COMPLEX GEOMETRY, RIEMANNIAN GEOMETRY and the KÄhler condition

Sumunar:

* $\mathbb{C} \mid P^{n}$ has a special metric called the Fubini-Study metic
* AU complex submanifolds of $\mathbb{C P} \mathbb{P}^{-}$ inherit a metric
Erich Kialler * These metrics are Käller 1906-2000 * We know a lot about Kähler mainfolds and next to nothing about non-Kaibler

COMPLEX AND ALMOST COMPLEX STRUCTURES

A complex manifold is a manifold with chants $u \xrightarrow{z} \mathbb{C}^{n}$ with holomorphic transition functions.

Write $z=\left(z^{\prime}, z^{2}, \ldots, z^{n}\right)$
then $z^{\prime}, \ldots, z^{n}$ are complex functions on M
$\bar{\Sigma}^{\prime}, \ldots, \bar{z}^{n}$ are also complex valued functions $d z^{\prime}, \ldots, d z^{n}$ are complex valued 1 forms $d \bar{z}^{\prime}, \ldots, d \bar{z}^{n}$ are complex valued 1 forme
Together $d z^{\prime}, \ldots, d z^{n}, d \bar{z}^{\prime}, \ldots, d \bar{z}^{n} \operatorname{span} \Lambda_{\mathbb{R}} \otimes \mathbb{C}=: \Lambda_{\mathbb{C}}=\Lambda$ the space of complex valued 1 forms.

The subspace spanned by $d z^{\prime}, \ldots, d z^{n}$ is called $\Lambda^{1,0}$ $d z^{\prime}, \ldots, d z^{n}$ is called $\Lambda^{0,1}$

- These definitions ane independent of the choice of coordinates.

Wrote $\quad z^{k}=x^{k}+i y^{k} \quad$ for neal functions x^{k} and y^{k} so $\quad d z^{k}=d x^{k}+i d y^{k}$
We define $\quad \frac{\partial}{\partial z^{k}}=\frac{1}{2}\left(\frac{\partial}{\partial x^{k}}-i \frac{\partial}{\partial y^{k}}\right) \quad \frac{\partial}{\partial z^{k}}=\frac{1}{2}\left(\frac{\partial}{\partial x^{k}}+i \frac{\partial}{\partial y^{k}}\right)$ these are dual to $d z^{k}, d r^{k}$ and define $T^{1,0}=\left\langle\frac{\partial}{\partial z^{\prime}}, \ldots, \frac{\partial}{\partial z^{n}}\right\rangle \quad, T^{0,}=\left\langle\frac{\partial}{\partial i^{\prime}}, \ldots, \frac{\partial}{\partial z^{k}}\right\rangle$

Define $J: T M \rightarrow T M$ by

$$
J\left(\frac{\partial}{\partial x^{k}}\right)=\left(\begin{array}{l}
\left.\frac{\partial}{\partial y^{k}}\right) \quad J\left(\frac{\partial}{\partial y^{k}}\right)=-\frac{\partial}{\partial x^{k}}, \text { }
\end{array}\right.
$$

so $J^{2}=-1$
We can recover $T^{1,0}, T^{0,1}$ from J as the $+i$ and $-i$ eigenspaces of J.
Definition: An almost complex manifold (M, J) is a manifold equipped with $J \in E$ nd (TM) satisfying $J^{2}=-1$.

Note that J is similar to the standard $J: \mathbb{R}^{2 n} \rightarrow \mathbb{R}_{12}^{2 n}$

$$
\text { ixid: }: \mathbb{C}^{12} \rightarrow \mathbb{C}^{" /}
$$

Observations: $* J^{2}=-1 \Rightarrow$ ingenvalues ane $\pm i$ and come in pairs Hence almost complex \Rightarrow even dimensional

* $\operatorname{det} J=1>0$

Hence almost complex \Longrightarrow oriented

* Existence of almost complex structure is a question of the global existence of a section of a bundle. This can be understood using theory of characteristic classes.
Example: S^{4} does not adnict an almost complex structures.

On a geneal almost complex manifold (M, J) we may define and

$$
\begin{array}{ll}
\text { nay define } & T^{1,0}, T^{0,1} \\
& \Lambda^{1,0}, \Lambda^{0,1} \\
\text { and } & \Lambda^{p, q}=\Lambda^{p}\left(T^{1,0}\right) \otimes \Lambda^{q}\left(T^{0,1}\right)
\end{array}
$$

so that $\Lambda^{k} \otimes \mathbb{C} \cong \Lambda^{k, 0} \oplus \Lambda^{k-1,1} \oplus \ldots \oplus \Lambda^{1, k-1} \oplus \Lambda^{0, k}$
Example: $d z^{\prime} \wedge d z^{2} \wedge \ldots \wedge d z^{p} \wedge d \bar{z}^{\prime} \wedge \ldots \wedge d z^{q} \in \Lambda^{p, q}$
Theorem: The following are equivalent

1) $T^{1,0}$ is closed under Lie brackets
2) $d: \Lambda^{1,0} \longrightarrow \Lambda^{2} \cong \Lambda^{2,0} \oplus \Lambda^{\prime, 1} \oplus \Lambda^{0,2}$
has image entirely in $\Lambda^{2,0} \oplus \Lambda^{1,1}$
3) $\quad N(x, y):=[J x, J y]-J[J x, y]-J[x, j y]-[x, y]$

$$
=0
$$

4) (M, J) is a complex manifold

Warning: I lazily talk about $d: \Lambda^{\prime} \rightarrow \Lambda^{2}$ when I should talk about sections, so $d: \Gamma\left(\Lambda^{\prime}\right) \rightarrow \Gamma\left(\Lambda^{2}\right)$.
$\mathbb{P}:(1) \Leftrightarrow(2)$ Exercise. [use $2 d \alpha(x, y)=x(\alpha y)-y(\alpha x)-\alpha[x, y])$
(2) $\Leftrightarrow(3)$

Take $x, y \in \Gamma(T M)$ so $x-i] x, y-i J y \in \Gamma\left(T^{1,0}\right)$

$$
\begin{aligned}
& {[x-i] x, y-i] y] \in \Gamma\left(T^{\prime, 0}\right) } \\
\Longleftrightarrow & J[x-i] x, y-i] y]=i[x-i] x, y-i J y]
\end{aligned}
$$

... Exercise: complete this

$$
(4) \Longrightarrow(1)
$$

Take $\sum f_{i} d z^{i} \in \Gamma\left(\Lambda^{\prime, 0}\right) . d\left(\Sigma f_{i} d r^{i}\right)=\sum_{i} d f_{i} \wedge d z^{i}$

$$
\begin{aligned}
& =\sum_{i} \sum_{k}\left(* d z^{k}+* d z^{k}\right) \wedge d z^{i} \\
& \in \Lambda^{2,0} \oplus \Lambda^{\prime \prime}
\end{aligned}
$$

The implication $N \equiv 0 \Rightarrow$ the manifold is complex is called the Newlander-Nicuberg theorem and is hand to prove. (We say that J is integrable.)

* Ulimintely we are looking for a map $(u, J) \xrightarrow{\rho} C^{n}$ locally with $\left.\left.D_{*}\right]=\right]$. So this is a question of local existence of PDES.
* In the analytic category you can find out of a PDE has solutions by Catan-Kähler theory. This is "easy"
* In the smooth category we know some Coral existence results: Fibbeniu theorem, closed \Rightarrow exact, elliptic PDEs... Newtander-Nivenbeng is an outlier theovere.

Example: Take an oriented Remannican 2 -mainfold (M, g)

Define $]$ by rotation though 90° anticlockwise.
$\Lambda^{2} \cong \Lambda^{\prime, 1}$ since $d z \Lambda d z^{\prime}=0$ and $d r i^{\prime} \Lambda d r^{\prime}=0$
\therefore all oriented Remianiian 2 -mainfolds ace complex mainfolds
\Longleftrightarrow Then always exists an isothermal chat in the $n^{\prime} b^{\prime} d$ of a point on the surface
\Rightarrow Smooth 2 manifolds have analytic atlases These are not obvious results.

De Rham cohomology:

$$
\begin{gathered}
0 \stackrel{d}{\Lambda^{0}} \xrightarrow{d} \Lambda^{\prime} \xrightarrow{d} \Lambda^{2} \xrightarrow{d} \ldots \xrightarrow{d} \Lambda^{n} \xrightarrow{d} 0 \quad d^{2}=0 \\
H^{k}=\frac{\operatorname{Ker} d: \Lambda^{k} \rightarrow \Lambda^{k+1}}{\ln d: \Lambda^{k-1} \rightarrow \Lambda^{k}}
\end{gathered}
$$

Dobseault cohowiogy: On a complex mainfold

$$
\begin{array}{ll}
\partial_{\lambda} \Lambda^{1,0} \bar{\nu}^{2} \pi \Lambda^{\prime 20} & d^{2}=0 \\
\Lambda^{0,0} \bar{\partial}_{\Lambda^{0,1}} \lambda^{1,1} & \Longrightarrow \partial^{2}=0, \partial \bar{\partial}-\bar{\partial} \partial=0, \bar{\partial}^{2}=0 \\
\Lambda^{0,2} & H^{p, q} \frac{\partial}{\partial}=\text { colowilogy of } \bar{\partial} \\
& =\frac{\text { ker } \bar{\partial}: \Lambda^{p, q} \rightarrow \Lambda^{p, q+1}}{\operatorname{lon} \bar{\partial}: \Lambda^{p-1, q} \rightarrow \Lambda^{p, q}}
\end{array}
$$

Almost hermitian manifolds AND tHE KÄHLER CONDITION

Definition: An almost Hermitian manifold (M, g, J) is a Rieinannian manifold (M, g) an almost complex manifold (M, J) and $J: T M \rightarrow T M$ is an isometry so

$$
g\left(J x, J^{y}\right)=g(x, y)
$$

Example: $* \mathbb{C}^{n}$ or \mathbb{C}^{n} / Λ for a lattice

* Any onented 2 -manyfold with I given by rotation though 90°
* $\mathbb{C} \mathbb{P}^{n} \cong \frac{u(n+1)}{u(n) \times u(1)}$ is a symmetuc

Its metric is called the Fubini-Study metric

Example: $\mathbb{C} \mathbb{P}^{\prime}=s^{2}$

Fundamental 2-form: tinea an almost Hermitian manifold
define $\quad \omega(x, y)=g(J x, y)$
ω is nou-degenerate ie. $\omega(x, y)=0 \quad \forall x \Rightarrow y=0$
we can find coordinates so that at a point p
$\frac{\partial}{\partial x^{\prime}}, \frac{\partial}{\partial y^{\prime}}, \cdots, \frac{\partial}{\partial x^{n}}, \frac{\partial}{\partial y^{n}}$ are orthonounal
and J is standard $\quad \omega=d x^{\prime} \wedge d y^{\prime}+d x^{2} \wedge d y^{2}+\ldots+d x^{n} \wedge d y^{n}$

$$
\begin{array}{rlrl}
d z^{\prime} \wedge d r^{\prime} & =(d x+i d y) \wedge(d x-i d y) & = & \frac{i}{2}\left(d z^{\prime} \wedge d z^{\prime}+\ldots+d z^{n} \wedge d z^{n}\right) \\
& =i d y \wedge d x-i d x \wedge d y & \in \Lambda^{\prime, 1} \\
& =-2 i d x \wedge d y &
\end{array}
$$

Definition: (M, g, J) is Hermitian of $N=0$
(M, g, J) is almost Käller of $d \omega=0$
(M, g, J) is Käller if $d \omega=0$
Definition: (M, ω) is symplectie if ω is a closed non-dejereatr two form
Example: * All oriented Riemannican 2-mainfolds are Kähler

* The product of two Käller manifolds is Käller
* © $\mathbb{P}{ }^{n}$ is Källew with the Fubini-Study metric

Proposition: Let (M, g, J) be a compact Kahter manifold then $\operatorname{dim} H^{2 k}(M) \geqslant 0$ for $k=1, \ldots, n$
$\mathbb{P}:{ }_{\text {a }} d\left(\omega^{k}\right)=*(d \omega) \wedge \omega^{k-1}=0 \quad(*=$ some constant $)$
b) ω^{n} defines the orientation so $\int_{M} \omega^{n}>0$
c) Suppose $\omega^{k}=d \eta$
then $\omega^{n}=d \eta \wedge \omega^{n-k}=* d\left(\eta \wedge \omega^{n-k}\right)$
So ω^{k} is exact only of ω^{n} is.
d) Suppose $\omega^{n}=d y$ then by Stokes' Theorean

$$
\int_{M} \omega^{n}=\int_{\partial M} \partial \eta=0 \text { since } \partial M=0
$$

Example: $S^{3} \times S^{\prime}$ does not admit a Kahler metric (or indeed any symplectic form)

But the quotient of $\mathbb{C}^{2}-\{0\}$
by the automorphisms generated by $\left(z_{1}, z_{2}\right) \rightarrow\left(2 z_{1}, 2 z_{2}\right)$ is a complex manifold differmophice to $s^{3} \times s^{1}$
This is called the Hop Surface

* The Hop surface is complex but has no Kähler metic

Lemma: A complex submainfold of a Kähter manifold is Kähler.
Corollary: The Hopf Surface cannot be embedded in $\mathbb{C} \mathbb{P}^{n}$
PP: Let (M, g, J) be the langer space and let N be a complex submanifold.
Let $u: N \longrightarrow M$ be the inclusion.
We want to show the pull back $i^{*} \omega$ is the fundamental
2 form on N.
This is obvious for $\mathbb{C}^{k} \rightarrow \mathbb{C}^{n}$
So it suffices to show we can choose coords so that g, I ane standard at a point and i_{*} is the standard $\mathbb{C}^{k} \rightarrow \mathbb{C}^{n}$

We know very little about complex manifolds in general but we know a lot about Kähler manifolds
Example: S^{6} adnints an almost complex sfructuec but does it admit a complex structure?
Theorem: On a compact K"ahler manifold

$$
H^{-}(m, \mathbb{C}) \cong \oplus_{p+q=r} H^{p^{\prime} q}(M)
$$

De Rham
"Algebraic topology"

$$
H^{p, q}(M) \cong \overline{H^{q, p}(M)}
$$

(And indeed much move is true...)

Reference: I've just given a tow of some highlights of Grifiths \& Hans chapter 0

Tip: * Section 0.6 on Hodge theory is udicionsly compressed (in my view)

* Compliment Griffith \& Hair Chapter 0 with Donaldson "Rieman suface"
* The later chapter of $a \& H$ are often easier than Chapter 0 .

What I haven't discussed is the meaning of

$$
H^{p, q}(M)
$$

These chounology groups can be associated with intacsting poopeties of a manifold such as mecomonphic functions, line bundles...

Example: Donaldson's book shows how to deduce the classifuation of complex tor of 1-d from the results on Hodge theory.

Pat II

Burbles \& Representations

A principal G bundle for a lie group G is a fibre bundle $P \rightarrow M$ with an action of G on the fibres which is locally isomorphic to the trivial bundle $G \times U \rightarrow U \subseteq M$.

Note that each fibre is topologically equal to 6 , there is no way to identify the identity element of each fore (unless it is a tiwial bundle).
Important Example: Given a mainfold M of dimension n, take the fibre over $\rho \in M$ to be the set of bases for the tangent space at p. This is called the "frame burble". It is a principal $G L(n ; \mathbb{R})$ bundle.

A representation of a group a is a homomorphism

$$
p: G \longrightarrow \operatorname{Aut}(V)
$$

where V is a vector space and $A_{\text {ut }}(V)$ is the group of linear automorphisms of V.

KEY CONSTRUCTION
Given a principal bundle $P \xrightarrow{G} M$ and a representation $\rho: G \longrightarrow \operatorname{Aut}(V)$ we can four a vector bundle $V=(P \times V) / G$ where we quokent by the diagonal action of a.

$\rho: \mathbb{Z}_{2} \rightarrow$ Mut (\mathbb{R}) by $\rho(0)=i d, \rho(1)=-i d$ to get \qquad

Example: Let P be the frame bundle of a manifold
Let $\rho: G L(n, \mathbb{R}) \rightarrow \operatorname{Aut}\left(\mathbb{R}^{n}\right)$ be the identity
The resulting vector bundle is the \qquad bundle of the manifold.
This is the standard repersenation of $\operatorname{GL}(n, \mathbb{R})$
Example: If $\rho: G \rightarrow$ Aut (V), define the dual representation

$$
e^{*}: ん \rightarrow \operatorname{Aut}\left(v^{*}\right) \text { by } e^{*}(g)=\left(\rho(g)^{-1}\right)^{*}
$$

If P is the frame bundle, the vector bundle associated with the dual of the standard upresentation is \qquad

Generalization: Let $e_{1}: a \rightarrow v$ and $e_{2}: a \rightarrow w$ be automorphisms. Define

$$
\begin{gathered}
\rho^{\text {How }}: a \longrightarrow \operatorname{Aut}(\operatorname{Hom}(V, w)) \\
\text { by }\left(e^{\text {Mom }}(g) T\right) v=\left(e_{2}\left(g^{-1}\right) T e_{1}(g)\right) \nu
\end{gathered}
$$

Exercise (easy): check that $p^{\text {Hon }}$ is a representation
Lazy Notation: Gwen representations V, w we get a representation $\operatorname{Mom}(V, W)$

Exercise.
Given representations V, W define the tensor product representation $V \otimes W$ the symmetric representation $S^{k} V$ and the antisymmetric representation $\Lambda^{k} V$.
Prove that the representation $\operatorname{Hom}(V, w) \cong V^{*} \odot W$
Note that it is your job to define what an isomorphism means. You should also note that you've just defined
a k-form in a neat way.
Exercise: Given a complex representation p, define the conjugate representation \vec{p}.

Example: Let (M, g) be a Riemanniaer manifold Let P be the bundle of orthonormal frames His is a principal \qquad bundle.

Example: Let (M, g) be an oriented Renianiman manifold, the bundle of oriented orthonormal frames is a principal \qquad bundle.

These give examples of "reductions of the structuen group". If we have mon data on our mainfold, well get smaller and smaller groups of symmetries on the tangent space.

Example: Let $\rho: O(n) \rightarrow \mathbb{R}^{n}$ be the standard representation Elements $g \in O(n)$ are given by matrices with

$$
g^{*} g=i d \quad(*=\text { transpose })
$$

It follows that $e^{*}=\rho$ for the standard representation
Exenise: Prove it

It follows that the metric g defines an isomorphism between the tangent buudle and the cotangent bundle. This is the familiar "wising and lowering of indices" explained in terms of representation theory.

Sununay: All your favorite vector bundles can be understood in terms of a principal bundle and the representations of the structure group.
Conclusion: When studying differential geometry it pays to understand the representation theory of the structure group.
Reading: Adams: "Lectures on Lie Groups" (Short) Fulton \& Maris: "Representation Theory" (Reference)
TIP: Representation theory is a tool If you are in a rush cad the results not the proofs.

Definition: A Killer manifold is an almost Herintion manifold which is complex and symplectic
Proposition: Let ∇ be the levi-Civita correction The following are equivalent
(a) $\nabla_{\omega}=0$
(b) $\nabla]=0$
(c) $N=0$ and $d w=0$
(d) Parallel transport using ∇ gives unitary maps $T M \rightarrow T M$

IP: $(a) \Leftrightarrow(b)$ follows from fact $\nabla g=0$
$(b) \Rightarrow$ (c) follows form ∇ is torsion free so $[x, y]=\nabla_{x} y-\nabla_{y} x$
$($ a $) \Rightarrow(c)$ follows form ∇ is torsion free + Carton's formula
$(b) \Leftrightarrow(d)$
"The Holonomy group is in U(a)"
J is an isometry on $T M \Longrightarrow \nabla J \in T^{*} M \otimes, 50(2 n)$
Diffectatiating $J^{2}=-1 \Rightarrow J(\nabla J)+(\nabla J) J=0$
So $\nabla J \in\left(T^{*} M \otimes \Sigma O(2 n)\right) \wedge\left(T^{*} M \otimes g l(n)^{\perp}\right)$

$$
=T^{*} M \otimes u(n)^{\perp}
$$

$$
A \in S O(2 n) \Longleftrightarrow A A^{*}=1 \text { so } A \in 弓 0(2 n) \Leftrightarrow A+A^{*}=0
$$

Heace $50(2 n) \cong \Lambda^{2}$
Uuder $u(n)$, $S O(2 u)$ splits as $\llbracket \Lambda^{2,0} \rrbracket \oplus\left[\Lambda_{0}^{\prime \prime}\right] \oplus<\omega>$

How can we prove $N=0$ and $d_{w}=0 \Rightarrow \nabla \omega=0$?
Option 1: Figure out how to write ∇_{ω} in terms of N and $d \omega$ \Longleftrightarrow find the linear map ϕ with $\phi(N, d \omega)=\nabla \omega$
Option 2: Use aperentation theory of $u(\sim)$
Idea: Decompose a representation V úto incducilles $V_{1} \oplus V_{2} \oplus \ldots \oplus V_{\mu}$ Use Schur's Lemma: if $\phi: v_{e} \rightarrow w_{e^{\prime}}$ is an equivaniant map and V, w are inceducible then either. $\varnothing=0$
or . $V_{\rho} \cong W_{e}$ and ϕ is a multiple of the identity (ie $V \cong w$ and $\rho \cong \rho^{\prime}$)

Definition: An incducible representation is a representation that can't be written as a non-trivial dict sum.

Given your favourite lie group, you can easily look up the classification of ineducibles. You can also look up how to decompose tensor products, sgmmetic powers etc into incoluribles. By schur's Lemma you then know all the equivariant maps.

Example: Under $s o(n), T \cong T^{*}$

$$
\begin{array}{cc}
T^{*} \otimes T^{*} \cong \operatorname{End}(T M) \cong T \otimes T \cong & S_{0}^{2} T \oplus \Lambda^{2} T \oplus \mathbb{R} \\
& \uparrow \\
& \text { Symmetric } \\
\text { tace foe }
\end{array}
$$

No other interesting 2 tensors exist that are $S O(n)$ invanant

$$
50(n) \cong \Lambda^{2}
$$

Write $\mathbb{V I}$ fo undying cal representation Write $[V]=W$ if $V=W \otimes \mathbb{C}$ for a real representation W.
$d \omega \in \Lambda_{\mathbb{R}}^{3} \cong \llbracket\left[\Lambda^{3,0} \oplus \Lambda^{2,1}\right]$

$$
\left.\cong \mathbb{L} \Lambda^{3,9}\right] \oplus\left[\Lambda_{0}^{2,1}\right] \oplus \mathbb{L} \Lambda^{1,0} \mathbb{]}
$$

where "wedge with ω ": $\Lambda^{\prime, 0} \rightarrow \Lambda^{2,1}$ and $\Lambda_{0}^{2 \prime \prime}$ is the orthogonal complement $N \in \llbracket \Lambda^{0,1} \otimes \Lambda^{0,2} \rrbracket \cong\left[\Lambda^{0,3} \rrbracket \oplus \llbracket A \rrbracket\right.$
J is an inometry on T

$$
\begin{aligned}
& \Longrightarrow \nabla J \in T^{*} M \otimes \xi 0(2 n) \cong T^{*} M \otimes \Lambda^{2} \\
J^{2}= & -1 \\
& \Longrightarrow J\left(\nabla_{x} J\right)+\left(\nabla_{x} J\right) J=0 \\
& \Longrightarrow \nabla j \in T^{*} M \otimes g l(n)^{\perp}
\end{aligned}
$$

So

$$
\begin{aligned}
& \nabla J \in T^{+} M \otimes u(n)^{\perp} \\
& \cong \llbracket \Lambda^{1,0} \rrbracket \otimes \llbracket \Lambda^{2,0} \rrbracket \\
& \left.\cong \llbracket \Lambda^{1,0} \otimes \Lambda^{2,0} \rrbracket \otimes \llbracket \Lambda^{0,1} \otimes \Lambda^{0,2}\right]
\end{aligned}
$$

It is clear that $N=\phi_{1}(\nabla \omega)$ for some $u(n)$ equivariant map ϕ_{1}

Suinilary $d \omega=\phi_{2}(\nabla(\omega)$ for some $U(n)$ equivanant wasp ϕ.
So the proof follows from the decomposition into incducibles + Schur's Lemma.

Moral: Impossibly tedions local coordinate calculations can be done quickly using representation theory.

Conclusion: $\nabla]$ has 4 irreducible components so there are $2^{4}=16$ types of almost Hemiction manifold.

The most interesting are Killer $\left(\nabla_{\omega}=0\right)$
Hermitian $(N=0)$
almost Killer $(d \omega=0)$

Exercises:

1. Theorem: te following are equivalent
1) $T^{1,0}$ is closed under Lie brackets
2) $d: \Lambda^{\prime, 0} \rightarrow \Lambda^{2} \cong \Lambda^{2,0} \oplus \Lambda^{\prime,} \oplus \Lambda^{0,2}$
has image entirely in $\Lambda^{2,0} \oplus \Lambda^{\prime \prime \prime}$
3) $N(x, y):=[J x, J y]-J[J x, y]-J[x, J y]-[x, y]$
4) (M, J) is a complex manifold
5) (M, J) is a complex manifold

Prove that (1) $\Longleftrightarrow(2)$ Complete the proof that $(2) \Leftrightarrow(3)$
2. Use the fact that $H^{0,0} \cong H^{\prime}$ to porte that any holomorphic $\begin{gathered}\text { function } \\ \text { is constant }\end{gathered} f: M \rightarrow \mathbb{C}$ on a compact connected kimainfold
3. Find out (eg outline) what the explicit formula is for the Fubiri-Study metic and convince gouself that it is
4. Proposition 26 of Donaldson gives an inte-pectation of $\mathrm{H}^{(1)}$: "Suppose $7_{x}^{0,1}$ has finite dimension h, then given any $h+1$ points h_{1}, \ldots, p_{h+1} on x there is a non-holomorplice menomophic function on x with simple poles at some subset of the $p_{1}, \ldots, p h+1$ "
A mevomophic function is a holomorphic map $f: M \rightarrow \mathbb{C} \cup\{\infty\}=\mathbb{C} \mathbb{P}^{\prime}$ It is a holomorphic function if it has no poles.

Use this proposition plus the relationship of Dolbeantt and De Rhain whomology to prove
Corollary 3 of Donaldson: "Any compact Reinann suface of genus 0 is equivalent to the sphere"
5. check that $p^{\text {How is a representation }}$
6.

Exercise: Given representations V, W define the
tens ${ }^{2}$ product upprsentation $V \otimes W$
the symmetric upprosentation $S^{k} V$ and the antisymmetric aposentation $\lambda^{k} V$.
Prove that the aposentation $\operatorname{Hon}(r, w) \cong V^{*} \odot W$
Note that it is you job to define what an riomorphism means. You should also note that yon've just defined a k-form in a neat way.
7. Exercise: Given a complex ropresentation e, define the conjugate representation \vec{p}.
8. Prove that $p^{*}=e$ for the standard repacsentation of $O(a)$

