Stratonovich calculus

» Emery’s approach based on the Schwarz-Morphism
What's new?

» Very straightforward

P> Based on It6 calculus so has good probabilistic properties

» Simple intrepretation in terms of numerical schemes

» Pictures!



Outline

vVvyvyVvVvyy

Differential geometry 101

» Manifolds
» Different perspectives on vectors
» “Coordinate free” geometry

Drawing SDEs (1)
[t6's Lemma
Differential operators
Drawing SDEs (2)
Stratonovich calculus
Drawing SDEs (3)
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Manifold Definition

Very informally a manifold is:

P> A set of charts covering the manifold.

» Smooth coordinate change rules from one chart to another
Formally:

» A paracompact Hausdorff topological space M

» A family of charts ¢; : Ui — R". Each chart is a
homeomorphism defined on an open set U.

» The transition functions ¢; o gbjfl are smooth on their domain
of definition.
> JUU; = M.
Example: 2 charts needed for sphere
Example: London



Vector Fields
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A vector field can be defined as an equivalence class of pairs

(chart, vector field on R")



Vector fields: coordinate definition

» Vector field is equivalence class (¢, X) where ¢ is a chart and
X is the vector field on R".

» We must choose the equivalence class so that the solutions of
one ODE are mapped to the solutions of the other ODE by
the transition functions.

» So by the chain rule, the correct definition is:

(¢1,X) ~ (¢2,Y)

. ar’ .
X' = =Y/
7 ox/

= 7)Y

where we're using the Einstein summation convention.



Vector: 1-jet definition

> A k-jet of a smooth path is defined as an equivalence class of
paths with the same Taylor series up to given order.

» Given two paths 71,72 : R — M satisfying ~;(0) = x we say

Jk(11) = Jk(72)

if v1 and 72 have the same Taylor series expansion (in any
chart) up to order k.

» A vector is a 1-jet of a path



Vector: Operator definition

Derivation:
» A function D : C*°(x) — R satisfying:
> D(af+bg)=aD(f)+ bD(g) when a, b€ R
> D(fg) =f,D(g)+ g D(f) when f, g € C*(x)

» where C*°(x) is set of germs of smooth functions
» Germ at x: f ~ g if f(y) = g(y) for all y in some
neighbourhood U > x
Example

1. Iy 1S a derivation.
2. Given a vector V € R"

Vi) = lim F(x + h:) — f(x)

is a derivation on R".



Vectors: Summary
1. First order ODEs on a manifold.

2. Vector fields defined as equivalence classes under change of
coordinates

3. A smoothly varying choice of a 1-jet at each point of a
manifold

4. Linear operators on germs satisfying the Leibniz rule (a.k.a.
derivations)
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> All of these view points are helpful.

» 3 is the most “visual”. 3 + 4 are “coordinate free".



Euler Scheme

» All being well in the limit the Euler scheme
Xy = a(X) ot + b(X) W,
converges to a solution of the SDE
dX; = a(X)dt + b(X) dW,;

» d, §, + imply vector space structure
» This is highly coordinate dependent
> (Analysis + Geometry)



Curved Scheme

Let v be a choice of curve at each point x of M. 7,(0) = x.
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Consider the scheme

Xerst = vx.(0W)  Xo



Concrete example

fy(Exl,Xg)(t = (Xl,Xz) + t(_X2aX1) + 3t2(X17X2)
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» First order term is rotational vector

» Second order term is axial vector



Concrete example

’Y(Xl x2)( (X17 X2) + S(—X2,X1) + 352(X1>X2)
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» First order term is rotational vector

» Second order term is axial vector



Simulation: Large time step

’Y(il,)Q)(s) = (x1,x2) + s(—x2, x1) + 352(X1,X2)
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Simulation: Smaller time step

’Y(il,)Q)(s) = (x1,x2) + s(—x2, x1) + 352(X1,X2)
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Simulation: Even smaller

’Y(il,)Q)(s) = (x1,x2) + s(—x2, x1) + 352(X1,X2)
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Simulation: Convergence

’Y(il,)Q)(s) = (x1,x2) + s(—x2, x1) + 352(X1,X2)
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Formal argument
Write:
ls) = x +(0)s + 37(0)5 + O(s?)
Then:
Xegpsr = ve(0Ws)

= X+ 24 (0)3We + 27" Xe(0)(SWA) + O ((5We)’)
Rearranging:
6Xe = Xeyse — Xe = v, (0)0 W, + %y”xt(ox(svvt)2 + 0 ((0We)?)
Taking the limit:

dXe = b(X)dW; + a(X)(dW;)? + O ((dW4)?)

= b(X)dW; + a(X)dt

where



Comments

» The curved scheme depends only on the 2-jet of the curve

» SDEs driven by 1-d Brownian motion are determined by 2-jets
of curves

» The first derivative determines the volatility term
» The second derivative determines the drift term

ODEs correspond to 1-jets of curves
SDEs correspond to 2-jets of curves

» Rigorous proof of convergence of quadratic scheme can be
proved using standard results on Euler scheme

dX; = a(X)dt + b(X)dW,
= a(X) (d(W?) — 2W,d(W,)) + b(X)d W,
~ a(X) ((OW)?) + b(X)dW,;

» For general curved schemes some analysis needed.



[t0's lemma

Given a family of curves 7, we will write:

Xt~ J2 (')’X(d Wt))

if X; is the limit of our scheme.
If

Xt~ o (')’X(th))
and f : X — Y then:

F(X)e — J2 (f 0 7x(dWE))

It6’s lemma is simply composition of functions.



Usual formulation

Xi — Ja (1 (AWt))

Is equivalent to:

AX, = a(X)dt + B(X)AWs,  a(X) = 294(0),  b(X) =%(0)

We calculate the first two derivatives of f o yx:

(7 o) (1) = 3 5o (x(1) X

n n 2 i '
(Fom)' (1) =33 82,3; ({0

dt2

So f(Xt) — jo (f o yx(dWt)) is equivalent to standard It6's formula



Example

’Y(il,)Q)(S) = (x1,%2) + s(—x2, x1) + 35%(x1, x2)
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Clearly polar coordinates might be a good idea. So consider the
transformation ¢ : R2/{0} — [—7, 7] x R by:

o(exp(s) cos(d), exp(s)sin(0)) = (0, s),



The process j>(¢ o 7F) plotted by applying It8's lemma
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Drawing SDEs

The following diagram commutes:

SDE for X —t0'slemma__ gpe o £(x)

Drawi Drawl
Picture of SDE for X in R” —— f(Picture of SDE for X)




Outline

vVvvyVvVvyypy

Differential geometry 101 v~

» Manifolds v~
» Different perspectives on vectors v~
» “Coordinate free" geometry v~

Drawing SDEs (1) v/
[t6's Lemma v/
Differential operators
Drawing SDEs (2)
Stratonovich calculus
Drawing SDEs (3)



ODEs vs SDEs

We have the following interpretations of ODEs/Vectors:

1. Vector fields defined as equivalence classes under change of
coordinates

2. A smoothly varying choice of a 1-jet at each point of a
manifold

3. Linear operators on germs satisfying the Leibniz rule (a.k.a.
derivations)

Correspondingly we can understand SDEs as:

1. An equivalence class of coefficients that obey It6’s lemma
under change of coordinates

2. A smoothly varying choice of a 2-jet at each point of a
manifold

3. Diffusion operators



Local coordinates/2-jets
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Operators associated with SDEs

Coordinate free definition of £

» Let v, be a field of curves at each point of a manifold. i.e.
J2(~x) defines an SDE

» Let f : M — R be a smooth map
» f o~ defines an SDE on R.
» Let £,f be the drift term of this SDE.

1
£,£(X) = 5 (F 07)(0)
L. f determines short time asymptotics of expectation of f(X). If:
Xt ~ ’Y(d Wt’)

and Xp is known, then

OE(f(X¢)) ~ (L4f(X0))dt



Generalizing to higher dimensional noise

Coordinate free definition of L
> Let v, : R — M at each point x with 7,(0) = x. an SDE
> Let f: M — R be a smooth map
» f o~y defines an SDE on R.
» Let £,f be the drift term of this SDE.

£,7(X) = 3A(y0 F)(0)
L. f determines short time asymptotics of expectation of f(X). If:
Xe — ~(dWy)
and Xp is known, then

SE(f(X¢)) ~ (L4f(X0))dt



Other tensor fields

Recall a vector can be defined as a set of equivalence classes of
pairs

(v, )
where v € R” and ¢ is a chart.

(vi,¢1) ~ (v2,d2) <= (¢1005 )u(v2) = w1

Note:
(¢100; ")« € GL(n,R)

Suppose 7 : GL(n,R) — Aut(V) is a group homomorphism. Define
associated tensor bundle V by:

(vi, d1) ~ (v2,¢2) <= 7((¢10 05" ):)(v2) =1

where v € V and ¢ is a chart.



Densities

Definition
A density is a tensor field associated with:

T(g)v = | detg|v

for v € R.




Integration

» Probability density functions are densities.
» Integration = Calculation of expectations.

» Integrate f by computing values at each point.




Adjoint operator

> If:
X — 'Y(th)

and Xp is known, then
SE((Xe)) = (£, F(X0))dt

> If Xp is distributed with density p then:

aat/fpz/(ﬁvf)p

» So formal adjoint satisfies:

o
ot = ©f



Remarks

» Functions and densities have different transformation laws
» L acts on functions and appears e.g. in Feynman—Kac formula

» L* acts on densities and appears e.g. in Fokker—Planck
equation

Our treatment of £ has been entirely coordinate free.



Drawing higher dimensional ODEs

v

Two jet of map 7 : R — M at each point x with 7,(0) = x.
dW? = dWZ = ... = dW} so there is some redundancy

Solutions are the same if 1-jets are the same and L is the
same. i.e. volatility and drift terms match.

Solutions are weakly equivalent if the paths are rotationally
equivalent. Equivalently if £ is the same.



The Heston model

dS; = pSedt + /v Spd W}

2
dve = K(0 — ve)dt + E/wr (pdWE + /1 — p2dW2)
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Riemannian metrics and Brownian motion

Non degenerate SDE = Riemannian metric 4+ Drif

t
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ODEs vs SDEs

We have four interpretations of ODEs/Vectors:

1. Vector fields defined as equivalence classes under change of
coordinates v~

2. A smoothly varying choice of a 1-jet at each point of a
manifold v~

3. Linear operators on germs satisfying the Leibniz rule (a.k.a.
derivations) v

4. Infinitesimal diffeomorphisms
Correspondingly we can understand SDEs as:

1. An equivalence class of coefficients that obey It6's lemma
under change of coordinates v

2. A smoothly varying choice of a 2-jet at each point of a
manifold v~

3. Diffusion operators v/

4. Stratonovich drift and volatility vector fields



Flows of vector fields

> Given a vector field X write ®% for the diffeomorphism at
time t associated with the flow.

» Note that defining the flow requires a vector field and not just
a vector.



Stratonovich Calculus

» Given two vector fields A and B define a curve at each point
by: ,
x(s) = 7 (P(x))
» The SDE defined by this field of 2-jets is equivalent to the
SDE defined by:

dX;: = A(X)dt + B(X) o dW,

» In smoothly varying families of n-jets of curves can be
described by n vector fields.

» Note that we need the entire vector field for this
correspondence.

» Stratonovich and lto calculus are just alternative coordinate
system for the infinite dimensional space of 2-jets of curves.



Drawing 1-d processes

Observations
» Our current diagrams are aesthetically unsatisfying in 1-d.

» The It6 drift is not a coordinate dependent vector because it
represents infinitesimal changes of mean.

E(f(X)) # f(E(X))
» On the other hand, for order preserving f:

percentile,(f(X)) = f(percentile,(X))



Fan diagram
A fan diagram for a stock price (geometric Brownian motion)

out[14]=

— History
— Sample
— 5-95% percentiles



2-jets and fan diagrams

out[314]=

— History

— Sample

— Percentiles at ®[+1]
— T

Mx(s) = (5% 9x(s))



SDE as a fan diagram
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Stratonovich calculus and fan diagrams

out[28]=

— Mean =1to
—— Median = Stratonovich
— Mode



Sketch proof

>

>

All 1-d Riemannian manifolds are isometric

We cam make a coordinate change such that the volatility is
constant (Lamperti transform)

The SDE is now constant coefficient to second order

Therefore we can write down first term of asymptotic
expansion for solution of Fokker—Planck

Transform the coordinates back again and read off the result.

This can be generalized since “geodesic normal coordinates”
always make a metric constant up to second order.
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