

Dr John Armstrong

Department of Mathematics

Faculty of Natural and Mathematical Sciences
2023.03.14

Dr John Armstrong
Department of Mathematics

KCL Geometry
Itô Stochastic Differentials on Manifolds

## Itô Stochastic Difierentials on Manifolds

Joint work with:

- Andrei lonescu (stochastic differentials) and
- Damiano Brigo (jets)

Plan:

- I will describe what a classical stochastic differential equation is using integration
- I will motivate the definiton of stochastic differential
- I will show that once the stochastic differential is defined, the key definitions for stochastic processes on manifolds are extremely simple.


## ODEs without differentiation

The ODE

$$
\frac{d X}{d t}=f\left(X_{t}, t\right), \quad X_{0}
$$

can be written

$$
X_{u}-X_{0}=\int_{0}^{u} d X_{t}=\int_{0}^{u} f\left(X_{t}, t\right) d t
$$

which one might write in shorthand as

$$
d X_{t}=f\left(X_{t}, t\right) d t, \quad X_{0}
$$

where $d X_{t}$ and $d t$ are just formal symbols.
Historically stochastic differential equations (SDEs) have been defined entirely in terms of the Itô integral. Differentials have not been defined.

## A world without differentiation

- We would not have the notion of two curves being tangent to one another
- We cannot give a meaning to the symbol $d X_{t}$ at a particular moment in time ODEs would have to hold in some interval to have any meaning.
- As an integral requires a vector space structure so we are pretty much obliged to define ODEs on manifolds in terms of charts. This is possible, but revolting.


## Differentiation, visualization and geometry

- Geometrically, ODEs are vector fields. The theory of the tangent space tells us how to think of ODEs in a coordinate free fashion.
- Interpreting a vector as a 1 -jet of a curve gives a coordinate free interpretation of Euler-type schemes, just follow the arrows for time $\delta t$.

Goal: formally define a stochastic differential and use it to give a coordinate-free treatment of SDEs.


## History

- Itô was motivated to develop his calculus in order to define Brownian motion on manifolds. He gave a coordinate-based treatment of SDEs on manifolds.
- Itô appears to have been interested in defining a stochastic differential himself
- There is an existing concept called the Nelson derivative which is close to our differential but does not quite achieve what is needed.
- A number of authors have come up with coordinate-free approaches to SDEs including: Stratonovich calculus (Elworthy), Schwarz-Morphisms (Schwarz/Meyer/Emery)
Schwarz: there is nothing "ponctuel" about stochastic differential equations Emery: "existence of the [stochastic differential] is metaphysical and one is free not to believe in it."


## Brownian Motion

In a Stochastic Differential Equation we are interested in the evolution of random processes $X_{t}$. The subscript $s$ indicates the value at time $t$.
The evolution is described in terms of another driving stochastic process, $Y_{t}$. For example: $Y_{t}$ may represent information about the economy and $X_{t}$ may represent the quantities of different stocks you purchase in response to economic news.
To get started, we will assume that the driving process is a Brownian motion $W_{t}$.

## Definition

$W_{t}$ is a continuous process in time. The increment $W_{t+\delta t}-W_{t}$ after time $t$ is independent of any information before time $t$ and is normally distributed with mean 0 and standard deviation $\sqrt{\delta t}$, hence variance $\delta t$.

## Scaling behaviour

This is the only possible scaling behaviour for independent identical increments with finite variance:

$$
\operatorname{Var}\left(W_{n \delta t}-W_{0}\right)=\operatorname{Var}\left(\sum_{i=1}^{n} W_{i \delta t-(i-1) \delta t}\right)=\sum_{i=1}^{n} \operatorname{Var}\left(W_{i \delta t-(i-1) \delta_{t}}\right)=n \delta t
$$



## The Itô Integral

$$
\int_{0}^{T} a_{t} d W_{t} \approx \sum_{i=1}^{n} a_{(i-1) \delta t} W_{i \delta t-(i-1) \delta t}, \quad \delta t=\frac{T}{n}
$$

Naively this appears to diverge: we have $T / \delta t$ terms each of size $\sqrt{\delta t}$ so the integral seems to be of the order $\delta t^{-\frac{1}{2}}$. But...

## The Itô Integral

$$
\int_{0}^{T} a_{t} d W_{t} \approx \sum_{i=1}^{n} a_{(i-1) \delta t} W_{i \delta t-(i-1) \delta t}, \quad \delta t=\frac{T}{n}
$$

Naively this appears to diverge: we have $T / \delta t$ terms each of size $\sqrt{\delta t}$ so the integral seems to be of the order $\delta t^{-\frac{1}{2}}$. But...

$$
\begin{aligned}
E\left(\int_{0}^{T} a_{t} d W_{t}\right)^{2} & \approx \sum_{i=1}^{n} \sum_{j=1}^{n} a_{(i-1) \delta t} a_{(j-1) \delta t} E\left(W_{i \delta t-(i-1) \delta t} W_{j \delta t-(j-1) \delta t}\right) \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} a_{(i-1) \delta t} a_{(j-1) \delta t} E\left(W_{i \delta t-(i-1) \delta t}\right) E\left(W_{j \delta t-(j-1) \delta t}\right)
\end{aligned}
$$

using the fact that increments are uncorrelated. So terms where $i \neq j$ vanish.

$$
E\left(\int_{0}^{T} a_{t} d W_{t}\right)^{2} \approx \sum_{i=1}^{n} a_{(i-1) \delta t}^{2}(\delta t)=\sum_{i=1}^{n} a_{(i-1) \delta t}^{2} \frac{T}{n}
$$

which no longer looks divergent. The Itô integral is therefore defined using mean-square convergence.

## Stochastic Differential Equations

The Itô SDE

$$
d X_{t}=a\left(X_{t}, t\right) d t+b\left(X_{t}, t\right) d W_{t}, \quad X_{0}
$$

is shorthand for the integral equation

$$
X_{u}-X_{0}=\int_{0}^{u} a\left(X_{t}, t\right) d t+\int_{0}^{u} b\left(X_{t}, t\right) d W_{t}
$$

where the left hand integral is a Riemann integral and the right hand integral is an Itô integral.

## An example SDE

$$
d X_{t}=\frac{1}{2} X_{t} d t+X_{t} d W_{t}, \quad X_{0}=1
$$



## Idea

The differential is equal to 0 if the process is "small". For ODEs the correct definition is

$$
\begin{gathered}
d_{t} X=0 \\
\text { is defined by } X_{t+\delta t}-X_{t}=o(\delta t) \\
\Longleftrightarrow \frac{X_{t+\delta}-X_{t}}{\delta t} \rightarrow 0
\end{gathered}
$$

The differential is equal to 0 if the process is "small". For ODEs the correct definition is

$$
\begin{gathered}
d_{t} X=0 \\
\text { is defined by } X_{t+\delta t}-X_{t}=o(\delta t) \\
\Longleftrightarrow \frac{X_{t+\delta}-X_{t}}{\delta t} \rightarrow 0
\end{gathered}
$$

We can then define an equivalence relation $\sim_{t}$ by $X \sim Y$ if $d\left(X_{t}-Y_{t}\right)=0$.
The differential $d_{t}$ of $X$ is the equivalence class of $X$.
How should we define small for stochastic processes?

## Requirements

- $d X_{t}=0$ for all $t \in\left[0, \Pi\right.$ should imply $X_{s}$ is a constant random variable.
- The fundamental theorem of calculus should hold

$$
d_{t}\left(\int_{0}^{s} d X_{u}\right)=d_{t} X
$$

where the integral is an Itô integral.

- The space of differentiable processes $X$ should be as large as possible


## Martingales

A martingale is a stochastic process with

- $E\left(\left|X_{t}\right|\right)$ finite for all $t$
- $E\left(X_{t+\delta t} \mid\right.$ Information up to time $\left.t\right)=E\left(X_{t}\right)$



## Etymology?



## Nearly correct definition

e.g. Martingales have uncorrelated increments and so the nice cancellation we saw before occurs for Martingales.
If $M_{s}$ is a Martingale we might think of defining

$$
d_{t}^{E} M=0
$$

if

$$
E\left(\left|M_{t+\delta t}-M_{t}\right|^{2}\right)=o(\delta t)
$$

## Modes of convergence

- $X_{n} \rightarrow X$ in $L^{D}$ if $E\left(\left|X_{n}-X\right|^{p}\right) \rightarrow 0$ as $n \rightarrow \infty$
- $X_{n} \rightarrow X$ almost surely if $P\left(X_{n} \rightarrow X\right)=1$
- $X_{n} \rightarrow X$ in probability if $P\left(\left|X_{n}-X\right|>\epsilon\right) \rightarrow 0$ for all $\epsilon>0$

Also

- $X_{n} \rightarrow X$ in distribution if the distribution function of $X_{n}$ converges to the distribution of $X$ away from jumps.


## Modes of convergence

- $X_{n} \rightarrow X$ in $L^{p}$ if $E\left(\left|X_{n}-X\right|^{p}\right) \rightarrow 0$ as $n \rightarrow \infty$
- $X_{n} \rightarrow X$ almost surely if $P\left(X_{n} \rightarrow X\right)=1$
- $X_{n} \rightarrow X$ in probability if $P\left(\left|X_{n}-X\right|>\epsilon\right) \rightarrow 0$ for all $\epsilon>0$

Also

- $X_{n} \rightarrow X$ in distribution if the distribution function of $X_{n}$ converges to the distribution of $X$ away from jumps.

If $X_{n}$ takes values in a topological space, convergence in expectation depends on metric at infinity, convergence in probability does not.

If we want a diffeomorphism invariant differential we will need convergence in probability. But this is then too weak and $d_{t} X=0$ for all $t$ will not imply $X$ is constant.

## Quadratic variation

The quadratic covariation of two process is defined by:

$$
[X, Y]_{t}:=\operatorname{Plim}_{|\mathcal{P}|->0} \sum_{k=1}^{m}\left(X_{t_{k+1}}-X_{t_{k}}\right)\left(Y_{t_{k+1}}-Y_{t_{k}}\right)
$$

where $\mathcal{P}=\left\{x_{1}, x_{2}, \ldots x_{n}\right\}$ is a partition of $[0, t]$.
The quadratic varation is defined by:

$$
[X]_{t}=[X, X]_{t}
$$

## Example:

$$
[W]_{t}=t
$$

## Birkholder Davis Gundy

## Theorem

If $X_{t}$ is a martingale with $X_{0}=0$ then there are constants $c_{1}, c_{2}$ such that

$$
c_{1} E\left([X]_{t}\right) \leq E\left(\sup _{s \in[0, t]} X_{s}^{2}\right) \leq c_{2} E\left([X]_{t}\right)
$$

## Birkholder Davis Gundy

## Theorem

If $X_{t}$ is a martingale with $X_{0}=0$ then there are constants $c_{1}, c_{2}$ such that

$$
c_{1} E\left([X]_{t}\right) \leq E\left(\sup _{s \in[0, t]} X_{s}^{2}\right) \leq c_{2} E\left([X]_{t}\right)
$$

Using the right hand inequality, we can prove uniqueness from a bound on quadratic variation: A martingale with quadratic variation 0 must be constant

Using the left hand inequality, we can get bounds on the quadratic variation from the maximum of the increments

## The stochastic differential

## Definition

If $X_{t}=A_{t}^{1}-A_{t}^{2}+M_{t}$ where $A^{1}+t$ and $A_{t}^{2}$ are increasing and $M_{t}$ is a martingale then we say

$$
d_{t} X=0
$$

iff

$$
\begin{aligned}
A_{t+\delta t}^{1}-A_{t}^{1} & =o_{P}(\delta t) \\
A_{t+\delta t}^{2}-A_{t}^{2} & =o_{P}(\delta t) \\
\sup _{s \in[t, t+\delta t]}\left(M_{s}-M_{t}\right)^{2} & =o_{P}(\delta t)
\end{aligned}
$$

Where $X_{h}=o_{P}(f(h))$ if $\frac{X_{h}}{\frac{f(h)}{}}$ converges in probability

## Operations on dififerentials

- Addition

$$
d_{t} X+d_{t} Y:=d_{t}(X+Y)
$$

- Multiplication by a random scalar X_t

$$
X_{t} d_{t} Y=d_{t}\left(X_{t} Y\right) \quad \text { where }\left(X_{t} Y\right)_{s}:=X_{t} Y_{s}
$$

- Expectation

$$
E_{t}\left(d_{t} X\right):=d_{t}\left(E_{t} X\right)
$$

## Product and quadratic variation

Since

$$
X_{t+\delta t} Y_{t+\delta t}-X_{t} Y_{t}=X_{t}\left(Y_{t+\delta t}-Y_{t}\right)+Y_{t}\left(X_{t+\delta t}-X_{t}\right)+\left(X_{t+\delta t}-X_{t}\right)\left(Y_{t+\delta t}-Y_{t}\right)
$$

## Definition

$$
d_{t}(X Y)=X_{t} d_{t} Y+Y_{t} d_{t} X+d_{t} X d_{t} Y
$$

## Lemma

$$
d_{t}[X, Y]_{t}=d_{t} X d_{t} Y
$$

## Stochastic dififerential on manifolds

## Definition

If $X, Y$ are $\mathbb{R}^{n}$ valued processes $d_{t}^{M} X=d_{t}^{M} Y$ iff $X_{t}=Y_{t}$ almost surely and $d_{t} X=d_{t} Y$. If $X, Y$ are manifold valued processes $d_{t}^{M} X=d_{t}^{M} Y$ iff $d_{t}^{M} f(X)=d_{t}^{M} f(Y)$ for all smooth $f: M \rightarrow \mathbb{R}$.

## Stochastic dififerential on manifolds

## Definition

If $X, Y$ are $\mathbb{R}^{n}$ valued processes $d_{t}^{M} X=d_{t}^{M} Y$ iff $X_{t}=Y_{t}$ almost surely and $d_{t} X=d_{t} Y$. If $X, Y$ are manifold valued processes $d_{t}^{M} X=d_{t}^{M} Y$ iff $d_{t}^{M} f(X)=d_{t}^{M} f(Y)$ for all smooth $f: M \rightarrow \mathbb{R}$.

## Definition

(Pushforward)
If $F: M \rightarrow N$ is smooth and $X_{t}$ is an $M$ valued process we may define

$$
F_{*}\left(d_{t}^{M} X\right):=d_{t}^{m} F(X)
$$

it only depends upon the 2 -jet of $F$.

## Stochastic dififerential equations on manifolds

Given a field of 2-jets $\gamma_{x}: \mathbb{R}^{d} \rightarrow M$ with $\gamma_{x}(0)=x$ we can associate an SDE by

$$
d_{t} X=\left(\gamma_{x}\right)_{*} d_{t} W
$$

To write this out in classical notation:

- Expand $\gamma_{x}$ as a Taylor series to order 2
- Replace the product $d_{t} W^{\alpha} d_{t} W^{\beta}$ with $g^{\alpha \beta} d t$ where $g^{\alpha \beta}$ is the Euclidean metric on $\mathbb{R}^{d}$


## Example

Define a field of 2 -jets of curves on $\mathbb{R}^{2}$ by $\gamma_{(x, y)}: \mathbb{R} \rightarrow \mathbb{R}^{2}$ by

$$
\gamma_{(x, y)}(s)=(x, y)+(y,-x) s+3(x, y) s^{2}
$$



## Itô's Lemma

In this notation, the transformation rule for SDEs under a change of coordinates is trivial, but it is opaque when written classically

## Lemma

(Itô) If F : $M \rightarrow N$ is smooth and $X$ satisfies

$$
d_{t} X=\left(\gamma_{x}\right)_{*} d_{t} W
$$

then

$$
d_{t}(F \circ X)=\left(F \circ \gamma x_{t}\right)_{*} d_{t} W
$$

## Classical Ito's Lemma

## Lemma

(Classical Ito's Lemma)
If

$$
d X_{t}^{i}=a^{i}(X, t) d t+\sum_{\alpha=1}^{d} b_{\alpha}^{i}(X, t) d W_{t}^{\alpha}
$$

then

$$
d(F \circ X)_{t}^{u}=\left(\frac{\partial F^{u}}{\partial x^{i}} a^{i}(X, t)+\sum_{\alpha=1}^{d} \frac{1}{2} b_{\alpha}^{i}(X, t) b_{\alpha}^{j}(X, t) \frac{\partial^{2} F^{u}}{\partial x^{i} \partial x^{j}}\right) d t+\sum_{\alpha=1}^{d} \frac{\partial F^{u}}{\partial x^{i}} b_{\alpha}^{i} d W_{t}^{\alpha}
$$

## Operators associated with stochastic processes

## Definition

The backward diffusion operator $\mathcal{L}^{X}$ associated to a stochastic process $X$ is the operator of order 2 acting on 2-jets of functions $f: M \rightarrow R$ by:

$$
\mathcal{L}_{\cup}^{\mathcal{X}} f:=\frac{E_{t}\left(f_{*} d_{t} X\right)}{d t}
$$

The forward diffusion operator is its formal adjoint and acts on densities.

## Theorem

(Feynman-Kac)
If $X$ is a diffusion and $f: M \rightarrow \mathbb{R}$ and $v_{t}:=E_{t}\left(f\left(X_{T}\right)\right)$ then

$$
\frac{d v}{d t}=\mathcal{L}_{\sqcup}^{\mathcal{X}} v
$$

## 2-jets and connections

## Definition

An invariant chart at a point $x \in M$ defined on a neighbourhood $U \ni x$ is a smooth bijection $\phi: T_{x} M \rightarrow U$.

## Lemma

Torsion free connections on the tangent bundle of $M$ correspond invariantly to 2-jets of invariant charts.

Since the tangent space has a vector space structure, we can define expectations on the tangent space.

## Definition

Given a torsion free connection $\nabla$ define

$$
E_{t}^{\nabla}\left(d_{t} X\right)=\left(\phi_{*}\right) d_{t}\left(E \phi_{X}^{-1}(X)\right)
$$

## Product structure as a tensor

Let $X_{s}, Y_{s}$ be processes on $M$ and suppose that $X_{t}=Y_{t}$ almost surely.
Let $\eta^{1}, \eta^{2}$ be differential forms defined on $M$ - equivalently fields 1 -jets of functions mapping $x$ to 0 .
Extend $\eta^{1}, \eta^{2}$ arbitrarily to fields of 2 -jets and define:

$$
\left(d_{t} X d_{t} Y\right)\left(\eta^{1}, \eta^{2}\right):=\left(\eta_{*}^{1} d_{t} X\right)\left(\eta_{*}^{2} d_{t} Y\right)
$$

Since the product of differentials only depends on the martingale term, this is well-defined.

## Product structure as a tensor

Let $X_{s}, Y_{s}$ be processes on $M$ and suppose that $X_{t}=Y_{t}$ almost surely.
Let $\eta^{1}, \eta^{2}$ be differential forms defined on $M$ - equivalently fields 1 -jets of functions mapping $x$ to 0 .
Extend $\eta^{1}, \eta^{2}$ arbitrarily to fields of 2 -jets and define:

$$
\left(d_{t} X d_{t} Y\right)\left(\eta^{1}, \eta^{2}\right):=\left(\eta_{*}^{1} d_{t} X\right)\left(\eta_{*}^{2} d_{t} Y\right)
$$

Since the product of differentials only depends on the martingale term, this is well-defined.

$$
\frac{d_{t} X d_{t} Y}{d t}
$$

is a 2-tensor. For any differentiable $X_{s}$

$$
\frac{\left(d_{t} X\right)^{2}}{d t}
$$

is a symmetric 2 -tensor.

## Brownian motion on a manifold

## Definition

Brownian motion, $X_{s}$, on the Riemannian manifold $(M, g)$ is a stochastic process satisfying:

$$
\frac{\left(d_{t} X\right)^{2}}{d t}=g_{X_{t}}
$$

and

$$
E_{t}^{\nabla\llcorner\mathrm{C}}\left(d_{t} X\right)=0
$$

where $\nabla^{\text {LC }}$ is the Levi-Civita connection.

## Brownian motion on a manifold

## Definition

Brownian motion, $X_{s}$, on the Riemannian manifold $(M, g)$ is a stochastic process satisfying:

$$
\frac{\left(d_{t} X\right)^{2}}{d t}=g x_{t}
$$

and

$$
E_{t}^{\nabla^{\llcorner\mathrm{C}}}\left(d_{t} X\right)=0
$$

where $\nabla^{\text {LC }}$ is the Levi-Civita connection.
It was already known how to define Brownian motion on a manifold: what is nice is that this is a "stochastic differential equation' ' characterising Brownian motion but not a classical one.

## Brownian motion on a manifold

## Definition

Brownian motion, $X_{s}$, on the Riemannian manifold $(M, g)$ is a stochastic process satisfying:

$$
\frac{\left(d_{t} X\right)^{2}}{d t}=g x_{t}
$$

and

$$
E_{t}^{\nabla\llcorner\mathrm{C}}\left(d_{t} X\right)=0
$$

where $\nabla^{\mathrm{LC}}$ is the Levi-Civita connection.
It was already known how to define Brownian motion on a manifold: what is nice is that this is a "stochastic differential equation' ' characterising Brownian motion but not a classical one.
It is locally modelled on Brownian motion, with the 2-jets given by the 2-jets of the exponential map.

## Thank You!



