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Itô Stochastic Differentials on Manifolds

Joint work with:

▶ Andrei Ionescu (stochastic differentials) and
▶ Damiano Brigo (jets)

Plan:

▶ I will describe what a classical stochastic differential equation is using
integration

▶ I will motivate the definiton of stochastic differential
▶ I will show that once the stochastic differential is defined, the key definitions

for stochastic processes on manifolds are extremely simple.



ODEs without differentiation

The ODE
dX
dt

= f(Xt, t), X0

can be written

Xu − X0 =

∫ u

0
dXt =

∫ u

0
f(Xt, t) dt

which one might write in shorthand as

dXt = f(Xt, t) dt, X0

where dXt and dt are just formal symbols.

Historically stochastic differential equations (SDEs) have been defined entirely in
terms of the Itô integral. Differentials have not been defined.



A world without differentiation

▶ We would not have the notion of two curves being tangent to one another
▶ We cannot give a meaning to the symbol dXt at a particular moment in time -

ODEs would have to hold in some interval to have any meaning.
▶ As an integral requires a vector space structure so we are pretty much

obliged to define ODEs on manifolds in terms of charts. This is possible, but
revolting.



DIfferentiation, visualization and geometry

▶ Geometrically, ODEs are vector fields. The theory of the tangent space tells us
how to think of ODEs in a coordinate free fashion.

▶ Interpreting a vector as a 1-jet of a curve gives a coordinate free
interpretation of Euler-type schemes, just follow the arrows for time δt.

Goal: formally define a stochastic differential and use it to give a coordinate-free
treatment of SDEs.





History

▶ Itô was motivated to develop his calculus in order to define Brownian motion
on manifolds. He gave a coordinate-based treatment of SDEs on manifolds.

▶ Itô appears to have been interested in defining a stochastic differential himself
▶ There is an existing concept called the Nelson derivative which is close to our

differential but does not quite achieve what is needed.
▶ A number of authors have come up with coordinate-free approaches to SDEs

including: Stratonovich calculus (Elworthy), Schwarz-Morphisms
(Schwarz/Meyer/Emery)

Schwarz: there is nothing “ponctuel” about stochastic differential equations Emery:
“existence of the [stochastic differential] is metaphysical and one is free not to
believe in it.”



Brownian Motion

In a Stochastic Differential Equation we are interested in the evolution of random
processes Xt. The subscript s indicates the value at time t.

The evolution is described in terms of another driving stochastic process, Yt. For
example: Yt may represent information about the economy and Xt may represent
the quantities of different stocks you purchase in response to economic news.

To get started, we will assume that the driving process is a Brownian motion Wt.

Definition

Wt is a continuous process in time. The increment Wt+δt −Wt after time t is
independent of any information before time t and is normally distributed with mean
0 and standard deviation

√
δt, hence variance δt.



Scaling behaviour

This is the only possible scaling behaviour for independent identical increments with
finite variance:

Var(Wnδt −W0) = Var

(
n∑
i=1

Wiδt−(i−1)δt

)
=

n∑
i=1

Var(Wiδt−(i−1)δt) = n δt



The Itô Integral

∫ T

0
at dWt ≈

n∑
i=1

a(i−1)δtWiδt−(i−1)δt, δt =
T
n

Naively this appears to diverge: we have T/δt terms each of size
√
δt so the

integral seems to be of the order δt−
1
2 . But…

E

(∫ T

0
at dWt

)2

≈
n∑
i=1

n∑
j=1

a(i−1)δta(j−1)δtE(Wiδt−(i−1)δtWjδt−(j−1)δt)

=
n∑
i=1

n∑
j=1

a(i−1)δta(j−1)δtE(Wiδt−(i−1)δt)E(Wjδt−(j−1)δt)

using the fact that increments are uncorrelated. So terms where i ̸= j vanish.

E

(∫ T

0
at dWt

)2

≈
n∑
i=1

a2(i−1)δt(δt) =
n∑
i=1

a2(i−1)δt
T
n

which no longer looks divergent. The Itô integral is therefore defined using
mean-square convergence.
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Stochastic Differential Equations

The Itô SDE

dXt = a(Xt, t)dt+ b(Xt, t)dWt, X0

is shorthand for the integral equation

Xu − X0 =

∫ u

0
a(Xt, t)dt+

∫ u

0
b(Xt, t)dWt

where the left hand integral is a Riemann integral and the right hand integral is an
Itô integral.



An example SDE

dXt =
1
2
Xtdt+ XtdWt., X0 = 1



Idea

The differential is equal to 0 if the process is “small”. For ODEs the correct
definition is

dtX = 0

is defined by Xt+δt − Xt = o(δt)

⇐⇒Xt+δ − Xt

δt
→ 0

We can then define an equivalence relation ∼t by X ∼ Y if d(Xt − Yt) = 0.

The differential dt of X is the equivalence class of X.

How should we define small for stochastic processes?
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Requirements

▶ dXt = 0 for all t ∈ [0, T] should imply Xs is a constant random variable.
▶ The fundamental theorem of calculus should hold

dt

(∫ s

0
dXu

)
= dtX

where the integral is an Itô integral.
▶ The space of differentiable processes X should be as large as possible



Martingales

A martingale is a stochastic process with

▶ E(|Xt|) finite for all t
▶ E(Xt+δt | Information up to time t) = E(Xt)



Etymology?



Nearly correct definition

e.g. Martingales have uncorrelated increments and so the nice cancellation we saw
before occurs for Martingales.

If Ms is a Martingale we might think of defining

dE
t M = 0

if

E(|Mt+δt − Mt|2) = o(δt)



Modes of convergence

▶ Xn → X in Lp if E(|Xn − X|p) → 0 as n → ∞
▶ Xn → X almost surely if P(Xn → X) = 1
▶ Xn → X in probability if P(|Xn − X| > ϵ) → 0 for all ϵ > 0

Also

▶ Xn → X in distribution if the distribution function of Xn converges to the
distribution of X away from jumps.

If Xn takes values in a topological space, convergence in expectation depends on
metric at infinity, convergence in probability does not.

If we want a diffeomorphism invariant differential we will need convergence in
probability. But this is then too weak and dtX = 0 for all t will not imply X is constant.
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Quadratic variation

The quadratic covariation of two process is defined by:

[X, Y]t := Plim
|P|−>0

m∑
k=1

(Xtk+1
− Xtk)(Ytk+1

− Ytk)

where P = {x1, x2, . . . xn} is a partition of [0, t].

The quadratic varation is defined by:

[X]t = [X, X]t

Example:
[W]t = t



Birkholder Davis Gundy

Theorem

If Xt is a martingale with X0 = 0 then there are constants c1, c2 such that

c1E([X]t) ≤ E( sup
s∈[0,t]

X2
s) ≤ c2E([X]t)

Using the right hand inequality, we can prove uniqueness from a bound on
quadratic variation: A martingale with quadratic variation 0 must be constant

Using the left hand inequality, we can get bounds on the quadratic variation from
the maximum of the increments
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The stochastic differential

Definition

If Xt = A1
t − A2

t + Mt where A1 + t and A2
t are increasing and Mt is a martingale then

we say
dtX = 0

iff
A1
t+δt − A1

t = oP(δt)

A2
t+δt − A2

t = oP(δt)

sup
s∈[t,t+δt]

(Ms − Mt)
2 = oP(δt)

Where Xh = oP(f(h)) if
Xh
f(h) converges in probability



Operations on differentials

▶ Addition

dtX+ dtY := dt(X+ Y)

▶ Multiplication by a random scalar X_t

XtdtY = dt(XtY) where (XtY)s := XtYs

▶ Expectation

Et(dtX) := dt(EtX)



Product and quadratic variation

Since

Xt+δtYt+δt − XtYt = Xt(Yt+δt − Yt) + Yt(Xt+δt − Xt) + (Xt+δt − Xt)(Yt+δt − Yt)

Definition

dt(XY) = XtdtY+ YtdtX+ dtX dtY

Lemma

dt[X, Y]t = dtX dtY



Stochastic differential on manifolds

Definition

If X, Y are Rn valued processes dM
t X = dM

t Y iff Xt = Yt almost surely and dtX = dtY.
If X, Y are manifold valued processes dM

t X = dM
t Y iff dM

t f(X) = dM
t f(Y) for all smooth

f : M → R.

Definition

(Pushforward)
If F : M → N is smooth and Xt is an M valued process we may define

F∗(d
M
t X) := dM

t F(X)

it only depends upon the 2-jet of F.



Stochastic differential on manifolds

Definition

If X, Y are Rn valued processes dM
t X = dM

t Y iff Xt = Yt almost surely and dtX = dtY.
If X, Y are manifold valued processes dM

t X = dM
t Y iff dM

t f(X) = dM
t f(Y) for all smooth

f : M → R.

Definition

(Pushforward)
If F : M → N is smooth and Xt is an M valued process we may define

F∗(d
M
t X) := dM

t F(X)

it only depends upon the 2-jet of F.



Stochastic differential equations on manifolds

Given a field of 2-jets γx : Rd → M with γx(0) = x we can associate an SDE by

dtX = (γx)∗dtW

To write this out in classical notation:

▶ Expand γx as a Taylor series to order 2
▶ Replace the product dtWα dtWβ with gαβdt where gαβ is the Euclidean metric

on Rd



Example

Define a field of 2-jets of curves on R2 by γ(x,y) : R → R2 by

γ(x,y)(s) = (x, y) + (y,−x)s+ 3(x, y)s2



Itô’s Lemma

In this notation, the transformation rule for SDEs under a change of coordinates is
trivial, but it is opaque when written classically

Lemma

(Itô) If F : M → N is smooth and X satisfies

dtX = (γx)∗dtW

then
dt(F ◦ X) = (F ◦ γXt)∗dtW



Classical Ito’s Lemma

Lemma

(Classical Ito’s Lemma)
If

dXi
t = ai(X, t)dt+

d∑
α=1

bi
α(X, t)dW

α
t

then

d(F ◦ X)ut =

(
∂Fu

∂xi
ai(X, t) +

d∑
α=1

1
2
bi
α(X, t)b

j
α(X, t)

∂2Fu

∂xi∂xj

)
dt+

d∑
α=1

∂Fu

∂xi
bi
αdW

α
t



Operators associated with stochastic processes

Definition

The backward diffusion operator LX associated to a stochastic process X is the
operator of order 2 acting on 2-jets of functions f : M → R by:

LX
⊔ f :=

Et(f∗dtX)
dt

The forward diffusion operator is its formal adjoint and acts on densities.

Theorem

(Feynman­Kac)
If X is a diffusion and f : M → R and vt := Et(f(XT)) then

dv
dt

= LX
⊔ v



2­jets and connections

Definition

An invariant chart at a point x ∈ M defined on a neighbourhood U ∋ x is a smooth
bijection ϕ : TxM → U.

Lemma

Torsion free connections on the tangent bundle of M correspond invariantly to 2­jets of
invariant charts.

Since the tangent space has a vector space structure, we can define expectations
on the tangent space.

Definition

Given a torsion free connection∇ define

E∇t (dtX) = (ϕ∗)dt(Eϕ
−1
X (X))



Product structure as a tensor

Let Xs, Ys be processes on M and suppose that Xt = Yt almost surely.

Let η1, η2 be differential forms defined on M - equivalently fields 1-jets of functions
mapping x to 0.

Extend η1, η2 arbitrarily to fields of 2-jets and define:

(dtXdtY)(η
1, η2) := (η1

∗dtX)(η
2
∗dtY)

Since the product of differentials only depends on the martingale term, this is
well-defined.

dtXdtY
dt

is a 2-tensor. For any differentiable Xs

(dtX)2

dt

is a symmetric 2-tensor.
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Brownian motion on a manifold

Definition

Brownian motion, Xs, on the Riemannian manifold (M, g) is a stochastic process
satisfying:

(dtX)2

dt
= gXt

and

E∇
LC

t (dtX) = 0

where∇LC is the Levi-Civita connection.

It was already known how to define Brownian motion on a manifold: what is nice is
that this is a “stochastic differential equation’ ’ characterising Brownian motion but
not a classical one.

It is locally modelled on Brownian motion, with the 2-jets given by the 2-jets of the
exponential map.
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Thank You!


