
The Geometry of Risk

Abstract

A geometric account of Markowitz’s theory aimed at a student audi-
ence.

1 Pythagoras and Risk

What can geometry tell us about finance? A hint that geometry may have some-
thing interesting to say comes from the relationship between risk and Pythago-
ras’s theorem.

To see this relationship, first we need to decide what we actually mean
by risk. Quantifying the risk of an investment is a complex and controversial
subject. The first serious attempt at quantifying risk mathematically was made
by Markowitz in 1952 [1]. He was rewarded for his efforts with the 1990 Nobel
Prize in Economics.

Let’s follow Markowitz’s approach, and quantify the risk of an investment
by using the standard deviation of its payoff at a future time T .

If A and B are uncorrelated random variables with finite standard deviation,
then their variances are related by the formula

Var(A) + Var(B) = Var(A+B).

Therefore their standard deviations are related by the formula

σ(A)2 + σ(B)2 = σ(A+B)2. (1)

This looks suspiciously like Pythagoras’s theorem for the length, |a + b| of the
sum of two perpendicular vectors a and b:

|a|2 + |b|2 = |a + b|2.

The similarities between the properties of distance and the properties of stan-
dard deviation do not stop here: if we assume all non-trivial risk-free investments
in the market have some risk, we can show that distance in Euclidean geometry
and standard deviation in markets are mathematically identical. We will then
be able to use geometry to obtain investment advice.
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2 Diversification

Before tackling the full theory, let’s examine an important special case which we
will call a market of identical stocks. In a market of identical stocks, n stocks
are traded and they have the following properties:

1. The units used to measure quantities of stocks are chosen so that initially
each unit of stock costs $1.

2. The stocks’ payoffs are independent.

3. The stocks are financially equivalent to each one another in the sense that
they all have the same probability distribution for their payoff at time T .
This probability distribution has mean µ and standard deviation σ > 0.

If you have an amount, C, to invest in a market of identical stocks, how
should you invest? You might guess that it wouldn’t matter how you invested
since the stocks are identical, but if you were to guess that, you would be wrong.

The trick is to realise it is possible to invest in a portfolio of stocks. You
can invest an amount q1 in stock 1, q2 in stock 2, and so on. We represent
this portfolio of stocks as a vector q = (q1, q2, . . . qn) ∈ Rn. We will see that
investing in a portfolio of stocks rather than in just one specific stock allows you
to reduce risk without reducing the mean payoff.

Let us calculate the mean payoff and its standard deviation. Write Xi for the
random variable representing the payoff of stock i. The value of our portfolio
at time T is a random random variable, Q, given by

Q = q1X1 + q2X2 + . . .+ qnXn. (2)

Since one unit of stock has initial cost 1 and mean payoff µ, the cost, C, and
mean payoff, P , of the portfolio are

C = q1 + q2 + . . .+ qn,

P = (q1 + q2 + . . .+ qn)µ = C µ.

We conclude that the mean payoff for any portfolio is determined by C.
The standard deviation is more interesting. First note that the standard

deviation of qiXi is equal to qiσ. We find from (2) and repeated applications of
our analogue of Pythagoras’s Theorem, equation (1), that the variance of the
portfolio is given by

q21σ
2 + q22σ

2 + . . . q2nσ
2 = |q|2σ2.

We have shown:

Lemma. The standard deviation of payoff of the portfolio corresponding to q in
a market of identical stocks is proportional to the length of q. The mean payoff
is determined by the cost.
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Now consider a two dimensional market as illustrated in Figure 1. Each
point in Figure 1 represents a portfolio with quantities (q1, q2). We have drawn
lines indicating the cost of each portfolio. These lines are at 45 degrees because
each stock in the market has the same cost: so the cost of the portfolio (1, 0) is
equal to the cost of the portfolio (0, 1).
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Figure 1: Contour lines of constant cost,
C, when each stock costs $1. The opti-
mal portfolio of cost 1 is labelled C∗

Figure 2: The optimum portfolio, C∗ in
a three dimensional market of identical
assets

Among all the portfolios of cost $1, which has the lowest risk? It is the
portfolio on the line C = 1 closest to the origin, namely C∗ = ( 1
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We conclude that investing equal amounts in each stock is less risky than invest-
ing in just one stock, even though both portfolios have identical mean payoff.

In a general when investing $1 in an n-dimensional market of identical stocks,
you should divide your investment equally between all n stocks to give a portfolio

C∗ =
(
1
n ,

1
n , . . . ,

1
n

)
. (3)

This will have payoff with standard deviation 1√
n
σ. Dividing your investment

across multiple assets in this way is called diversification.
The three dimensional case is illustrated in Figure 2. To see why this will

be optimal, notice that the vector C∗ given by (3) connects the origin perpen-
dicularly to the hyperplane C = 1. So if P is another point on the hyperplane,
we have by Pythagoras’s theorem that:

|P|2 = |C∗|2 + |P−C∗|2 ≥ |C∗|2.

We summarize our results.
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Theorem. When investing an amount C in a market of identical stocks, if
you wish to minimize the risk of your investments (as measured by standard
deviation) you should diversify your investment equally among all stocks. The
mean payoff is determined entirely by the cost.

This gives a mathematical explanation of the standard investment advice
“don’t put all your eggs in one basket”. Giving a mathematical formulation of
this simple, but important, result is a significant achievement of Markowitz’s
theory.

3 Financial markets and Euclid’s axioms

In the general case, we will assume that we are given an n-dimensional set
of random variables, V , which we call the space of assets or the market. Each
random variable in V represents the payoff distribution of an asset or a portfolio
of assets. We will assume that V contains all the assets in our market and all
possible portfolios.

We will allow portfolios to include either positive or negative quantities of an
asset. Holding negative quantities of an asset can be interpreted as promising
to give someone that asset in the future. This generalizes the familiar idea of
using negative quantities in your accounts to represent owing someone money.
In finance taking a negative position in a stock is called going short on the
stock. A positive position is called a long position. Our assumption that V
contains all portfolios, including both long and short positions, can be expressed
mathematically by saying that we assume V is a vector space.

We would like to interpret the standard deviation geometrically as the dis-
tance from the origin in this more general set up. To do this we will need to
assume that all non-zero assets have a finite, non-zero standard deviation. If
we make this assumption, it turns out that the standard deviation has all the
same properties as distance in Euclidean geometry.

One way to understand why this might be true, is to recall that Euclid
developed his theory of geometry by assuming only a very few basic axioms
about points, lines and distances. If we can show that the distance in our
market shares these same basic properties with Euclidean distance, it will follow
that every theorem in Euclidean geometry will be equally true of the standard
deviation in our market.

At this point in our argument you could go off and brush up your ancient
Greek to find out what Euclid’s axioms actually were. It is easier, however, to
see Euclid’s axioms as motivation and use modern linear algebra instead. From
this modern point of view, Euclid’s geometry is the theory of real inner product
spaces. The assumption that the standard deviation of any non-zero asset exists
and is non-zero is enough to make V into an inner product space: we define the
inner product of two assets using the covariance. It follows from the axiomatic
development of Euclidean geometry that you can use theorems about distance
in Euclidean geometry to prove results about the standard deviation, and hence
the risk, of assets.
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One result from Euclidean geometry that is particularly useful is that in an
n-dimensional Euclidean space, we can find n orthogonal vectors of length 1.
Translating this into the language of risk, we learn that it is possible to find
n uncorrelated portfolios of standard deviation 1. Let’s call these portfolios
e1, e2, . . . , en. If we treat these ei as the “basic” assets in our market, then any
portfolio can be written as a combination q1e1 + q2e2 + . . .+ qnen and the risk
will be given by the length of |q|. In other words: our market is exactly the same
as standard Euclidean space, you just need to choose the right coordinates.

4 The two fund theorem

The last section focussed entirely on risk. We should also consider how much a
portfolio costs and the mean payoff of a portfolio. Doing this will allow us to
prove a the so-called two fund theorem.

We’ll assume that the cost of a portfolio is just given by the total cost of the
component assets scaled by the quantities. This means that the cost, C, is a
linear function on the space of portfolios. So we can divide the space of portfolios
into slices of equal cost as shown in Figure 3. Each slice is an (n−1)-dimensional
hyperplane in the space of all portfolios.

C∗
O

C=2 C=1 C=0 C=−1C=−2

Figure 3: Hyperplanes of constant cost

In Euclidean geometry, given a hyperplane, we can draw a unique line
through the origin that intersects the hyperplane at right angles. The line and
hyperplane intersect at the closest point on the hyperplane to the origin. This
can be proved using Pythagoras’s theorem, just as we saw when considering the
market of identical stocks.

Translating this into the language of our market, we find a portfolio, C∗,
which minimizes the standard deviation among all portfolios of cost C = 1.
This portfolio is shown in Figure 3.

Similarly, the mean payoff of a portfolio will be a linear function, P , on the
space of portfolios. So there is a portfolio, P∗, that minimizes the standard
deviation among all portfolios of mean payoff P = 1.

Portfolios that have both cost C = 1 and mean payoff P = 1 will lie in the
intersection of the hyperplanes C = 1 and P = 1. These portfolios form an
(n− 2)-dimensional subspace of the space of all portfolios which we will call L.

5



The portfolios matching any specified combination of cost and mean payoff will
lie in a parallel (n− 2)-dimensional subspace, L′. By the minimality properties
used to define C∗ and P∗, L is perpendicular to the plane OC∗P∗ containing the
origin, C∗ and P∗. Hence L′ is also perpendicular to this plane. The situation
is illustrated in the three dimensional case in Figure 4.

P = 1

P∗

L

L′

O

C = 1

C∗
Q, the risk minimizer

Figure 4: The geometry of the two fund theorem

It follows that if Q is closest point to the origin in the subspace L′, then Q
lies in the plane OC∗P∗.

Translating this into the language of portfolios we see that the portfolio, Q,
of lowest risk among all portfolios, L, with a given cost and given mean payoff
lies on the plane OC∗P∗. We have proved the following:

Theorem (Two fund theorem [2]). Given a portfolio A, we can find a portfolio,
Q with the same cost and mean payoff in the plane OC∗P∗ that is no riskier than
A. This portfolio can be written as a linear combination of the two portfolios
C∗ and P∗.

An investment fund is a financial product that allows you to invest in a
portfolio of assets which are selected on your behalf by a fund manager. The
fund manager’s job is to design funds which will attract investors. The two
fund theorem says that a fund manager can cater for any potential customer
irrespective of their budget or appetite for taking risks by managing only two
distinct funds (assuming investors agree with the fund manager’s view on the
risk and return of the market). Each customer can then divide their investment
between the two funds according to their risk preferences.

Notice that reflection in the plane OC∗P∗ preserves the cost, mean payoff
and risk of a portfolio. This gives an alternative route to proving the two fund
theorem. Any optimal investment must be invariant under these reflections, but
the only invariant portfolios lie in the plane OC∗P∗. This symmetry argument
lies at the heart of the two fund theorem. It can be applied very generally to
financial problems in the Markowtiz market, and to other markets which admit
symmetries [author(s)].
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5 The efficient frontier

Because of their risk-minimizing properties, portfolios in the plane OC∗P∗ are
called efficient portfolios. We may plot a graph of the risk of each portfolio in
the plane OC∗P∗. Since risk is given by distance, the resulting graph will be a
cone.

Risk

Plane OP∗C∗`

O Risk

Mean profit

Figure 5: A graph of the risk of each
portfolio gives a cone

Figure 6: The efficient frontier

If we choose a fixed cost C = 1, then we obtain a line of ` of efficient
portfolios of cost 1. The mean payoff will vary linearly as one moves along `.
The risk at each point in ` can be computed by intersecting the vertical plane
through ` with the cone. This is illustrated in Figure 5.

This slice of the cone gives us a graph showing the relationship between
mean payoff and risk for efficient portfolios, as illustrated in Figure 6. The
hatched area shows all combinations of risk and return that can be obtained
in the market. The boundary curve gives the minimum achievable risk for any
given mean profit, and is called the efficient frontier. The efficient frontier is the
iconic image of Markowitz’s theory of portfolio optimization. We have proved
that the shape of this curve is a conic section, specifically a hyperbola.

6 Conclusion

Euclid’s geometry gives an elegant way to understand the relationship between
risk and return in financial markets. This demonstrates the power of the ax-
iomatic approach: we may use the same abstract model for what at first appear
to be completely different phenomena.
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