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Summary

Question
Given a Riemannian metric g , under what circumstances is it
locally a Hessian metric?

Question
When can we locally find a function f and coordinates x such that
gij = ∂i∂j f ?

Answer (Partial)

In dimension 2 all analytic metrics g are Hessian. In dimensions 3
the general metric is not Hessian. In dimensions > 4 there are even
restrictions on the curvature tensor of g — in particular the
Pontrjagin forms vanish.



Solving unusual partial differential equations

Question
Given a symmetric g , when can we locally find a function f and
coordinates x such that gij = (∂i f )(∂j f )?

Answer
Only if g lies in the n dimensional subspace Imφ ⊂ S2T where

φ : T → S2T by φ(x) = x � x .

Sometimes we can’t find a solution even at a point.

Question
Given a one form η, when can we locally find a function f such
that df = η.

Answer
Since ddf = 0 we must have dη = 0 at x . Sometimes we can find
a solution at a point, but can’t extend it even to first order around
x.



Generalizing

I Let E and F be vector bundles and let D : Γ(E )→ Γ(F ) be a
differential operator.

I D : Jk(E )→ F where Jk is the bundle of k jets.

I Define D1 : Jk+1(E )→ J1(F ) to be the first prolongation.
This is the operator which maps a section e to the one jet of
j1(De).

I Define Di : Jk+i (E )→ Ji (F ) to be the i-th prolongation
e → ji (e)

We can only hope to solve the differential equation De = f if we
can find an algebraic solution to every equation

Die = ji (f )

at the point x .
Applying the fact that derivatives commute may yield obstructions
to the existence of solutions to a differential equation even locally.



Dimension counting

I The dimension of the space of k-jets of 1 functions of n real
variables is:

dim Jk :=
k+2∑
i=0

dim(S iT ) =
k∑

i=0

(
n + i − 1

i

)
.

The reason for this is that derivatives commute. Note this
fact is also encoded in the statement ddf = 0.



The counting argument
I We wish to solve

∂

∂xi

∂

∂xj
f = gij .

which is a second order equation for f and coords x . So input
is n + 1 functions of n variables.

I Dimension of space of (k + 2) jets of f and x

d1
k = dim Jk+2(x , f ) =

k+2∑
i=0

(n + 1)

(
n + i − 1

i

)
.

I Dimension of space of k jets of g :

d2
k = dim Jk(g) =

k∑
i=0

n(n + 1)

2

(
n + i − 1

i

)
.

I If n > 2 d1
k grows more slowly than d2

k . So most metrics are
not Hessian metrics.



Informal version

I A Riemannian metric depends on n(n+1)
2 functions of n

variables.

I A Hessian metric depends on n + 1 functions of n variables.

I “Therefore” if n > 2 there are more Riemannian metrics than
Hessian metrics.

I Note: this computation is suggestive but slightly wrong
because we’ve ignored the diffeomorphism group. It would
suggest that in dimension 1 there are more Hessian metrics
than Riemannian metrics!



Curvature
Reminder:
I Hessian metrics locally correspond to g -dually flat structures,

and vice versa.
I g -dually flat means ∇ is flat and it’s dual w.r.t. g ∇∗ is flat.

g(∇ZX ,Y ) = g(X ,∇∗ZY ).

Proposition

Let (M, g) be a Riemannian manifold. Let ∇ denote the
Levi–Civita connection and let ∇ = ∇+ A be a g -dually flat
connection. Then

(i) The tensor Aijk lies in S3T ∗. We shall call it the S3-tensor of
∇.

(ii) The S3-tensor determines the Riemann curvature tensor as
follows:

Rijkl = −gabAikaAjlb + gabAilaAjkb.



Proof
I ∇ is torsion free implies A ∈ S2T ∗ ⊗ T
I Using metric to identify T ∗andT , both ∇ and ∇∗ are torsion

free implies A ∈ S3T ∗

I R = 0. But by definition:

RXYZ = ∇X∇YZ −∇Y∇X −∇[X ,Y ]Z

Expanding in terms of Levi–Civita:

RXYZ = RXYZ + 2(∇[XA)Y ]Z + 2A[XAY ]Z

Curvature symmetries tell us (using g to identify T and T ∗):

R ∈ Λ2T ⊗ Λ2T

On the other hand:

(∇[·A)·] ∈ Λ2T ⊗ S2T

Projecting the equation onto Λ2T ⊗ Λ2T gives the desired
result.



Curvature obstruction
Define a quadratic equivariant map ρ from
S3T ∗ −→ Λ2T ∗ ⊗ Λ2T ∗ by:

ρ(Aijk) = −gabAikaAjlb + gabAilaAjkb

If g is a Hessian metric R lies in image of ρ.

Corollary

In dimension > 5, ρ is not onto. Therefore there condition
R ∈ Im ρ is an obstruction to a metric being a Hessian metric.

Proof.

dimR = dim(Space of algebraic curvature tensors) =
1

12
n2(n2−1)

dim(S3T ) =
1

6
n(1 + n)(2 + n)

The former is strictly greater than the latter if n > 5



Dimension 4

Numerical observation: ρ is not onto in dimension 4 even though
dimR = dim(S3T ∗) = 20.

Proof.
Pick a random A ∈ S3T ∗ and compute rank of (ρ∗)A, the
differential of ρ at A. It is 18 whereas the space of algebraic
curvature tensors is 20 dimensional. (Proof with probability 1)



Question
What are the conditions on the curvature tensor for it to lie in the
image of ρ?

What does this question mean?

I This is an implicitization question. Im ρ is given parametrically
by the map ρ. We want implicit equations on the curvature
tensor that define Im ρ.

I This is a real algebraic geometry question and so we should
expect inequalities for our implicit equations. (e.g.
Im x2 = {y : y > 0})

I Complexify the vector spaces to get a complex algebraic
geometry where we expect equalities for our implicit
equations. This is how we choose to interpret the question.

I Gröbner basis algorithms allow us to solve the latter problem
in principle (for fixed n) but not in practice (doubly
exponential time is common).

I Algorithms do exist for the real algebraic geometry problem
too, but they’re even less practical.



Strategy
I Space of algebraic curvature tensors R is associated to a

representation of SO(n).
I Decompose R into irreducible components under SO(n)
I Any invariant linear condition on R can be expressed as a

linear combination of these irreducibles.
I Decompose S2R⊕R into irreducibles. Any invariant

quadratic condition on R can be expressed as a linear
combination of these irreducibles. etc.

I If we have m irreducible components ρ1(R), ρ2(R), . . . ,
ρm(R). Choose m + 1 random tensors A and solve the
equation ∑

i

αiρi (R) = 0

for αi . (In fact we only need to check linear combinations
over isomorphic components)

I This is feasible in dimension 4. Representation theory of
SU(2)× SU(2) is simple. is simple



Hessian curvature tensors in dimension 4

Theorem
The space of possible curvature tensors for a Hessian 4-manifold is
18 dimensional. In particular the curvature tensor must satisfy the
identities:

α(R b
ija R a

klb ) = 0

α(RiajbR
b

k cd R
dac
l − 2RiajbR

a
kc d R

dbc
l ) = 0

where α denotes antisymmetrization of the i , j , k and l indices.

Proof.
Using a symbolic algebra package, write the general tensor in
S3T ∗ with respect to an orthonormal basis in terms of its 20
components. Compute the curvature tensor using ρ. One can then
directly check the above identities.

I Both expressions define 4-forms on a general Riemannian
manifold. The first is a well-known 4-form. It defines the first
Pontrjagin class of the manifold.



Pontrjagin forms

I The Gauss–Bonnet formula gives an important link between
curvature and topology. In this case the integral of scalar
curvature is related to the Euler class.

I The theory of characteristic classes generalizes this.
I To a complex vector bundle V over a manifold M one can

associate topological invariants, the Chern classes
ci (V ) ∈ H2i (M).

I The Pontrjagin classes of a real vector bundle V R are defined
to be the Chern classes of the complexification
pi (V

R) ∈ H4i (M).
I The Pontrjagin classes of a manifold are defined to be the

Pontrjagin classes of its tangent bundle.
I It is possible to find explicit representatives for the De Rham

cohomology classes of a bundle by computing appropriate
polynomial expressions if a curvature tensor for the bundle.

I We call these explicit representatives Pontrjagin forms.



Relationship between Pontrjagin forms and curvature

Theorem
For each p, the form Qp(R) defined by:

Qp
i1i2...i2p

=∑
σ∈S2p

sgn(σ)R a2
iσ(1)iσ(2)a1

R a3
iσ(3)iσ(4)a2

R a4
iσ(5)iσ(6)a3

. . .R a1
iσ(2p−1)iσ(2p)ap

is closed. The Pontrjagin forms can all be written as algebraic
expressions in these Qp(R) using the ring structure of Λ∗ and
vice-versa.

This is a standard result from the theory of characteristic classes.



Main result

Theorem
The forms Qp(R) vanish on Hessian manifolds, hence the
Pontrjagin forms vanish on Hessian manifolds.

Corollary

If a manifold M admits a metric that is everywhere locally Hessian
then its Pontrjagin classes all vanish.

Note that we’re being clear to distinguish this from the case of a
manifold which is globally dually flat, where the vanishing of the
Pontrjagin classes is a trivially corollary of the existence of flat
connections.



Graphical notation

ρ(Aijk) = −gabAikaAjlb + gabAilaAjkb

Rijkl = −
i j

k l

+
i j

k l

.

I Trivalent graph

I Each vertex represents the tensor A

I Connecting vertices represents contraction with the metric

I Picture naturally incorporates symmetries of A

Ri1i2ab =
∑
σ∈S2

− sgn(σ)
iσ(1) iσ(2)

a b

.



Proof

Ri1i2ab =
∑
σ∈S2

− sgn(σ)
iσ(1) iσ(2)

a b

.

By definition:

Qp
i1i2...i2p

=∑
σ∈S2p

sgn(σ)R a2
iσ(1)iσ(2)a1

R a3
iσ(3)iσ(4)a2

R a4
iσ(5)iσ(6)a3

. . .R a1
iσ(2p−1)iσ(2p)ap

We can replace each R with an H:

Qp
i1i2...i2p

=

(−1)p
∑
σ∈S2p

sgn(σ)
iσ(1) iσ(2) iσ(3) iσ(4) iσ(5) iσ(6)

. . .

iσ(2p−1) iσ(2p)

.

Since the cycle 1→ 2→ 3 . . .→ 2p → 1 is an odd permutation,
one sees that Qp = 0.



Summary

I In dimension 2 all metrics are locally Hessian (Use
Cartan–Kähler theory. Proved independently by Robert
Bryant)

I In dimensions > 3 not all metrics are locally Hessian

I In dimensions > 4 there are conditions on the curvature

I In dimension 4 we have identified two conditions explicitly.
These are necessary conditions and, working over the complex
numbers, they characterize Im ρ.

I In dimension n > 4 we have identified a number of explicit
curvature conditions in terms of the Pontrjagin forms.
Dimension counting tells us that other curvature conditions
exist, but we do not know them explicitly.


