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Are ES constraints effective against rogue traders?
We will approach this question as follows

I Develop a mathematical model for how a “rogue trader” will
behave.

I Use this to determine their behaviour in some standard market
models, in particular the Black-Scholes model, when risk
constraints are applied.

I Consider VaR, ES and constraints based on expected utility.
I Calculate the consequences of their behaviour and decide if it

is desirable.

Complimentary to the “axiomatic” approach e.g.:

I von Neummann and Morgenstern gave an axiomatic approach
to preferences over probability distributions that leads to
utility functions.

I Artzner, Delbaen, Eber and Heath gave an axiomatic
approach to coherent risk measures that suggests VaR is not a
good risk measure, but ES (aka CVaR) is.

I etc. etc. There is a large literature.



Utility functions

Theorem
(von Neumann–Morgernstern) Let � be a preference relation
defined on probability densities satisfying 3 relatively
uncontroversial axioms plus the independence axiom

L � M =⇒ pL + (1− p)N � pM + (1− p)N

then � can be given in terms of a utility function u : R→ R by

L � M iff E (u(L)) ≤ E (u(M)).

One might additionally expect

I u will be increasing
(preference for profit);

I u will be concave
(risk-aversion).

Terminal Wealth

Utility



S-shaped utility functions
Kahneman and Tversky found in psychological experiments that
most people appear to have S-shaped utility curves, so they are not
always risk averse.

Terminal Wealth

Utility

I A rogue trader loses their job and reputation but nothing
more if they experience large losses.

I A limited liability company will have S-shaped utility.

We will model rogue traders as optimizing an S-shaped
utility function.



Risk constraints
We will consider risk-constraints of the form ρ(X ) ≤ L where ρ is a
risk figure depending on the distribution of the portfolio payoff X
and L is a risk limit. ρ could be:
I a Value at Risk (VaR) figure,
I an Expected Shortfall (ES also known as CVaR) figure
I an expected disutility −E (uR(X )). uR is the risk-manager’s

utility not the trader’s utility.

Definitions
I The 5%-Value at Risk (VaR) of a portfolio over a given time

horizon corresponds to maximum loss experienced in the 95%
best-case scenarios.

I The 5%-Expected Shortfall (ES) over the same time horizon
corresponds to the expected loss in the 5% worst-case
scenarios.

More precisely if α ∈ [0, 1]

ESα(X ) =
1

α

∫ α

0
VaRα(X )dα.



Formal defintion

For this talk, an function u : R→ R is S-shaped if:

I It is increasing.

I u(x) ≤ 0 for x ≤ 0.

I u(x) ≥ 0 for x ≥ 0.

I For sufficiently small x , u(x) ≥ C (−x)η for some constant
C > 0 and η ∈ (0, 1). We say it is risk-seeking on the left.

I For sufficiently large x , u(x) ≤ Cxη for some constant C > 0
and η ∈ (0, 1). We say it is risk-averse on the right.



Modelling the Market

I We assume both trader and risk manager agree on the
probability model P underlying the dynamics of the market.

I We assume that prices in the model are given by discounted
expectations in a risk-neutral probability model Q. We
consider only the case of a constant risk-free rate r .

I We assume that the market is complete. That is we assume
that arbitrary derivative securities can be purchased at the
risk-neutral price (so long as this price exists).

Examples

I The Black–Scholes–Merton market in continuous time where
one can trade in the stock and a risk free bond.

I A discrete time version of the Black–Scholes–Merton market
where any derivative can be purchased at the Black–Scholes
price so long as it has a fixed maturity T and European style
exercise.



The optimization problem

Find a sequence of investments X1,X2, . . . achieving optimal trader
utility

lim
i→∞

E (uT (Xi )) = supXE (uT (X ))

subject to a cost constraint

EQ(X ) ≤ erTC ′ = C

and a risk-management constraint

ρ(X ) ≤ L.

Remark
We seek a sequence of investments because we cannot always
expect the supremum to be achieved. For example it is obvious
that in markets with no risk-constraints there will normally be no
limit on the expected utility other than sup(uT ) itself.



Results

Subject to some additional requirements on the market which are
all satisfied in the Black–Scholes cases we find:

I For ES constraints, the only limit on the expected utility that
can be achieved is sup(uT ).

I Hence for VaR constraints, the only limit on the expected
utility that can be achieved is also sup(uT ).

I Expected disutility constraints −E (uR(X )) ≤ L written in
terms of a risk-manager’s concave increasing utility function
uR typically DO limit the utility that can be achieved. (This
result requires some further assumptions on the risk-managers
utility function).

The main step to proving these results is reducing the optimization
problem to a 1-dimensional problem that is easy to solve.



Interpretation

Our interpretation is that

I Rogue traders will not be concerned if they are obliged to act
under ES and VaR constraints. The utility they can achieve is
unaffected.

I Moreover, for reasonable risk manager utility functions uR ,
rogue traders will choose strategies that have unboundedly
negative risk manager utilities.

I In brief: ES and VaR constraints don’t work. Expected utility
constraints do work.



Reduction to one dimension: the financial intuition

Recall the problem we wish to solve is
Maximize

E (uT (X ))

subject to a cost constraint

EQ(X ) ≤ C

and a risk-management constraint

ρ(X ) ≤ L.

Remark
Note that all that matters are the P and Q measure distributions
of X . Intuitively the trader can decide how much money to put on
a specific event ω by just looking at the ratio of the P and Q
measure probabilities.



Rigorous formulation

Theorem
(Subject to a very mild technical condition) We may restrict
attention to X of the form

X = f̃

(
dQ
dP

)
= f

(
1− FdQ

dP

(
dQ
dP

))
where f is an increasing function and

dQ
dP

is the Radon-Nikodym derivative.

In other words, go long on events you think are under-priced and
go short on events you think are over-priced. Buy low, sell high.
The proof relies on the Hardy–Littlewood theory of
rearrangements. A general version of this result has been found
independently by Xunyu Zhou.



Rewriting the optimization problem

Subject to very mild technical conditions, we may write our ES
optimization problem as follows.
Find a payoff function f : [0, 1]→ R depending only on 1− FdQ

dP

maximizing ∫ 1

0
uT (x)dx

subject to a cost constraint∫ 1

0
f (x)q(x)dx ≤ C

and an ES constraint

1

p

∫ p

0
f (x)dx ≥ L

where q is the probability density function of X = 1− FdQ
dP

(dQdP ).

X is uniformly distributed.



Pictorial representation

We must choose an increasing payoff function f to maximize∫ 1
0 uT (f (x))dx subject to

∫ p
0 f (x)dx ≥ L and

∫ 1
0 f (x)q(x)dx ≤ C .
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The density q(x) shown is for the Black–Scholes model. If
q(x)→∞ as x → 0 then arbitrary expected trader utilities uT can
be achieved using step functions as shown.



Main negative result

I If sup q(x) =∞ then VaR and ES constraints are ineffective
in constraining a trader with S-shaped utility.

I Digital payoffs of the form shown below can be used to
achieve arbitrarily high trader utilities subject to the cost and
risk constraints. The only limit is sup uT itself.
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The Black–Scholes case
In the P measure

zT := log ST ∼ N(log S0 + (µ− 1

2
σ2)T , σ

√
T )

In the Q measure

zT := log ST ∼ N(log S0 + (r − 1

2
σ2)T , σ

√
T )

Write p(zT ) for the pdf of zT in the P measure. q(zT ) for the Q
measure pdf.

dQ
dP

(zT ) =
q(zT )

p(zT )
=

exp

(
− (zT−log S0−(r− 1

2
σ2)T )2

2σ2T

)
exp

(
− (zT−log S0−(µ− 1

2
σ2)T )2

2σ2T

)
= e

(µ−r)(T(µ+r−σ2)+2 log(S0)−2zT )
2σ2

→∞ as zT → −∞ if µ > r



Main positive result

I Suppose the risk-manager’s utility function is given by

uR(x) =

{
−(−x)γ x ≤ 0

0 otherwise

for γ in (1,∞). Suppose they impose a limit EP(u(X )) ≥ L.

I Suppose the trader has S-shaped utility and moreover is
difficult to satisfy which means that if we prohibit short selling,
they cannot achieve the supremum of their utility function.

I Suppose that

EP

(
dQ
dP

γR
γR−1

)
(1)

is finite.

I Then the risk manager’s expected utility constraint is binding.

The requirement (1) is automatically satisfied in the Black–Scholes
model.



Proof of result

We restrict attention to traders with limited-liability.

Terminal Wealth

Utility

For any increasing f we can find p such that

f (X ) =

{
f (X ) ≥ 0 x > p

f (X ) ≤ 0 x < p

For fixed choice of p the problem is then the convex problem

minimize
∫ 1
p −uT (f (x))dx

subject to
∫ p
0 uR(f (x))dx ≤ L

and
∫ 1
0 q(x)f (x)dx ≤ C



Example solutions in Black-Scholes model

Note payoff profiles drawn against ST rather than uniform X .
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95%-ES Arbitrage



Incomplete markets

The most obvious criticism of our result is that we assume a
complete market.

Definition
An α-ES arbitrage portfolio is a portfolio which has:

I a negative expected shortfall at confidence level α

I a non-positive cost

Justification:

I Since the expected shortfall is negative, the payoff must
sometimes be positive.

I If such a portfolio exists, then a trader can buy arbitrarily
large quantities without violating ES or cost constraints.

I If the trader has limited liability then their expected utility will
only increase as they buy larger quantities of the portfolio.

If an α-ES arbitrage portfolio exists, α-ES limits will be ineffective.



Summary

I In general VaR and ES limits are not effective in curbing the
risks taken by rogue traders.

I Limits set using concave increasing utility functions can be
effective in reasonable market models.
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