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Aims:

I Give a coordinate free definition of a stochastic differential
equation (SDE).

I Draw a picture of a stochastic differential equation

SDE for X SDE for f(X)

Picture of SDE for X in Rn f(Picture of SDE for X)

Itô’s lemma

Draw Draw
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Analogy: Vector fields (ODEs) on manifolds can be defined in
many ways: in coordinate charts; as first order approximations to
curves; as operators satisfying certain algebraic properties.



Remarks

Other approaches to coordinate free definition of SDEs do exist:

I Use Stratonovich calculus to define SDEs on manifolds.

I Use Schwartz-Morphisms to define SDEs on manifolds.

Our apporoach has a number of applications:

I Gives practical schemes for simulating SDEs on manifolds,
which is useful in statistical estimation.

I Allows us to define a new notion of “projection” which can be
used to obtain better low dimensional approximations to high
dimensional SDEs.

I Visualisation of SDEs.



Stochastic Difference Equation

Let γx be a field of curves defined at each point of a manifold M.
Define a process by

X0 := x0, Xt+δt := γXt (Wt+δt −Wt). (1)

where Wt is Brownian motion.



Take the limit as δt tends to 0



A coordinate free notion of convergence

What metric should we use?

I Classical: E (|Xt − X̃t |2)

I Coordinate free: “Mean square on compacts”. Motivation is
that all Riemannian metrics are equivalent on compact sets.

Definition:

I Let K be a compact set in our manifold, g a Riemannian
metric.

I Define ∼ so that M/ ∼ is the one point compactification of
the interior K 0.

I Define a semi-metric

d̃g ,K ([x ], [y ]) = inf
X∼x ,Y∼y

dg (X ,Y ).

I We have convergence in mean square on compacts if we have
convergence in E (d̃g ,K (Xt , X̃t)

2) for all K and g .



Stochastic Differential Equation

If Xt is the limit as δt → 0 then we write:

Coordinate free SDE: Xt γXt (dWt), X0 = x0.

Example

We take the manifold R and define curves each point in R by:

γαx (s) = x + sα

Xnδt = x0 +
n∑

i=1

(W(i+1)δt −Wiδt)
α = x0 + (δt)

α
2

n∑
i=1

εαi

I When α=1, Xt = x0 + Wt

I When α=2, Xt = x0 + t

I When α ≥ 3, Xt = x0



2-jets

We now break coordinate invariance and work in local coordinates.

I Taylor expansion

δXt = γ′Xt
(0)δWt +

1

2
γ′′Xt

(0)(δWt)
2 + RXt (δWt)

3, X0 = x0.

I The limit as δt → 0 depends upon the first two terms.

I We only need the 2-jet of the curve to define the SDE.

Definition
An n-jet is an equivalence class of smooth maps f : M → N
between manifolds that are considered equal if the order n terms of
their Taylor expansions are equal.

I ODE’s correspond to one jets (vector fields)

I SDE’s correspond to 2-jets of maps from Rk → M.

Xt j2(γXt (dWt)), X0 = x0.



Itô calculus

We have the Taylor expansion

δXt = γ′Xt
(0)δWt +

1

2
γ′′Xt

(0)(δWt)
2 + RXt (δWt)

3, X0 = x0.

Our example calculation suggests (δWt)
2 ≈ δt

δXt ≈ γ′Xt
(0)δWt +

1

2
γ′′Xt

(0)δt X0 = x0.

Defining a(X ) := γ′′X (0)/2 and b(X ) := γ′X (0):

δXt = a(Xt)δt + b(Xt)δWt .

it is well known that this Euler scheme converges to the solution of
the Itô SDE

dXt = a(Xt)dt + b(Xt) dWt .

Note the use of the vector space structure of Rn in this
formulation.



Itô’s lemma

Lemma
If f : M → N is smooth and the process Xt satisfies

Xt j2(γXt )(dWt)

then f (Xt) satisfies
f (X )t j2(f ◦ γXt )(dWt).

Lemma
If f : M → N is smooth and the process Xt satisfies

dX i
t = ai (Xt)dt + bi (Xt) dWt

then f (Xt) satisfies

df i (X )t =

(∑
j

∂f i

∂x j
aj(X , t) +

1

2

∑
i

∂2f i

∂x j∂x j
(bj(X , t))2

)
dt

+

(∑
j

∂f i

∂x j
bj(X , t)

)
dWt

(Classical formulation also requires technical bounds and Lipschitz conditions)



Itô’s lemma example

γE(x1,x2)(t) = (x1, x2) + t(−x2, x1) + 3t2(x1, x2).

d(x1, x2) =
3

2
(x1, x2)dt + (−x2, x1)dWt .



Itô’s lemma example

If
d(x1, x2) = 3(x1, x2)dt + (−x2, x1)dWt .

and
f (exp(s) cos(θ), exp(s) sin(θ)) = (θ, s),

by Itô’s lemma (θt , st) = f ((x1, x2)) satisfies

d(θ, s) = (0,
7

2
)dt + (1, 0)dWt . (2)



Itô’s lemma graphically

d(x1, x2) = 3(x1, x2)dt + (−x2, x1)dWt
Itô’s Lemma
→ d(θ, s) = (0, 7

2
)dt + (1, 0)dWt
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Transforming algebraically and graphically

Algebraically

Graphically



Coordinate free stochastic differential geometry

I If
γx : Rk → M

is an SDE and f : M → R is a smooth function define

Lx f =
1

2
∆(f ◦ γx).

This is the backward diffusion operator. It acts on functions.

I For compact M, we have a pairing between densities ρ and
functions f given by ∫

M
f ρ.

We can define L∗ to be the formal adjoint of L with respect
to this pairing. This is the forward diffusion operator, it acts
on densities.

I γx defines Brownian motion on a Riemannian manifold if
L = 1

2∆g .



Applications - Simulating SDEs on manifolds

The classical Euler scheme is a poor choice for simulating SDEs on
manifolds as one rapidly leaves the manifold. By choosing the
curves γ to closely follow a manifold, one can obtain simulations
that stay close to the manifold.



Applications - Projection

It is intuitively clear how to project an SDE onto a manifold in the
jet formulation. This gives a different notion of projection than
that obtained using Stratonovich calculus and which is in a clearly
defined sense superior to Stratonovich projection as a method for
approximating SDEs.



Stratonovich calculus and jets

I Stratonovich calculus is an alternative to Itô calculus which
allows you to define SDEs using vector fields.

I Given a vector field A, let Φt
A be the family of

diffeomorphisms obtained by flowing along A for time t.

I Given two vector fields A and B, define

γx(t) = Φt2

A ◦ Φt
B(x).

I This SDE is equivalent to the classical Stratonovich SDE

◦ dXt = A(Xt)dt + B(Xt) ◦ dWt .

I Thus Stratonovich calculus can be interpreted simply as giving
an alternative parameterization of a field of curves to the
parameterization of Itô calculus.



Jets and fan diagrams

Another way of drawing an SDE is a fan diagram
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Brownian motion and Geometric Brownian motion

Geometric Brownian Motion Brownian Motion
Fan diagrams at the percentiles ±Φ(1)



Mean, Median, Mode
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Summary

I The language of 2-jets allows us to formulate stochastic
differential equations in a coordinate free manner.

I Itô’s lemma has the simple interpretation of composition of
functions

I One can visualize stochastic differential equations

I These visualization tools show statistically interesting features
of the SDE


