The Pontryagin Forms of Hessian Manifolds

J. Armstrong S.Amari

August 22, 2020

Summary

Question

Given a Riemannian metric g, under what circumstances is it locally a Hessian metric?

Question
When can we locally find a function f and coordinates x such that $g_{i j}=\partial_{i} \partial_{j} f$?
Answer (Partial)
In dimension 2 all analytic metrics g are Hessian. In dimensions 3 the general metric is not Hessian. In dimensions $\geqslant 4$ there are even restrictions on the curvature tensor of g - in particular the Pontrjagin forms vanish.

Solving unusual partial differential equations

Question

Given a symmetric g, when can we locally find a function f and coordinates x such that $g_{i j}=\left(\partial_{i} f\right)\left(\partial_{j} f\right)$?

Answer
Only if g lies in the n dimensional subspace $\operatorname{Im} \phi \subset S^{2} T$ where

$$
\phi: T \rightarrow S^{2} T \quad \text { by } \phi(x)=x \odot x
$$

Sometimes we can't find a solution even at a point.
Question
Given a one form η, when can we locally find a function f such that $\mathrm{d} f=\eta$.

Answer

Since $\operatorname{dd} f=0$ we must have $\mathrm{d} \eta=0$ at x. Sometimes we can find a solution at a point, but can't extend it even to first order around x.

Generalizing

- Let E and F be vector bundles and let $D: \Gamma(E) \rightarrow \Gamma(F)$ be a differential operator.
- $D: J_{k}(E) \rightarrow F$ where J_{k} is the bundle of k jets.
- Define $D_{1}: J_{k+1}(E) \rightarrow J_{1}(F)$ to be the first prolongation. This is the operator which maps a section e to the one jet of $j_{1}(D e)$.
- Define $D_{i}: J_{k+i}(E) \rightarrow J_{i}(F)$ to be the i-th prolongation $e \rightarrow j_{i}(e)$
We can only hope to solve the differential equation $D e=f$ if we can find an algebraic solution to every equation

$$
D_{i} e=j_{i}(f)
$$

at the point x.
Applying the fact that derivatives commute may yield obstructions to the existence of solutions to a differential equation even locally.

Dimension counting

- The dimension of the space of k-jets of 1 functions of n real variables is:

$$
\operatorname{dim} J_{k}:=\sum_{i=0}^{k+2} \operatorname{dim}\left(S^{i} T\right)=\sum_{i=0}^{k}\binom{n+i-1}{i}
$$

The reason for this is that derivatives commute. Note this fact is also encoded in the statement $\operatorname{dd} f=0$.

The counting argument

- We wish to solve

$$
\frac{\partial}{\partial x_{i}} \frac{\partial}{\partial x_{j}} f=g_{i j} .
$$

which is a second order equation for f and coords x. So input is $n+1$ functions of n variables.

- Dimension of space of $(k+2)$ jets of f and x

$$
d_{k}^{1}=\operatorname{dim} J_{k+2}(x, f)=\sum_{i=0}^{k+2}(n+1)\binom{n+i-1}{i}
$$

- Dimension of space of k jets of g :

$$
d_{k}^{2}=\operatorname{dim} J_{k}(g)=\sum_{i=0}^{k} \frac{n(n+1)}{2}\binom{n+i-1}{i}
$$

- If $n>2 d_{k}^{1}$ grows more slowly than d_{k}^{2}. So most metrics are not Hessian metrics.

Informal version

- A Riemannian metric depends on $\frac{n(n+1)}{2}$ functions of n variables.
- A Hessian metric depends on $n+1$ functions of n variables.
- "Therefore" if $n>2$ there are more Riemannian metrics than Hessian metrics.
- Note: this computation is suggestive but slightly wrong because we've ignored the diffeomorphism group. It would suggest that in dimension 1 there are more Hessian metrics than Riemannian metrics!

Curvature

Reminder:

- Hessian metrics locally correspond to g-dually flat structures, and vice versa.
- g-dually flat means $\bar{\nabla}$ is flat and it's dual w.r.t. $g \bar{\nabla}^{*}$ is flat.

$$
g\left(\nabla_{Z} X, Y\right)=g\left(X, \nabla_{Z}^{*} Y\right)
$$

Proposition

Let (M, g) be a Riemannian manifold. Let ∇ denote the Levi-Civita connection and let $\bar{\nabla}=\nabla+A$ be a g-dually flat connection. Then
(i) The tensor $A_{i j k}$ lies in $S^{3} T^{*}$. We shall call it the S^{3}-tensor of $\bar{\nabla}$.
(ii) The S^{3}-tensor determines the Riemann curvature tensor as follows:

$$
R_{i j k l}=-g^{a b} A_{i k a} A_{j l b}+g^{a b} A_{i l a} A_{j k b}
$$

Proof

- $\bar{\nabla}$ is torsion free implies $A \in S^{2} T^{*} \otimes T$
- Using metric to identify T^{*} and T, both $\bar{\nabla}$ and $\bar{\nabla}^{*}$ are torsion free implies $A \in S^{3} T^{*}$
- $\bar{R}=0$. But by definition:

$$
\bar{R}_{X Y} Z=\bar{\nabla}_{X} \bar{\nabla}_{Y} Z-\bar{\nabla}_{Y} \bar{\nabla}_{X}-\bar{\nabla}_{[X, Y]} Z
$$

Expanding in terms of Levi-Civita:

$$
\bar{R}_{X Y} Z=R_{X Y} Z+2\left(\nabla_{[X} A\right)_{Y]} Z+2 A_{[X} A_{Y]} Z
$$

Curvature symmetries tell us (using g to identify T and T^{*}):

$$
R \in \Lambda^{2} T \otimes \Lambda^{2} T
$$

On the other hand:

$$
\left(\nabla_{[\cdot} A\right)_{\cdot]} \in \Lambda^{2} T \otimes S^{2} T
$$

Projecting the equation onto $\Lambda^{2} T \otimes \Lambda^{2} T$ gives the desired result.

Curvature obstruction

Define a quadratic equivariant map ρ from
$S^{3} T^{*} \longrightarrow \Lambda^{2} T^{*} \otimes \Lambda^{2} T^{*}$ by:

$$
\rho\left(A_{i j k}\right)=-g^{a b} A_{i k a} A_{j l b}+g^{a b} A_{i l a} A_{j k b}
$$

If g is a Hessian metric R lies in image of ρ.
Corollary
In dimension $\geqslant 5, \rho$ is not onto. Therefore there condition $R \in \operatorname{Im} \rho$ is an obstruction to a metric being a Hessian metric.

Proof.
$\operatorname{dim} \mathcal{R}=\operatorname{dim}($ Space of algebraic curvature tensors $)=\frac{1}{12} n^{2}\left(n^{2}-1\right)$

$$
\operatorname{dim}\left(S^{3} T\right)=\frac{1}{6} n(1+n)(2+n)
$$

The former is strictly greater than the latter if $n \geqslant 5$

Dimension 4

Numerical observation: ρ is not onto in dimension 4 even though $\operatorname{dim} \mathcal{R}=\operatorname{dim}\left(S^{3} T^{*}\right)=20$.
Proof.
Pick a random $A \in S^{3} T^{*}$ and compute rank of $(\rho *)_{A}$, the differential of ρ at A. It is 18 whereas the space of algebraic curvature tensors is 20 dimensional. (Proof with probability 1)

Question

What are the conditions on the curvature tensor for it to lie in the image of ρ ?
What does this question mean?

- This is an implicitization question. Im ρ is given parametrically by the map ρ. We want implicit equations on the curvature tensor that define $\operatorname{Im} \rho$.
- This is a real algebraic geometry question and so we should expect inequalities for our implicit equations. (e.g. Im $x^{2}=\{y: y \geqslant 0\}$)
- Complexify the vector spaces to get a complex algebraic geometry where we expect equalities for our implicit equations. This is how we choose to interpret the question.
- Gröbner basis algorithms allow us to solve the latter problem in principle (for fixed n) but not in practice (doubly exponential time is common).
- Algorithms do exist for the real algebraic geometry problem too, but they're even less practical.

Strategy

- Space of algebraic curvature tensors \mathcal{R} is associated to a representation of $S O(n)$.
- Decompose \mathcal{R} into irreducible components under $S O(n)$
- Any invariant linear condition on \mathcal{R} can be expressed as a linear combination of these irreducibles.
- Decompose $S^{2} \mathcal{R} \oplus \mathcal{R}$ into irreducibles. Any invariant quadratic condition on \mathcal{R} can be expressed as a linear combination of these irreducibles. etc.
- If we have m irreducible components $\rho_{1}(R), \rho_{2}(R), \ldots$, $\rho_{m}(R)$. Choose $m+1$ random tensors A and solve the equation

$$
\sum_{i} \alpha_{i} \rho_{i}(R)=0
$$

for α_{i}. (In fact we only need to check linear combinations over isomorphic components)

- This is feasible in dimension 4. Representation theory of $\mathrm{SU}(2) \times \mathrm{SU}(2)$ is simple. is simple

Hessian curvature tensors in dimension 4

Theorem

The space of possible curvature tensors for a Hessian 4-manifold is 18 dimensional. In particular the curvature tensor must satisfy the identities:

$$
\begin{gathered}
\alpha\left(R_{i j a}{ }^{b} R_{k l b}{ }^{a}\right)=0 \\
\alpha\left(R_{i a j b} R_{k}{ }^{b}{ }_{c d} R_{l}^{d a c}-2 R_{i a j b} R_{k c}{ }^{a}{ }_{d} R_{l}{ }^{d b c}\right)=0
\end{gathered}
$$

where α denotes antisymmetrization of the i, j, k and l indices.

Proof.

Using a symbolic algebra package, write the general tensor in $S^{3} T^{*}$ with respect to an orthonormal basis in terms of its 20 components. Compute the curvature tensor using ρ. One can then directly check the above identities.

- Both expressions define 4-forms on a general Riemannian manifold. The first is a well-known 4-form. It defines the first Pontrjagin class of the manifold.

Pontrjagin forms

- The Gauss-Bonnet formula gives an important link between curvature and topology. In this case the integral of scalar curvature is related to the Euler class.
- The theory of characteristic classes generalizes this.
- To a complex vector bundle V over a manifold M one can associate topological invariants, the Chern classes $c_{i}(V) \in H^{2 i}(M)$.
- The Pontrjagin classes of a real vector bundle $V^{\mathbb{R}}$ are defined to be the Chern classes of the complexification $p_{i}\left(V^{\mathbb{R}}\right) \in H^{4 i}(M)$.
- The Pontrjagin classes of a manifold are defined to be the Pontrjagin classes of its tangent bundle.
- It is possible to find explicit representatives for the De Rham cohomology classes of a bundle by computing appropriate polynomial expressions if a curvature tensor for the bundle.
- We call these explicit representatives Pontrjagin forms.

Relationship between Pontrjagin forms and curvature

Theorem
For each p, the form $Q_{p}(R)$ defined by:

$$
\begin{aligned}
& Q_{i_{1} i_{2} \ldots i_{2 p}}^{p}= \\
& \sum_{\sigma \in S_{2 p}} \operatorname{sgn}(\sigma) R_{i_{\sigma(1)} i_{\sigma(2)} a_{1}}^{a_{2}} R_{i_{\sigma(3)} i_{\sigma(4) a_{2}}}{ }^{a_{3}} R_{i_{\sigma(5)} i^{i}(6) a_{3}} a_{4} \ldots R_{i_{\sigma(2 p-1)} i_{\sigma(2 p)} a_{p}}^{a_{1}}
\end{aligned}
$$

is closed. The Pontrjagin forms can all be written as algebraic expressions in these $Q_{p}(R)$ using the ring structure of Λ^{*} and vice-versa.
This is a standard result from the theory of characteristic classes.

Main result

Theorem
The forms $Q_{p}(R)$ vanish on Hessian manifolds, hence the Pontrjagin forms vanish on Hessian manifolds.

Corollary

If a manifold M admits a metric that is everywhere locally Hessian then its Pontrjagin classes all vanish.
Note that we're being clear to distinguish this from the case of a manifold which is globally dually flat, where the vanishing of the Pontrjagin classes is a trivially corollary of the existence of flat connections.

Graphical notation

$$
\begin{aligned}
\rho\left(A_{i j k}\right) & =-g^{a b} A_{i k a} A_{j l b}+g^{a b} A_{i l a} A_{j k b} \\
R_{i j k l} & =-\left.\right|_{k} ^{i}+{ }_{k}^{j} .
\end{aligned}
$$

- Trivalent graph
- Each vertex represents the tensor A
- Connecting vertices represents contraction with the metric
- Picture naturally incorporates symmetries of A

Proof

$$
R_{i_{1} i_{2} a b}=\sum_{\sigma \in S_{2}}-\left.\operatorname{sgn}(\sigma)\right|_{a} ^{i_{\sigma(1)}}
$$

By definition:

$$
\begin{aligned}
& Q_{i_{1} i_{2} \ldots i_{2 p}}^{p}= \\
& \sum_{\sigma \in S_{2 p}} \operatorname{sgn}(\sigma) R_{i_{\sigma(1)} i_{\sigma(2)} a_{1}}^{a_{2}} R_{i_{\sigma(3)} i_{\sigma(4)} a_{2}}^{a_{3}} R_{i_{\sigma(5)} i_{\sigma(6)} a_{3}}{ }^{a_{4}} \ldots R_{i_{\sigma(2 p-1)} i_{\sigma(2 p)} a_{p}}^{a_{1}}
\end{aligned}
$$

We can replace each R with an H :

$$
\begin{aligned}
& Q_{i_{1} i_{2} \ldots i_{2 p}}^{p}= \\
& (-1)^{p} \sum_{\sigma \in S_{2 p}} \operatorname{sgn}(\sigma) \underbrace{i_{\sigma(1)}} \begin{array}{llllll}
i_{\sigma(2)} & i_{\sigma(3)} & i_{\sigma(4)} & i_{\sigma(5)} & i_{\sigma(6)} \\
\hline
\end{array} \cdots \xrightarrow{i_{\sigma(2 p-1)}}{ }^{i_{\sigma(2 p)}}
\end{aligned}
$$

Since the cycle $1 \rightarrow 2 \rightarrow 3 \ldots \rightarrow 2 p \rightarrow 1$ is an odd permutation, one sees that $Q^{p}=0$.

Summary

- In dimension 2 all metrics are locally Hessian (Use Cartan-Kähler theory. Proved independently by Robert Bryant)
- In dimensions $\geqslant 3$ not all metrics are locally Hessian
- In dimensions $\geqslant 4$ there are conditions on the curvature
- In dimension 4 we have identified two conditions explicitly. These are necessary conditions and, working over the complex numbers, they characterize $\operatorname{Im} \rho$.
- In dimension $n \geqslant 4$ we have identified a number of explicit curvature conditions in terms of the Pontrjagin forms. Dimension counting tells us that other curvature conditions exist, but we do not know them explicitly.

