Coordinate Free Stochastic Geometry with Jets Drawing SDEs

John Armstrong (KCL), Damiano Brigo (Imperial)

Collegio Carlo Alberto
Torino

December 2017

Geometry of SDEs

Motivation:

- SDEs = Analysis + Geometry
- Itô: Brownian motion on a manifold
- How do you draw an SDE?

Applications:

- Visualisation tools
- Pedagogy
- Elegant reformulation of Itô's lemma
- Geometric interpretation of Fokker-Planck
- Asymptotic properties of SDEs
- Projection of SDEs

Analogy:

- Maxwell's equations easier in terms of differential forms
- Drawing differential forms is illuminating

Existing work

Not the first people to consider coordinate free stochastic differential geometry

- Coordinate free operator formalism for diffusions
- Coordinate free approach best on Stratonovich calculus
- Emery's approach based on the Schwarz-Morphism

What's new?

- Very straightforward
- Based on Itô calculus so has good probabilistic properties
- Simple intrepretation in terms of numerical schemes
- Pictures!

Outline

- Differential geometry 101
- Manifolds
- Different perspectives on vectors
- "Coordinate free" geometry
- Drawing SDEs (1)
- Itô's Lemma
- Differential operators
- Drawing SDEs (2)
- Stratonovich calculus
- Drawing SDEs (3)

Manifolds

Transition

Function

Spherical
 Polars

Mercator Projection

Manifold Definition

Very informally a manifold is:

- A set of charts covering the manifold.
- Smooth coordinate change rules from one chart to another

Formally:

- A paracompact Hausdorff topological space M
- A family of charts $\phi_{i}: U_{i} \rightarrow \mathbb{R}^{n}$. Each chart is a homeomorphism defined on an open set U.
- The transition functions $\phi_{i} \circ \phi_{j}^{-1}$ are smooth on their domain of definition.
- $\cup U_{i}=M$.

Example: 2 charts needed for sphere
Example: London

Vector Fields

Transition

Function

Mercator Projection

A vector field can be defined as an equivalence class of pairs (chart, vector field on \mathbb{R}^{n})

Vector fields: coordinate definition

- Vector field is equivalence class (ϕ, X) where ϕ is a chart and X is the vector field on \mathbb{R}^{r}.
- We must choose the equivalence class so that the solutions of one ODE are mapped to the solutions of the other ODE by the transition functions.
- So by the chain rule, the correct definition is:

$$
\left(\phi_{1}, X\right) \sim\left(\phi_{2}, Y\right)
$$

if

$$
\begin{aligned}
X^{i} & =\sum_{j} \frac{\partial \tau^{i}}{\partial x^{j}} Y^{j} \\
& =\left(\partial_{j} \tau^{i}\right) Y^{j}
\end{aligned}
$$

where we're using the Einstein summation convention.

Vector: 1-jet definition

- A k-jet of a smooth path is defined as an equivalence class of paths with the same Taylor series up to given order.
- Given two paths $\gamma_{1}, \gamma_{2}: \mathbb{R} \rightarrow M$ satisfying $\gamma_{i}(0)=x$ we say

$$
j_{k}\left(\gamma_{1}\right)=j_{k}\left(\gamma_{2}\right)
$$

if γ_{1} and γ_{2} have the same Taylor series expansion (in any chart) up to order k.

- A vector is a 1 -jet of a path

Vector: Operator definition

Derivation:

- A function $D: C^{\infty}(x) \rightarrow \mathbb{R}$ satisfying:
- $D(a f+b g)=a D(f)+b D(g)$ when $a, b \in \mathbb{R}$
- $D(f g)=f, D(g)+g D(f)$ when $f, g \in C^{\infty}(x)$
- where $C^{\infty}(x)$ is set of germs of smooth functions
- Germ at $x: f \sim g$ if $f(y)=g(y)$ for all y in some neighbourhood $U \ni x$

Example

1. $\frac{\partial}{\partial x}$ is a derivation.
2. Given a vector $V \in \mathbb{R}^{n}$

$$
V(f):=\lim _{h \rightarrow 0} \frac{f(x+h V)-f(x)}{h}
$$

is a derivation on \mathbb{R}^{n}.

Vectors: Summary

1. First order ODEs on a manifold.
2. Vector fields defined as equivalence classes under change of coordinates
3. A smoothly varying choice of a 1 -jet at each point of a manifold
4. Linear operators on germs satisfying the Leibniz rule (a.k.a. derivations)

- All of these view points are helpful.
- 3 is the most "visual". 3+4 are "coordinate free"

Euler Scheme

- All being well in the limit the Euler scheme

$$
\delta X_{t}=a(X) \delta t+b(X) \delta W_{t}
$$

converges to a solution of the SDE

$$
\mathrm{d} X_{t}=a(X) \mathrm{d} t+b(X) \mathrm{d} W_{t}
$$

- $\mathrm{d}, \delta,+$ imply vector space structure
- This is highly coordinate dependent
- (Analysis + Geometry)

Curved Scheme

Let γ_{x} be a choice of curve at each point x of $M . \gamma_{x}(0)=x$.

Consider the scheme

$$
X_{t+\delta t}=\gamma_{X_{t}}\left(\delta W_{t}\right) \quad X_{0}
$$

Concrete example

$$
\gamma_{\left(x_{1}, x_{2}\right)}^{E}(t)=\left(x_{1}, x_{2}\right)+t\left(-x_{2}, x_{1}\right)+3 t^{2}\left(x_{1}, x_{2}\right)
$$

- First order term is rotational vector
- Second order term is axial vector

Concrete example

$$
\gamma_{\left(x_{1}, x_{2}\right)}^{E}(s)=\left(x_{1}, x_{2}\right)+s\left(-x_{2}, x_{1}\right)+3 s^{2}\left(x_{1}, x_{2}\right)
$$

- First order term is rotational vector
- Second order term is axial vector

Simulation: Large time step

$$
\gamma_{\left(x_{1}, x_{2}\right)}^{E}(s)=\left(x_{1}, x_{2}\right)+s\left(-x_{2}, x_{1}\right)+3 s^{2}\left(x_{1}, x_{2}\right)
$$

Simulation: Smaller time step

$$
\gamma_{\left(x_{1}, x_{2}\right)}^{E}(s)=\left(x_{1}, x_{2}\right)+s\left(-x_{2}, x_{1}\right)+3 s^{2}\left(x_{1}, x_{2}\right)
$$

Simulation: Even smaller

$$
\gamma_{\left(x_{1}, x_{2}\right)}^{E}(s)=\left(x_{1}, x_{2}\right)+s\left(-x_{2}, x_{1}\right)+3 s^{2}\left(x_{1}, x_{2}\right)
$$

Simulation: Convergence

$$
\gamma_{\left(x_{1}, x_{2}\right)}^{E}(s)=\left(x_{1}, x_{2}\right)+s\left(-x_{2}, x_{1}\right)+3 s^{2}\left(x_{1}, x_{2}\right)
$$

Formal argument

Write:

$$
\gamma_{x}(s)=x+\gamma_{x}^{\prime}(0) s+\frac{1}{2} \gamma_{x}^{\prime \prime}(0) s^{2}+O\left(s^{3}\right)
$$

Then:

$$
\begin{aligned}
X_{t+\delta t} & =\gamma_{t}\left(\delta W_{t}\right) \\
& =X_{t}+\gamma_{X_{t}}^{\prime}(0) \delta W_{t}+\frac{1}{2} \gamma^{\prime \prime} X_{t}(0)\left(\delta W_{t}\right)^{2}+O\left(\left(\delta W_{t}\right)^{3}\right)
\end{aligned}
$$

Rearranging:

$$
\delta X_{t}=X_{t+\delta t}-X_{t}=\gamma_{X_{t}}^{\prime}(0) \delta W_{t}+\frac{1}{2} \gamma^{\prime \prime} X_{t}(0)\left(\delta W_{t}\right)^{2}+O\left(\left(\delta W_{t}\right)^{3}\right)
$$

Taking the limit:

$$
\begin{aligned}
\mathrm{d} X_{t} & =b(X) \mathrm{d} W_{t}+a(X)\left(\mathrm{d} W_{t}\right)^{2}+O\left(\left(\mathrm{~d} W_{t}\right)^{3}\right) \\
& =b(X) \mathrm{d} W_{t}+a(X) \mathrm{d} t
\end{aligned}
$$

where

$$
\begin{gathered}
b(X)=\gamma_{X}^{\prime}(0) \\
a(X)=\gamma_{X}^{\prime \prime}(0) / 2
\end{gathered}
$$

Comments

- The curved scheme depends only on the 2-jet of the curve
- SDEs driven by 1-d Brownian motion are determined by 2-jets of curves
- The first derivative determines the volatility term
- The second derivative determines the drift term

ODEs correspond to 1 -jets of curves
SDEs correspond to 2-jets of curves

- Rigorous proof of convergence of quadratic scheme can be proved using standard results on Euler scheme

$$
\begin{aligned}
\mathrm{d} X_{t} & =a(X) \mathrm{d} t+b(X) \mathrm{d} W_{t} \\
& =a(X)\left(\mathrm{d}\left(W_{t}^{2}\right)-2 W_{t} \mathrm{~d}\left(W_{t}\right)\right)+b(X) \mathrm{d} W_{t} \\
& \approx a(X)\left(\left(\delta W_{t}\right)^{2}\right)+b(X) \mathrm{d} W_{t}
\end{aligned}
$$

- For general curved schemes some analysis needed.

Itô's lemma

Given a family of curves γ_{x} we will write:

$$
X_{t} \smile j_{2}\left(\gamma_{x}\left(\mathrm{~d} W_{t}\right)\right)
$$

if X_{t} is the limit of our scheme.
If

$$
X_{t} \smile j_{2}\left(\gamma_{x}\left(\mathrm{~d} W_{t}\right)\right)
$$

and $f: X \rightarrow Y$ then:

$$
f(X)_{t} \smile j_{2}\left(f \circ \gamma_{x}\left(\mathrm{~d} W_{t}\right)\right)
$$

Itô's lemma is simply composition of functions.

Usual formulation

$$
X_{t} \smile j_{2}\left(\gamma_{x}\left(\mathrm{~d} W_{t}\right)\right)
$$

Is equivalent to:

$$
\mathrm{d} X_{t}=a(X) \mathrm{d} t+b(X) \mathrm{d} W_{t}, \quad a(X)=\frac{1}{2} \gamma_{X}^{\prime \prime}(0), \quad b(X)=\gamma_{X}^{\prime}(0)
$$

We calculate the first two derivatives of $f \circ \gamma_{X}$:

$$
\begin{aligned}
\left(f \circ \gamma_{X}\right)^{\prime}(t)= & \sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}\left(\gamma_{X}(t)\right) \frac{\mathrm{d} \gamma_{X}}{\mathrm{~d} t} \\
\left(f \circ \gamma_{X}\right)^{\prime \prime}(t)= & \sum_{j=1}^{n} \sum_{i=1}^{n} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\left(\gamma_{X}(t)\right) \frac{\mathrm{d} \gamma_{X}^{i}}{\mathrm{~d} t} \frac{\mathrm{~d} \gamma_{X}^{j}}{\mathrm{~d} t} \\
& +\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}\left(\gamma_{X}(t)\right) \frac{\mathrm{d}^{2} \gamma_{X}}{\mathrm{~d} t^{2}}
\end{aligned}
$$

So $f\left(X_{t}\right) \smile j_{2}\left(f \circ \gamma_{x}\left(\mathrm{~d} W_{t}\right)\right)$ is equivalent to standard Itô's formula

Example

$$
\gamma_{\left(x_{1}, x_{2}\right)}^{E}(s)=\left(x_{1}, x_{2}\right)+s\left(-x_{2}, x_{1}\right)+3 s^{2}\left(x_{1}, x_{2}\right)
$$

Clearly polar coordinates might be a good idea. So consider the transformation $\phi: \mathbb{R}^{2} /\{0\} \rightarrow[-\pi, \pi] \times \mathbb{R}$ by:

$$
\phi(\exp (s) \cos (\theta), \exp (s) \sin (\theta))=(\theta, s)
$$

The process $j_{2}\left(\phi \circ \gamma^{E}\right)$ plotted using image manipulation software

The process $j_{2}\left(\phi \circ \gamma^{E}\right)$ plotted by applying Itô's lemma

Drawing SDEs

The following diagram commutes:

Outline

- Differential geometry 101
- Manifolds
- Different perspectives on vectors
- "Coordinate free" geometry \checkmark
- Drawing SDEs (1) \checkmark
- Itô's Lemma
- Differential operators
- Drawing SDEs (2)
- Stratonovich calculus
- Drawing SDEs (3)

ODEs vs SDEs

We have the following interpretations of ODEs/Vectors:

1. Vector fields defined as equivalence classes under change of coordinates
2. A smoothly varying choice of a 1 -jet at each point of a manifold
3. Linear operators on germs satisfying the Leibniz rule (a.k.a. derivations)
Correspondingly we can understand SDEs as:
4. An equivalence class of coefficients that obey Itô's lemma under change of coordinates
5. A smoothly varying choice of a 2 -jet at each point of a manifold
6. Diffusion operators

Local coordinates/2-jets

Spherical Polars

Mercator Projection

Operators associated with SDEs

Coordinate free definition of \mathcal{L}

- Let γ_{x} be a field of curves at each point of a manifold. i.e. $j_{2}\left(\gamma_{x}\right)$ defines an SDE
- Let $f: M \rightarrow \mathbb{R}$ be a smooth map
- $f \circ \gamma_{x}$ defines an SDE on \mathbb{R}.
- Let $\mathcal{L}_{\gamma} f$ be the drift term of this SDE.

$$
\mathcal{L}_{\gamma} f(X)=\frac{1}{2}(f \circ \gamma)^{\prime \prime}(0)
$$

$\mathcal{L}_{\gamma} f$ determines short time asymptotics of expectation of $f(X)$. If:

$$
X_{t} \smile \gamma\left(\mathrm{~d} W_{t}\right)
$$

and X_{0} is known, then

$$
\delta \mathbb{E}\left(f\left(X_{t}\right)\right) \approx\left(\mathcal{L}_{\gamma} f\left(X_{0}\right)\right) \delta t
$$

Generalizing to higher dimensional noise

Coordinate free definition of \mathcal{L}

- Let $\gamma_{x}: \mathbb{R}^{k} \rightarrow M$ at each point x with $\gamma_{x}(0)=x$. an SDE
- Let $f: M \rightarrow \mathbb{R}$ be a smooth map
- $f \circ \gamma_{x}$ defines an SDE on \mathbb{R}.
- Let $\mathcal{L}_{\gamma} f$ be the drift term of this SDE.

$$
\mathcal{L}_{\gamma} f(X)=\frac{1}{2} \Delta(\gamma \circ f)(0)
$$

$\mathcal{L}_{\gamma} f$ determines short time asymptotics of expectation of $f(X)$. If:

$$
X_{t} \smile \gamma\left(\mathrm{~d} W_{t}\right)
$$

and X_{0} is known, then

$$
\delta \mathbb{E}\left(f\left(X_{t}\right)\right) \approx\left(\mathcal{L}_{\gamma} f\left(X_{0}\right)\right) \delta t
$$

Other tensor fields

Recall a vector can be defined as a set of equivalence classes of pairs

$$
(v, \phi)
$$

where $v \in \mathbb{R}^{n}$ and ϕ is a chart.

$$
\left(v_{1}, \phi_{1}\right) \sim\left(v_{2}, \phi_{2}\right) \Longleftrightarrow\left(\phi_{1} \circ \phi_{2}^{-1}\right)_{*}\left(v_{2}\right)=v_{1}
$$

Note:

$$
\left(\phi_{1} \circ \phi_{2}^{-1}\right)_{*} \in G L(n, \mathbb{R})
$$

Suppose $\tau: G L(n, \mathbb{R}) \rightarrow \operatorname{Aut}(V)$ is a group homomorphism. Define associated tensor bundle \mathbf{V} by:

$$
\left(v_{1}, \phi_{1}\right) \sim\left(v_{2}, \phi_{2}\right) \Longleftrightarrow \tau\left(\left(\phi_{1} \circ \phi_{2}^{-1}\right)_{*}\right)\left(v_{2}\right)=v_{1}
$$

where $v \in V$ and ϕ is a chart.

Densities

Definition
A density is a tensor field associated with:

$$
\tau(g) v=|\operatorname{det} g| v
$$

for $v \in \mathbb{R}$.

Integration

- Probability density functions are densities.
- Integration $=$ Calculation of expectations.
- Integrate f by computing values at each point.

Adjoint operator

- If:

$$
X_{t} \smile \gamma\left(\mathrm{~d} W_{t}\right)
$$

and X_{0} is known, then

$$
\delta \mathbb{E}\left(f\left(X_{t}\right)\right) \approx\left(\mathcal{L}_{\gamma} f\left(X_{0}\right)\right) \delta t
$$

- If X_{0} is distributed with density ρ then:

$$
\frac{\partial}{\partial t} \int f \rho=\int\left(\mathcal{L}_{\gamma} f\right) \rho
$$

- So formal adjoint satisfies:

$$
\frac{\partial \rho}{\partial t}=\mathcal{L}_{\gamma}^{*} \rho
$$

Remarks

- Functions and densities have different transformation laws
- \mathcal{L} acts on functions and appears e.g. in Feynman-Kac formula
- \mathcal{L}^{*} acts on densities and appears e.g. in Fokker-Planck equation
Our treatment of \mathcal{L} has been entirely coordinate free.

Drawing higher dimensional ODEs

- Two jet of map $\gamma_{x}: \mathbb{R}^{k} \rightarrow M$ at each point x with $\gamma_{x}(0)=x$.
$-\mathrm{d} W_{1}^{2}=\mathrm{d} W_{2}^{2}=\ldots=\mathrm{d} W_{k}^{2}$ so there is some redundancy
- Solutions are the same if 1 -jets are the same and \mathcal{L} is the same. i.e. volatility and drift terms match.
- Solutions are weakly equivalent if the paths are rotationally equivalent. Equivalently if \mathcal{L} is the same.

The Heston model

$$
\begin{align*}
& \mathrm{d} S_{t}=\mu S_{t} \mathrm{~d} t+\sqrt{\nu_{t}} S_{t} \mathrm{~d} W_{t}^{1} \\
& \mathrm{~d} \nu_{t}=\kappa\left(\theta-\nu_{t}\right) \mathrm{d} t+\xi \sqrt{\nu_{t}}\left(\rho \mathrm{~d} W_{t}^{1}+\sqrt{1-\rho^{2}} \mathrm{~d} W_{t}^{2}\right) \tag{1}
\end{align*}
$$

$\xi=1, \theta=0.4, \kappa=1, \mu=0.1, \rho=0.5$

Riemannian metrics and Brownian motion

Non degenerate SDE $=$ Riemannian metric + Drift

ODEs vs SDEs

We have four interpretations of ODEs/Vectors:

1. Vector fields defined as equivalence classes under change of coordinates
2. A smoothly varying choice of a 1 -jet at each point of a manifold
3. Linear operators on germs satisfying the Leibniz rule (a.k.a. derivations)
4. Infinitesimal diffeomorphisms

Correspondingly we can understand SDEs as:

1. An equivalence class of coefficients that obey Itô's lemma under change of coordinates
2. A smoothly varying choice of a 2 -jet at each point of a manifold
3. Diffusion operators
4. Stratonovich drift and volatility vector fields

Flows of vector fields

- Given a vector field X write Φ_{X}^{t} for the diffeomorphism at time t associated with the flow.
- Note that defining the flow requires a vector field and not just a vector.

Stratonovich Calculus

- Given two vector fields A and B define a curve at each point by:

$$
\gamma_{x}(s)=\Phi_{A}^{s^{2}}\left(\Phi_{B}^{s}(x)\right)
$$

- The SDE defined by this field of 2-jets is equivalent to the SDE defined by:

$$
\mathrm{d} X_{t}=A(X) \mathrm{d} t+B(X) \circ \mathrm{d} W_{t}
$$

- In smoothly varying families of n-jets of curves can be described by n vector fields.
- Note that we need the entire vector field for this correspondence.
- Stratonovich and Ito calculus are just alternative coordinate system for the infinite dimensional space of 2-jets of curves.

Drawing 1-d processes

Observations

- Our current diagrams are aesthetically unsatisfying in 1-d.
- The Itô drift is not a coordinate dependent vector because it represents infinitesimal changes of mean.

$$
E(f(X)) \neq f(E(X))
$$

- On the other hand, for order preserving f :

$$
\operatorname{percentile}_{p}(f(X))=f\left(\text { percentile }_{p}(X)\right)
$$

Fan diagram

A fan diagram for a stock price (geometric Brownian motion)

- History
- Sample
- 5-95\% percentiles

2-jets and fan diagrams

- History
- Sample
- Percentiles at $\Phi[\pm 1]$
$-\Gamma$

$$
\Gamma_{x}(s)=\left(s^{2}, \gamma_{x}(s)\right)
$$

SDE as a fan diagram

Stratonovich calculus and fan diagrams

Out[28]=

- Mean = Ito
- Median $=$ Stratonovich
- Mode

Sketch proof

- All 1-d Riemannian manifolds are isometric
- We cam make a coordinate change such that the volatility is constant (Lamperti transform)
- The SDE is now constant coefficient to second order
- Therefore we can write down first term of asymptotic expansion for solution of Fokker-Planck
- Transform the coordinates back again and read off the result.

This can be generalized since "geodesic normal coordinates" always make a metric constant up to second order.

Summary

