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Summary

Question
Given a Riemannian metric g, under what circumstances is it
locally a Hessian metric?

Question

When can we locally find a function f and coordinates x such that
8ij = 8,'@jf?

Answer (Partial)

In dimension 2 all analytic metrics g are Hessian. In dimensions 3
the general metric is not Hessian. In dimensions > 4 there are even
restrictions on the curvature tensor of g — in particular the
Pontrjagin forms vanish.



Solving unusual partial differential equations

Question
Given a symmetric g, when can we locally find a function f and
coordinates x such that gj = (9;f)(9;f)?

Answer
Only if g lies in the n dimensional subspace Im¢ C ST where

¢: T — ST by ¢(x) = x ® x.
Sometimes we can't find a solution even at a point.

Question
Given a one form 7, when can we locally find a function f such
that df = 7.

Answer

Since ddf = 0 we must have dn = 0 at x. Sometimes we can find
a solution at a point, but can’t extend it even to first order around
X.



Generalizing

» Let E and F be vector bundles and let D : T(E) — '(F) be a
differential operator.

» D : Jy(E) — F where Jy is the bundle of k jets.

» Define D; : Jx11(E) — Ji(F) to be the first prolongation.
This is the operator which maps a section e to the one jet of
jl(De).

» Define D; : Jxyi(E) — Ji(F) to be the i-th prolongation
e — ji(e)

We can only hope to solve the differential equation De = f if we
can find an algebraic solution to every equation

D,-e :_j;(f)

at the point x.
Applying the fact that derivatives commute may yield obstructions
to the existence of solutions to a differential equation even locally.



Dimension counting

» The dimension of the space of k-jets of 1 functions of n real
variables is:

k42 ) k n+i—1
dim Jj :deim(S’T)zZ( I_ )
i=0 i=0

The reason for this is that derivatives commute. Note this
fact is also encoded in the statement ddf = 0.



The counting argument

» We wish to solve

99
ox; 0x; Y

which is a second order equation for f and coords x. So input
is n+ 1 functions of n variables.

» Dimension of space of (k 4 2) jets of f and x

k+2 n+i—1
di = dim Jxo(x, f) :Z(n+1)< _ )

i
i=0
» Dimension of space of k jets of g:

k

d? = dim J(g Z”"+1><n+:—1>

1=

> Ifn>2 d,% grows more slowly than d,f. So most metrics are
not Hessian metrics.



Informal version

w functions of n

» A Riemannian metric depends on
variables.

» A Hessian metric depends on n + 1 functions of n variables.
» “Therefore” if n > 2 there are more Riemannian metrics than
Hessian metrics.

» Note: this computation is suggestive but slightly wrong
because we've ignored the diffeomorphism group. It would
suggest that in dimension 1 there are more Hessian metrics
than Riemannian metrics!



Curvature
Reminder:
» Hessian metrics locally correspond to g-dually flat structures,
and vice versa.
> g-dually flat means V is flat and it's dual w.r.t. g V_ is flat.

g(VzX,Y)=g(X,VzY).

Proposition

Let (M, g) be a Riemannian manifold. Let V denote the

Levi—Civita connection and let V = V + A be a g-dually flat

connection. Then

(i) The tensor Aj lies in S T*. We shall call it the $3-tensor of
V.

(i) The S3-tensor determines the Riemann curvature tensor as
follows:

b b
Rijkl =-g° AikaAij +g° AiIaAjkb'



Proof

» V is torsion free implies A€ S°T* @ T

> Using metric to identify T*andT, both V and V" are torsion
free implies A € S3T*

» R = 0. But by definition:
RxyZ = VxVyZ - Vy¥x — VixZ
Expanding in terms of Levi—Civita:
RxyZ = RxyZ + 2(VixA)y1Z +2AxAv Z
Curvature symmetries tell us (using g to identify T and T%):
ReENTRNT
On the other hand:
(VLA € NT & ST

Projecting the equation onto A>T ® A2 T gives the desired
result.



Curvature obstruction
Define a quadratic equivariant map p from

SB3T* — NT* @ N°T* by:
p(Ajjk) = _gabAikaAjlb + gabAilaAjkb
If g is a Hessian metric R lies in image of p.

Corollary

In dimension > 5, p is not onto. Therefore there condition
R € Imp is an obstruction to a metric being a Hessian metric.

Proof.

1
dim R = dim(Space of algebraic curvature tensors) = —n?(n* —1)

12

dim(S3T) = %n(l +n)(2+ n)

The former is strictly greater than the latter if n > 5 O



Dimension 4

Numerical observation: p is not onto in dimension 4 even though
dim R = dim(S3T*) = 20.

Proof.

Pick a random A € S3T* and compute rank of (px)a, the

differential of p at A. It is 18 whereas the space of algebraic
curvature tensors is 20 dimensional. (Proof with probability 1) [



Question
What are the conditions on the curvature tensor for it to lie in the
image of p?
What does this question mean?
» This is an implicitization question. Im p is given parametrically
by the map p. We want implicit equations on the curvature
tensor that define Im p.

» This is a real algebraic geometry question and so we should
expect inequalities for our implicit equations. (e.g.

Imx? = {y:y>0})

» Complexify the vector spaces to get a complex algebraic
geometry where we expect equalities for our implicit
equations. This is how we choose to interpret the question.

» Grobner basis algorithms allow us to solve the latter problem
in principle (for fixed n) but not in practice (doubly
exponential time is common).

» Algorithms do exist for the real algebraic geometry problem
too, but they're even less practical.



Strategy

| 4

>
>

Space of algebraic curvature tensors R is associated to a
representation of SO(n).

Decompose R into irreducible components under SO(n)
Any invariant linear condition on R can be expressed as a
linear combination of these irreducibles.

Decompose SR @ R into irreducibles. Any invariant
quadratic condition on R can be expressed as a linear
combination of these irreducibles. etc.

If we have m irreducible components p1(R), p2(R), ...,
pm(R). Choose m + 1 random tensors A and solve the

equation
Z aipi(R) =0

for aj. (In fact we only need to check linear combinations
over isomorphic components)

This is feasible in dimension 4. Representation theory of
SU(2) x SU(2) is simple. is simple



Hessian curvature tensors in dimension 4

Theorem
The space of possible curvature tensors for a Hessian 4-manifold is
18 dimensional. In particular the curvature tensor must satisfy the
identities:
b _
a(RUa Rip®) =0
a(Riaj

b Ri%eg R — 2R, Ri Py R 7°€) = 0

iaji
where « denotes antisymmetrization of the i, j, k and | indices.

Proof.

Using a symbolic algebra package, write the general tensor in
S3T* with respect to an orthonormal basis in terms of its 20
components. Compute the curvature tensor using p. One can then
directly check the above identities. []

» Both expressions define 4-forms on a general Riemannian
manifold. The first is a well-known 4-form. It defines the first
Pontrjagin class of the manifold.



Pontrjagin forms

» The Gauss—Bonnet formula gives an important link between
curvature and topology. In this case the integral of scalar
curvature is related to the Euler class.

» The theory of characteristic classes generalizes this.

>

To a complex vector bundle V over a manifold M one can
associate topological invariants, the Chern classes

C,'(V) S H2i(M).

The Pontrjagin classes of a real vector bundle V* are defined
to be the Chern classes of the complexification

pi(VR) € HY(M).

The Pontrjagin classes of a manifold are defined to be the
Pontrjagin classes of its tangent bundle.

It is possible to find explicit representatives for the De Rham
cohomology classes of a bundle by computing appropriate
polynomial expressions if a curvature tensor for the bundle.
We call these explicit representatives Pontrjagin forms.



Relationship between Pontrjagin forms and curvature

Theorem
For each p, the form Q,(R) defined by:

QP —

nn..

an as as ai
Z Sgn(a)Rio’(l)ia(Z)al Ria(3)ia(4)a2 Ria(S)ia(6)a3 T Ria(zpq)io(zp)ap
0'652,,

is closed. The Pontrjagin forms can all be written as algebraic

expressions in these Q,(R) using the ring structure of N* and
vice-versa.

This is a standard result from the theory of characteristic classes.



Main result

Theorem
The forms Q,(R) vanish on Hessian manifolds, hence the
Pontrjagin forms vanish on Hessian manifolds.

Corollary

If a manifold M admits a metric that is everywhere locally Hessian
then its Pontrjagin classes all vanish.

Note that we're being clear to distinguish this from the case of a
manifold which is globally dually flat, where the vanishing of the
Pontrjagin classes is a trivially corollary of the existence of flat
connections.



Graphical notation

b b
P(Aijk) = 8" AiaAj + 87 AitaAjkp

i J i

R,'_,'k/:— + Xj .
k /

k i

» Trivalent graph

> Each vertex represents the tensor A

» Connecting vertices represents contraction with the metric
» Picture naturally incorporates symmetries of A

o) o(2)

Riiab = Z —sgn(o) }—{

oeS a b



Proof

gESy a b
By definition:
p _
Qlllz
an as aa ai
Z Sgn(U)R"o(l)’a(z)al Rio<3)ia(4)a2 R’o(S)fo(6)33 R Io(2p—1)io(2p) 3p
0'652p
We can replace each R with an H:
p _
QI1I2
o)) o o3  lo(@ o) o(6) io(2p—1) o(2p)

(—1)° Z sen(0) |00
O'ESQP \ J

Since the cycle 1 -2 — 3... — 2p — 1 is an odd permutation,

one sees that QP = 0.




Summary

v

In dimension 2 all metrics are locally Hessian (Use
Cartan—Kahler theory. Proved independently by Robert
Bryant)

In dimensions > 3 not all metrics are locally Hessian
>

In dimensions > 4 there are conditions on the curvature

In dimension 4 we have identified two conditions explicitly.
These are necessary conditions and, working over the complex
numbers, they characterize Im p.

In dimension n > 4 we have identified a number of explicit
curvature conditions in terms of the Pontrjagin forms.
Dimension counting tells us that other curvature conditions
exist, but we do not know them explicitly.



