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Outline

Aims:
» Give a coordinate free definition of a stochastic differential
equation (SDE).
» Draw a picture of a stochastic differential equation

SDE for X — Wo'slemma  opp g r(x)

Drawl Drawl
Picture of SDE for X in R* —/ f(Picture of SDE for X)

Analogy: Vector fields (ODEs) on manifolds can be defined in
many ways: in coordinate charts; as first order approximations to
curves; as operators satisfying certain algebraic properties.



Remarks

Other approaches to coordinate free definition of SDEs do exist:
» Use Stratonovich calculus to define SDEs on manifolds.
» Use Schwartz-Morphisms to define SDEs on manifolds.
Our apporoach has a number of applications:

» Gives practical schemes for simulating SDEs on manifolds,
which is useful in statistical estimation.

> Allows us to define a new notion of “projection” which can be
used to obtain better low dimensional approximations to high
dimensional SDEs.

» Visualisation of SDEs.



Stochastic Difference Equation

Let v« be a field of curves defined at each point of a manifold M.
Define a process by

Xo :=x0, Xeyot = 'YX:(WtJr& - Wt)' (1)

where W; is Brownian motion.
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Take the limit as dt tends to 0

\ S
& - WM//////,/ \\\\\\H\\/l/f//////
V) Mrrf 7 \\<MM///
by Arfﬁ 1170 rrrr
j,fl:Ajf A:ﬁ
J///A>\\x«m 13200 xAAA
////))\\\\x JJ//)>\\««m
/J/)))H\M\\ ///J))\\\\\
AN NN
T /////))\13\1\\\
A o
P
S
)4
¥
}
MR
ARR
AR
AR
NV



A coordinate free notion of convergence

What metric should we use?
> Classical: E(|X; — X:|?)
» Coordinate free: “Mean square on compacts’. Motivation is
that all Riemannian metrics are equivalent on compact sets.
Definition:
> Let K be a compact set in our manifold, g a Riemannian
metric.

» Define ~ so that M/ ~ is the one point compactification of
the interior K©.

» Define a semi-metric

d&X([x], [y]) = i dEXY).

x,Y

» We have convergence in mean square on compacts if we have
convergence in E(d&X(X;, X;)?) for all K and g.



Stochastic Differential Equation
If X; is the limit as 6t — 0 then we write:

Coordinate free SDE:  X; ~~ yx,(dW;), Xo = xo.

Example
We take the manifold R and define curves each point in R by:

e (s) = x +s*
n

Xost = %0+ Y (Wiisyse — Wise)™ = x0 + (58)2 Y _ €?
i=1 i=1

» When a=1, X; = xog + W;
» When =2, X; = xg+t
» When a > 3, X; = xg



2-jets
We now break coordinate invariance and work in local coordinates.
» Taylor expansion

1
5Xe = s, (0)SW; + E73’9(0)(5\/\4)2 + Ry, (6W,)3,  Xo = xo.
» The limit as 6t — 0 depends upon the first two terms.
> We only need the 2-jet of the curve to define the SDE.
Definition
An n-jet is an equivalence class of smooth maps f : M — N
between manifolds that are considered equal if the order n terms of

their Taylor expansions are equal.
» ODE's correspond to one jets (vector fields)
» SDE's correspond to 2-jets of maps from RX — M.
Xe = p(vx (dWe)),  Xo = xo.



[to calculus

We have the Taylor expansion

1

0Xe = 7, (0)0We + 7% (0)(IWe)* + Ry, (SWe)*, Xo = xo.

Our example calculation suggests (6 W;)? ~ 6t
1
5Xt =~ 73(1:(0)6 Wt ’)/Xt(O)(St X() = X0-
Defining a(X) := 7% (0)/2 and b(X) := v%(0):
5X1_- = a(Xt)(St + b(Xt)5Wt

it is well known that this Euler scheme converges to the solution of
the It6 SDE
dXt = Q(Xt)dt + b(Xt) th

Note the use of the vector space structure of R” in this
formulation.



[t0's lemma

Lemma
If f : M — N is smooth and the process X; satisfies

Xe 2 o (9 ) (A We)

then f(X:) satisfies

F(X)e o (f 0 yx, ) (A W)
Lemma
If f : M — N is smooth and the process X; satisfies

dX{ = a'(X:)dt + b'(X:) AW,
then f(X:) satisfies

; of’ 1 of 2

(X)) = -3 (X = — (¥ (X
dF(X)e (j 8xJal( 7tL)+2 - 6X16X1(bj( ’t))>dt

+ ( afibj(X,t)> dW,

— OxJ
J

(Classical formulation also requires technical bounds and Lipschitz conditions)



It6's lemma example

fy(l:;q,xz)(t) = (x1,x2) + t(—x2, x1) + 3t2(X1,X2).
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3
d(Xl,Xg) = §(X1,X2)dt—|- (—Xg,Xl)th.



It6's lemma example

d(Xl,Xz) = 3(X1,X2)dt + (—X2,X1)th.

and
f(exp(s) cos(), exp(s)sin(8)) = (0, s),

by 1td's lemma (60;,s:) = f((x1, x2)) satisfies

d(0,s) = (0, ;)dt +(1,0)dW4. )




[t6's lemma graphically

I1té's Lemma

d(xt, x2) = 3(x1, x2)dt + (—xg, x1)dWe d(6,s) = (0, 3)dt + (1,0)dW;
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Transforming algebraically and graphically

Algebraically
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Coordinate free stochastic differential geometry

> |If
'yX:Rk—>M

is an SDE and f : M — R is a smooth function define

Lyf = %A(f 0 Yx)-

This is the backward diffusion operator. It acts on functions.
» For compact M, we have a pairing between densities p and
functions f given by

fp.
M

We can define £* to be the formal adjoint of £ with respect
to this pairing. This is the forward diffusion operator, it acts
on densities.

» v, defines Brownian motion on a Riemannian manifold if
L=1n,.



Applications - Simulating SDEs on manifolds

The classical Euler scheme is a poor choice for simulating SDEs on
manifolds as one rapidly leaves the manifold. By choosing the
curves 7y to closely follow a manifold, one can obtain simulations
that stay close to the manifold.

u}
o)
I
i
it




Applications - Projection

It is intuitively clear how to project an SDE onto a manifold in the
jet formulation. This gives a different notion of projection than
that obtained using Stratonovich calculus and which is in a clearly

defined sense superior to Stratonovich projection as a method for
approximating SDEs.
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Stratonovich calculus and jets

» Stratonovich calculus is an alternative to [td calculus which
allows you to define SDEs using vector fields.

> Given a vector field A, let ®% be the family of
diffeomorphisms obtained by flowing along A for time t.

» Given two vector fields A and B, define
Yu(t) = BY 0 Dh(x).
» This SDE is equivalent to the classical Stratonovich SDE
odX; = A(Xe)dt + B(X¢) o dW.

» Thus Stratonovich calculus can be interpreted simply as giving
an alternative parameterization of a field of curves to the
parameterization of It6 calculus.



Jets and fan diagrams

Another way of drawing an SDE is a fan diagram
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Brownian motion and Geometric Brownian motion
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Mean, Median, Mode

out[28]=

— Mean =1Ito
—— Median = Stratonovich
—— Mode



Summary

» The language of 2-jets allows us to formulate stochastic
differential equations in a coordinate free manner.

» Itd's lemma has the simple interpretation of composition of
functions

» One can visualize stochastic differential equations

» These visualization tools show statistically interesting features
of the SDE




