The Pontryagin Forms of Hessian Manifolds

J. Armstrong S.Amari

August 22, 2020

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Summary

Question

Given a Riemannian metric g, under what circumstances is it locally a Hessian metric?

Question

When can we locally find a function f and coordinates x such that $g_{ij}=\partial_i\partial_j f?$

Answer (Partial)

In dimension 2 all analytic metrics g are Hessian. In dimensions 3 the general metric is not Hessian. In dimensions ≥ 4 there are even restrictions on the curvature tensor of g — in particular the Pontrjagin forms vanish.

Solving unusual partial differential equations

Question

Given a symmetric g, when can we locally find a function f and coordinates x such that $g_{ij} = (\partial_i f)(\partial_j f)$?

Answer

Only if g lies in the n dimensional subspace Im $\phi \subset S^2 T$ where

$$\phi: T \to S^2 T$$
 by $\phi(x) = x \odot x$.

Sometimes we can't find a solution even at a point.

Question

Given a one form η , when can we locally find a function f such that $df = \eta$.

Answer

Since ddf = 0 we must have $d\eta = 0$ at x. Sometimes we can find a solution at a point, but can't extend it even to first order around x.

Generalizing

- Let E and F be vector bundles and let D : Γ(E) → Γ(F) be a differential operator.
- $D: J_k(E) \to F$ where J_k is the bundle of k jets.
- Define $D_1: J_{k+1}(E) \to J_1(F)$ to be the first prolongation. This is the operator which maps a section e to the one jet of $j_1(De)$.
- Define $D_i : J_{k+i}(E) \to J_i(F)$ to be the *i*-th prolongation $e \to j_i(e)$

We can only hope to solve the differential equation De = f if we can find an algebraic solution to every equation

$$D_i e = j_i(f)$$

at the point x.

Applying the fact that derivatives commute may yield obstructions to the existence of solutions to a differential equation even locally.

The dimension of the space of k-jets of 1 functions of n real variables is:

$$\dim J_k := \sum_{i=0}^{k+2} \dim(S^iT) = \sum_{i=0}^k \binom{n+i-1}{i}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The reason for this is that derivatives commute. Note this fact is also encoded in the statement ddf = 0.

The counting argument

We wish to solve

$$\frac{\partial}{\partial x_i}\frac{\partial}{\partial x_j}f=g_{ij}.$$

which is a second order equation for f and coords x. So input is n + 1 functions of n variables.

• Dimension of space of (k + 2) jets of f and x

$$d_k^1 = \dim J_{k+2}(x, f) = \sum_{i=0}^{k+2} (n+1) \binom{n+i-1}{i}.$$

Dimension of space of k jets of g:

$$d_k^2 = \dim J_k(g) = \sum_{i=0}^k \frac{n(n+1)}{2} \binom{n+i-1}{i}.$$

If n > 2 d¹_k grows more slowly than d²_k. So most metrics are not Hessian metrics.

Informal version

- A Riemannian metric depends on $\frac{n(n+1)}{2}$ functions of *n* variables.
- A Hessian metric depends on n + 1 functions of *n* variables.
- "Therefore" if n > 2 there are more Riemannian metrics than Hessian metrics.
- Note: this computation is suggestive but slightly wrong because we've ignored the diffeomorphism group. It would suggest that in dimension 1 there are more Hessian metrics than Riemannian metrics!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Curvature

Reminder:

- Hessian metrics locally correspond to g-dually flat structures, and vice versa.
- g-dually flat means $\overline{\nabla}$ is flat and it's dual w.r.t. $g \overline{\nabla}^*$ is flat.

$$g(\nabla_Z X, Y) = g(X, \nabla_Z^* Y).$$

Proposition

Let (M,g) be a Riemannian manifold. Let ∇ denote the Levi–Civita connection and let $\overline{\nabla} = \nabla + A$ be a g-dually flat connection. Then

- (i) The tensor A_{ijk} lies in S^3T^* . We shall call it the S^3 -tensor of $\overline{\nabla}$.
- (ii) The S³-tensor determines the Riemann curvature tensor as follows:

$$R_{ijkl} = -g^{ab}A_{ika}A_{jlb} + g^{ab}A_{ila}A_{jkb}.$$

Proof

- $\overline{\nabla}$ is torsion free implies $A \in S^2 T^* \otimes T$
- ▶ Using metric to identify T^*andT , both $\overline{\nabla}$ and $\overline{\nabla}^*$ are torsion free implies $A \in S^3T^*$
- ▶ $\overline{R} = 0$. But by definition:

$$\overline{R}_{XY}Z = \overline{\nabla}_X\overline{\nabla}_YZ - \overline{\nabla}_Y\overline{\nabla}_X - \overline{\nabla}_{[X,Y]}Z$$

Expanding in terms of Levi-Civita:

$$\overline{R}_{XY}Z = R_{XY}Z + 2(\nabla_{[X}A)_{Y]}Z + 2A_{[X}A_{Y]}Z$$

Curvature symmetries tell us (using g to identify T and T^*):

$$R \in \Lambda^2 T \otimes \Lambda^2 T$$

On the other hand:

$$(\nabla_{[\cdot}A)_{\cdot}] \in \Lambda^2 T \otimes S^2 T$$

Projecting the equation onto $\Lambda^2 T \otimes \Lambda^2 T$ gives the desired result.

Curvature obstruction

Define a quadratic equivariant map ρ from $S^3T^* \longrightarrow \Lambda^2T^* \otimes \Lambda^2T^*$ by:

$$\rho(A_{ijk}) = -g^{ab}A_{ika}A_{jlb} + g^{ab}A_{ila}A_{jkb}$$

If g is a Hessian metric R lies in image of ρ .

Corollary

In dimension ≥ 5 , ρ is not onto. Therefore there condition $R \in \text{Im } \rho$ is an obstruction to a metric being a Hessian metric. Proof.

dim \mathcal{R} = dim(Space of algebraic curvature tensors) = $\frac{1}{12}n^2(n^2-1)$

$$\dim(S^3T) = \frac{1}{6}n(1+n)(2+n)$$

The former is strictly greater than the latter if $n \ge 5$

Dimension 4

Numerical observation: ρ is not onto in dimension 4 even though dim $\mathcal{R} = \dim(S^3T^*) = 20$.

Proof.

Pick a random $A \in S^3T^*$ and compute rank of $(\rho^*)_A$, the differential of ρ at A. It is 18 whereas the space of algebraic curvature tensors is 20 dimensional. (Proof with probability 1)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Question

What are the conditions on the curvature tensor for it to lie in the image of $\rho?$

What does this question mean?

- This is an *implicitization* question. Im ρ is given parametrically by the map ρ. We want implicit equations on the curvature tensor that define Im ρ.
- This is a real algebraic geometry question and so we should expect inequalities for our implicit equations. (e.g. Im x² = {y : y ≥ 0})
- Complexify the vector spaces to get a complex algebraic geometry where we expect equalities for our implicit equations. This is how we choose to interpret the question.
- Gröbner basis algorithms allow us to solve the latter problem in principle (for fixed n) but not in practice (doubly exponential time is common).
- Algorithms do exist for the real algebraic geometry problem too, but they're even less practical.

Strategy

- Space of algebraic curvature tensors *R* is associated to a representation of SO(n).
- Decompose \mathcal{R} into irreducible components under SO(n)
- Any invariant linear condition on R can be expressed as a linear combination of these irreducibles.
- ▶ If we have *m* irreducible components $\rho_1(R)$, $\rho_2(R)$, ..., $\rho_m(R)$. Choose m + 1 random tensors *A* and solve the equation

$$\sum_i \alpha_i \rho_i(R) = 0$$

for α_i . (In fact we only need to check linear combinations over isomorphic components)

This is feasible in dimension 4. Representation theory of SU(2) × SU(2) is simple. is simple

Hessian curvature tensors in dimension 4

Theorem

The space of possible curvature tensors for a Hessian 4-manifold is 18 dimensional. In particular the curvature tensor must satisfy the identities:

$$\alpha(R_{ija}{}^{b}R_{klb}{}^{a})=0$$

$$\alpha(R_{iajb}R_k^{\ b}_{\ cd}R_l^{\ dac} - 2R_{iajb}R_k^{\ a}_{\ d}R_l^{\ dbc}) = 0$$

where α denotes antisymmetrization of the i, j, k and l indices.

Proof.

Using a symbolic algebra package, write the general tensor in S^3T^* with respect to an orthonormal basis in terms of its 20 components. Compute the curvature tensor using ρ . One can then directly check the above identities.

Both expressions define 4-forms on a general Riemannian manifold. The first is a well-known 4-form. It defines the first Pontrjagin class of the manifold.

Pontrjagin forms

- The Gauss-Bonnet formula gives an important link between curvature and topology. In this case the integral of scalar curvature is related to the Euler class.
- ▶ The theory of *characteristic classes* generalizes this.
 - To a complex vector bundle V over a manifold M one can associate topological invariants, the Chern classes c_i(V) ∈ H²ⁱ(M).
 - The Pontrjagin classes of a real vector bundle V^ℝ are defined to be the Chern classes of the complexification p_i(V^ℝ) ∈ H⁴ⁱ(M).
 - The Pontrjagin classes of a manifold are defined to be the Pontrjagin classes of its tangent bundle.
 - It is possible to find explicit representatives for the De Rham cohomology classes of a bundle by computing appropriate polynomial expressions if a curvature tensor for the bundle.
 - We call these explicit representatives Pontrjagin forms.

Relationship between Pontrjagin forms and curvature

Theorem

For each p, the form $Q_p(R)$ defined by:

$$Q_{i_{1}i_{2}...i_{2p}}^{p} = \sum_{\sigma \in S_{2p}} \operatorname{sgn}(\sigma) R_{i_{\sigma(1)}i_{\sigma(2)}a_{1}}^{a_{2}} R_{i_{\sigma(3)}i_{\sigma(4)}a_{2}}^{a_{3}} R_{i_{\sigma(5)}i_{\sigma(6)}a_{3}}^{a_{4}} \dots R_{i_{\sigma(2p-1)}i_{\sigma(2p)}a_{p}}^{a_{1}}$$

is closed. The Pontrjagin forms can all be written as algebraic expressions in these $Q_p(R)$ using the ring structure of Λ^* and vice-versa.

This is a standard result from the theory of characteristic classes.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Main result

Theorem

The forms $Q_p(R)$ vanish on Hessian manifolds, hence the Pontrjagin forms vanish on Hessian manifolds.

Corollary

If a manifold M admits a metric that is everywhere locally Hessian then its Pontrjagin classes all vanish.

Note that we're being clear to distinguish this from the case of a manifold which is globally dually flat, where the vanishing of the Pontrjagin classes is a trivially corollary of the existence of flat connections.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Graphical notation

$$\rho(A_{ijk}) = -g^{ab}A_{ika}A_{jlb} + g^{ab}A_{ila}A_{jkb}$$
$$R_{ijkl} = - \left| \bigcup_{k}^{i} \right|_{l} + \left| \bigcup_{k}^{i} \right|_{l} + \left| \bigcup_{k}^{j} \right|_{l} \cdot$$

Trivalent graph

- Each vertex represents the tensor A
- Connecting vertices represents contraction with the metric
- Picture naturally incorporates symmetries of A

$$R_{i_1i_2ab} = \sum_{\sigma \in S_2} -\operatorname{sgn}(\sigma) \begin{array}{c} i_{\sigma(1)} & i_{\sigma(2)} \\ \vdots \\ a & b \end{array}$$

•

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Proof

$$R_{i_1i_2ab} = \sum_{\sigma \in S_2} -\operatorname{sgn}(\sigma) \begin{array}{c} i_{\sigma(1)} & i_{\sigma(2)} \\ \vdots \\ a & b \end{array}$$

By definition:

$$Q_{i_{1}i_{2}...i_{2p}}^{p} = \sum_{\sigma \in S_{2p}} \operatorname{sgn}(\sigma) R_{i_{\sigma(1)}i_{\sigma(2)}a_{1}}^{a_{2}} R_{i_{\sigma(3)}i_{\sigma(4)}a_{2}}^{a_{3}} R_{i_{\sigma(5)}i_{\sigma(6)}a_{3}}^{a_{4}} \dots R_{i_{\sigma(2p-1)}i_{\sigma(2p)}a_{p}}^{a_{1}}$$

We can replace each R with an H:

$$Q_{i_{1}i_{2}...i_{2p}}^{p} = (-1)^{p} \sum_{\sigma \in S_{2p}} \operatorname{sgn}(\sigma) \xrightarrow{i_{\sigma(1)} \quad i_{\sigma(2)} \quad i_{\sigma(3)} \quad i_{\sigma(4)} \quad i_{\sigma(5)} \quad i_{\sigma(6)} \quad i_{\sigma(2p-1)} \quad i_{\sigma(2p)}} \dots$$

Since the cycle $1 \rightarrow 2 \rightarrow 3... \rightarrow 2p \rightarrow 1$ is an odd permutation, one sees that $Q^p = 0$.

Summary

- In dimension 2 all metrics are locally Hessian (Use Cartan-Kähler theory. Proved independently by Robert Bryant)
- ln dimensions ≥ 3 not all metrics are locally Hessian
- In dimensions ≥ 4 there are conditions on the curvature
- In dimension 4 we have identified two conditions explicitly. These are necessary conditions and, working over the complex numbers, they characterize Im ρ.
- In dimension n ≥ 4 we have identified a number of explicit curvature conditions in terms of the Pontrjagin forms. Dimension counting tells us that other curvature conditions exist, but we do not know them explicitly.