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I We study pricing and hedging of European options on the
S&P500 index.

I Instead of risk neutral pricing, we develop a computational
framework for hedging-based indifference pricing.

I In general, the indifference prices are nonlinear functions of an
options cash-flows and they depend on an agent’s
I views on future development of the market,
I risk preferences,
I financial position.

I For replicable claims, indifference prices are independent of
such subjective factors and they coincide with the classical
risk neutral prices.



Optimal investment

Consider the asset-liability management problem

minimize Ev(c + ST (−x)) over x ∈ D

subject to S0(x) ≤ w ,
(ALM)

where

I w ∈ R is the initial wealth,

I c ∈ L0(Ω,F ,P) a random claim to be paid at time T ,

I D ⊆ RJ is the set of feasible portfolios,

I St are convex functions giving the cost of buying a portfolio x ∈ RJ

at time t. While S0 is deterministic, ST is random.

I v is a nondecreasing convex function on R describing the agent’s
disutility function from delivering cash at time T .



Optimal investment

Consider the asset-liability management problem

minimize Ev (c + ST (−x)) over x ∈ D

subject to S0(x) ≤ w .
(ALM)

I The optimum value and optimal solutions depend on the agent’s

I views described by the probability measure P under which the
expectation is taken,

I risk preferences described by the disutility function v ,
I financial position described by (w , c) ∈ R× L0.

I When trading, one is concerned on how the optimum value is
affected by changes in the financial position (w , c).

I We denote the optimum value by ϕ(w , c).



Indifference pricing

I Consider the problem of valuing a contingent claim c ∈ L0

from the point of view of an agent whose current financial
position is given by (w̄ , c̄) ∈ R× L0.

I The indifference selling price

πs(w̄ , c̄ ; c) = inf{w |ϕ(w̄ + w , c̄ + c) ≤ ϕ(w̄ , c̄)}

gives the least price at which the agent could sell the option
without worsening his financial position.

I The indifference buying price

πb(w̄ , c̄ ; c) = sup{w |ϕ(w̄−w , c̄−c) ≤ ϕ(w̄ , c̄)} = −πs(w̄ , c̄ ;−c)

gives the geatest price at which he could buy the option.



Indifference pricing

We denote the super- and subhedging prices by

πsup(c) = inf{w | ∃x ∈ D : S0(x) ≤ w , ST (−x) + c ≤ 0},
πinf(c) = sup{w | ∃x ∈ D : S0(x) ≤ −w , ST (−x)− c ≤ 0}.

Theorem
The function πs(w̄ , c̄ ; ·) is convex and nondecreasing on L0. If St are
sublinear, D is a cone and πs(w̄ , c̄ ; 0) ≥ 0, then

πinf(c) ≤ πb(w̄ , c̄ ; c) ≤ πs(w̄ , c̄ ; c) ≤ πsup(c).

with equalities throughout when c is replicable in the sense that there
exists an x ∈ D ∩ (−D) such that

S0(x) ≤ −S0(−x) and ST (x) ≤ c ≤ −ST (−x).



Pricing of S&P500 options
Assume now that the set J of tradeable assets consists of a cash
account, S&P500 index futures and put and call options on the
index all with the same maturity. We model the prices as:

St(x) =
∑
j∈J

S j
t (x j),

where

S j
0(x j) =

{
s j+x

j if x j ≥ 0

s j−x
j if x j ≤ 0

and S j
T (x j) = s jT x

j

and s j+ and s j− denote the bid- and ask-prices of asset j .

s j− ≤ s j+, so S0 is convex. The final prices are

s jT =


exp(rT ) if j is cash,

ZT if j is a future,

max{ZT − Kj , 0} if j is a call with strike Kj ,

max{Kj − ZT , 0} if j is a put with strike Kj .



Subjective factors

I Assume that the claim c also only depends on ZT . We will
consider the case of no claim and the case of an option claim.

I Assume that the disutility function v is:

v(P) =
e−λP − 1

λ

where λ > 0 is a risk aversion parameter.
I The only random variable we need to model is ZT , the

S&P500 value at maturity. The choice of model is also
subjective. Two possiblities we will consider are:
I log(ZT ) is normally distributed with mean and variance

calibrated using exponentially weighted historic data.
I log(ZT ) is follows a student t-distribution calibrated similarly.

I We have now completely specified a finite dimensional convex
optimization problem.



Explicit computation
I Our objective function is

Ev(c + ST (x)) =

∫
v
(
c +

∑
js

j(z)x j
)
p(z) d(z)

I We can approximate integrals using a quadrature rule:∫
f (z)d(z) ≈

N∑
i=1

wi f (zi )

for some weights wi and evaluation points zi .
I Examples: Monte Carlo, quasi-Monte Carlo, mid-point rule,

Gaussian quadrature.
I In summary:

minimize

N∑
i=1

wiv
(
c(zi ) +

∑
js

j(zi )x
j
)
p(zi )

subject to
∑

s j0(x j) ≤ w .



The optimal portfolio
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The optimal portfolio
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The optimal portfolio - Student-t Model
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The optimal portfolio - varying beliefs about volatility
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I A belief that the volatility will be lower than the historic trend
(LHS) leads to a short straddle

I A belief that the volatility will be higher than the historic
trend (RHS) leads to a long straddle



The indifference price - Two Pictures
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Indifference price
Bid
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The indifference price - Sensitivity to Risk Preferences
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Bid
Ask
Subhedge
Superhedge
Risk aversion 0.1
Risk aversion 0.3
Risk aversion 0.5
Risk aversion 1.0
Risk aversion 2.0
Risk aversion 4.0
Risk aversion 100.0

I For high risk aversion, the indifference price is close to a step
function

I For low risk aversion, the indifference price is close to a
constant function



The indifference price - Sensitivity to Beliefs
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Bid
Ask
Subhedge
Superhedge
Volatility multiplier 0.3
Volatility multiplier 0.5
Volatility multiplier 1.0
Volatility multiplier 2.0
Volatility multiplier 4.0

I As volatility increases, the sellers indifference price increases,
the buyers price decreases

I The sensitivity to beliefs is less than in classical models
I We can calibrate to the market without changing our beliefs



The indifference price - Sensitivity to financial position
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Bid
Ask
Subhedge
Superhedge
−0.2 digital calls held
−0.1 digital calls held
0.0 digital calls held
0.1 digital calls held
0.2 digital calls held

I We hold λ units of a digital call with strike 2000.

I The lower λ, the more we value the call as a hedge for our
position



The indifference price - Delta Hedging
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Bid
Ask
Subhedge
Superhedge
Risk aversion 0.5
Risk aversion 1.0
Risk aversion 2.0

I Calibrate Black Scholes model using the mid price
I Assume the bid price is a fixed proportion of the ask price
I Delta hedge at evenly spaced time points. Number of steps

chosen to give the best price.



Summary

I Prices offered in practice are subjective (views, risk
preferences, financial position).

I Much of classical asset pricing theory can be extended to
convex models of illiquid markets.

I Abritrage and martingale measures have little to do with
hedging-based pricing.

I Hedging-based pricing allows you to calibrate to market data
without discarding your beliefs.


