
Stochastic Filtering by Projection

Stochastic Filtering by Projection
The Example of the Quadratic Sensor

John Armstrong (King’s College London)
collaboration with

Damiano Brigo (Imperial College)

GSI2013



Stochastic Filtering by Projection

Stochastic Filtering

Motivation

Estimate the current state of a stochastic system from imperfect
measurements

I Estimate the position of a car

I Estimate the volatility of a stock from option prices

I Applications in weather forecasting, oil extraction ...

The calculation should be performed online.
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Stochastic Filtering

Mathematical formulation

dXt = ft(Xt) dt + σt(Xt) dWt , X0,

dYt = bt(Xt) dt + dVt , Y0 = 0 .

I Xt is a process representing the state.

I Yt is a process representing the measurement.

I Wt and Vt are independent Wiener processes.

Question
What is the probability distribution for Xt given the values of Yt

up to time t?
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Stochastic Filtering

The Kushner–Stratonovich equation
With sufficient regularity and bounds, one can show that the
probability density pt satisfies:

dpt = L∗t ptdt + pt [bt − Ept{bt}][dYt − Ept{bt}dt] .

where:

I

L∗ = −ft
∂

∂x
+

1

2
at

∂

∂x2

is the backward diffusion operator

I aTt a = σ and a is a square root of σ.

I Ept denotes expectation with respect to pt .

Question
How can we efficiently approximate solutions to the infinite
dimensional Kushner–Stratonovich equation?
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The geometric idea

The geometric idea

I Choose a submanifold of the space of probability distributions
so that points in the manifold can approximate pt well.

I View the partial differential equation as defining a stochastic
vector field.

I Use projection to restrict the vector field to the tangent space.

I Solve the resulting finite dimensional stochastic differential
equation.
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Choosing the submanifold

The linear problem

If:

I the coefficient functions a, b and f in the problem are all linear

I p0, which represents the prior probability distribution for the
state, is a Gaussian

then

I pt is always a Gaussian

I The mean and standard deviation of pt follow a finite
dimensional SDE.

This is called the Kalman filter.
One can linearize any filtering problem at each point in time to
obtain the Extended Kalman filter.
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Choosing the submanifold

Two important families
For multi modal problems, project onto one of the following
families:

I A mixture of m Gaussian distributions:

pt(x) =
∑
i

λie
(x−µi )/2σ2

i

I λi ≥ 0.
∑

i λi = 1.
I Gives rise to a 3m − 1 dimensional family.

I The exponential family

pt(x) = exp(a0 + a1x + a2x2 + . . . a2nx2n)

I a2n < 0
I Gives rise to a 2n dimensional family.
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Projecting the equations

The choice of metric

Choice of metric for the projection

Need to choose a Hilbert space structure on the space of
probability distributions (more precisely some enveloping space).

I The Hellinger metric.
I Theoretical advantage of coordinate independence
I Works well with exponential families (Brigo)
I Meaningful for problems where density p does not exist.
I Requires numerical approximation of integrals to implement.

I The direct L2 metric.
I Works well with mixture families.
I All integrals that occur can be calculated analytically.
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Projecting the equations

Projecting SDE’s

Understanding stochastic differential equations

A stochastic differential equation such as:

dXt = ft(Xt) dt + σt(Xt) dWt

is shorthand for an integral equation such as:

XT =

∫ T

0
ft(Xt) dt +

∫ T

0
σt(Xt) dWt

where the right hand integral is defined by the Ito integral:∫ T

0
f (t) dWt = lim

n→∞

∞∑
i=1

f (ti )(Wti+1 −Wti ).
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Projecting the equations

Projecting SDE’s

The Stratonovich integral
I Take the Ito integral:∫ T

0
f (t) dWt = lim

n→∞

∞∑
i=1

f (ti )(Wti+1 −Wti ).

and change the point where you evaluate the integrand∫ T

0
f (t) ◦ dWt = lim

n→∞

∞∑
i=1

f (
ti + ti+1

2
)(Wti+1 −Wti ).

to get the Stratonvich integral. Hence you can define
Stratonovich SDE’s.

I The difference between the two integrals is an ordinary
integral. This allows you to convert between the two
formulations.

I Ito SDE’s model causality more naturally
I Stratonovich SDE’s transform like vector fields.
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Projecting SDE’s

A recipe for projecting SDE’s

To project an SDE onto a submanifold parameterized by
θ = (θ1, θ2, . . . , θn):

I Write the SDE as an SDE with vector coefficients in
Stratonovich form.

I Project all the coefficients onto the tangent space.

I Equate both sides of the projected equations to get an SDE
for the θi .

Since Stratonovich SDE’s transform like vector fields, this recipe is
invariant of the parameterization.
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Projecting the equations

Projecting SDE’s

The projected equations

The end result for the case of L2 projection is:

dθi =
m∑
j=1

hij
{
〈p(θ),Lvj〉dt − 〈γ0(p(θ)), vj〉dt + 〈γ1(p(θ)), vj〉 ◦ dY

}
.

Where:

I The vj = ∂p
∂θj

give a basis for the tangent space

I hij and hij are the Riemannian metric tensor 〈vi , vj〉.
I γ0t (p) := 1

2 [|bt |2 − Ep{|bt |2}]
I γ1t (p) := [bt − Ep{bt}]p
I 〈·, ·〉 is the L2 inner product.

Note that the inner products and expectations give rise to integrals.
We can compute these analytically for the normal mixture family.
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Solving the SDE’s

Solving the finite system of SDE’s

I Approximate the differential equation as a difference equation
and solve numerically.

I This is more delicate for stochastic equations than ordinary
ones. See Kloeden and Platen. We use the
Stratonovich–Heun cheme.

I Note that the resulting difference equation will depend upon
the choice of parameterization of the submanifold. Choose
coordinates φ : Rn −→M so that φ is defined on all of Rn.
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Numerical example

The quadratic sensor

dXt = dWt

dYt = X 2 + dVt .

I We do not receive any information on the sign of X .

I We expect that once X has hit the origin, p will be
approximately symmetrical.

I We expect a bimodal distribution



Stochastic Filtering by Projection

Numerical example

The quadratic sensor

dXt = dWt

dYt = X 2 + dVt .

I We do not receive any information on the sign of X .

I We expect that once X has hit the origin, p will be
approximately symmetrical.

I We expect a bimodal distribution



Stochastic Filtering by Projection

Numerical example

Simulation for the Quadratic Sensor
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Numerical example

L2 residuals for the quadratic sensor
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Numerical example

Lévy residuals for the quadratic sensor
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Conclusions

Conclusions

I Projection methods allow us to approximate the solution to
nonlinear problems with surprising accuracy using only low
dimensional manifolds.

I This conclusion holds for a variety of projection metrics and
manifolds.

I L2 projection of normal mixtures is particularly promising since
all integrals can be computed analytically.
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