
John Armstrong

C++ for Financial
Mathematics - Solutions





Solutions to Selected Exercises

The C++ code referenced in the solutions can be found at https://nms.kcl.
ac.uk/john.armstrong/cppbook/cpp-website.html.

Section 1.4
1.4.1. The error message depends on the development environment you are
using. Visual Studio gives the helpful message:

error C2144: syntax error : ’double’ should be preceded by ’;’

It identifies the line containing the error as the line starting double␣principal.
A human would think the error occurred by missing the semi-colon on the line
above.

1.4.2. On Visual Studio the error message was:

error C2143: syntax error : missing ’)’ before ’;’

This is a helpful message although it is not quite correct. The bracket should
be before the * and not the ;. Of course, the computer doesn’t know what
actual formula we are trying to type so it has to guess.

1.4.3. On Visual Studio, this produces a screen full of error messages. The
first of these messages is helpful. The other messages are misleading. If the
compiler becomes confused it may produce many error messages. This is why
the first message is always the most important to fix.

1.4.4. This exercise is designed to show that the computer can sometimes
identify entirely the wrong file as containing an error. Inserting the letter
x at the beginning means the compiler becomes confused before any of the
#include statements. These statements cause library code written by other
people to be compiled as part of the program. Since the compiler is confused,
it thinks that these files contain errors. They do not.

3

https://nms.kcl.ac.uk/john.armstrong/cppbook/cpp-website.html
https://nms.kcl.ac.uk/john.armstrong/cppbook/cpp-website.html


4 Solutions to Selected Exercises

1.4.5. Once you type an unexpected character, in this case a dollar sign our
code stops working. This is because it assumes that the user will only enter
numbers. Writing code that can cope with unexpected user inputs is a skill of
its own, but not one we will cover in this course. Usually software development
is divided in teams with user interface experts and mathematicians writing
different code. We will assume in this book that your job will be writing
mathematical code.

1.4.6. In Visual Studio the error is as follows.

error C2065: ’principal’ : undeclared identifier

This error message isn’t as helpful as it could be to a novice. It is saying that
we haven’t yet declared the type of the variable principal. principal is the
name of a variable, in other words it is an identifier for a variable. We have
not declared its type. So it is an undeclared␣identifier.

1.7.1. See main.cpp in ProfitCalculator, line 13.
Code with long names is generally considered better by computer program-
mers because it doesn’t need to be documented as thoroughly. Code with short
variable names will need lots of comments.

Section 2.5
2.5.1. See main.cpp in Exercises2, line 88.

2.5.2. See main.cpp in Exercises2, line 99.

2.5.3. See main.cpp in Exercises2, line 113.

2.5.4. See main.cpp in Exercises2, line 126.

2.5.5. See main.cpp in Exercises2, line 140.

2.5.8. It prints out (on a 32 bit compiler) that a is bigger because we are
interpreting a as equal to 4294967295. Written in binary this number is
11111111111111111111111111111111. When interpreted as an unsigned inte-
ger this is the binary representation of 4294967295 . When interpreted as a
signed integer this is the binary representation of −1.

https://nms.kcl.ac.uk/john.armstrong/cppbook/chapter1/browse/ProfitCalculator/main.cpp.html#13
https://nms.kcl.ac.uk/john.armstrong/cppbook/chapter2/browse/Exercises2/main.cpp.html#88
https://nms.kcl.ac.uk/john.armstrong/cppbook/chapter2/browse/Exercises2/main.cpp.html#99
https://nms.kcl.ac.uk/john.armstrong/cppbook/chapter2/browse/Exercises2/main.cpp.html#113
https://nms.kcl.ac.uk/john.armstrong/cppbook/chapter2/browse/Exercises2/main.cpp.html#126
https://nms.kcl.ac.uk/john.armstrong/cppbook/chapter2/browse/Exercises2/main.cpp.html#140


Solutions to Selected Exercises 5

Section 3.9
3.9.1. See main.cpp in Exercises3, line 82.

3.9.3. See chapter3.cpp in FMLibInstructor, line 88.
This is an inefficient method since if the n-th fibonacci number. If cn is the
numnber of times this function is called to compute the n-th fibonacci number
we see that cn = cn−1 + cn−2 + 1 and c0 = 1, c1 = 1. Since the Fibonacci
number themselves grow according to the difference equation fn = fn−1+fn−2
and f0 = 1, f1 = 1, we see that cn > fn. So the number calls required is even
greater than the Fibonacci number we’re calculating!

3.9.4. See main.cpp in Exercises3, line 91.

3.9.5. See main.cpp in Exercises3, line 90.

3.9.6. See main.cpp in Exercises3, line 143.

3.9.7. See main.cpp in Exercises3, line 176.

3.9.8. See main.cpp in Exercises3, line 201.

3.9.9. You do not need to know anything about these algorithms to use these
functions. By dividing code into functions we can divide responsibility across
a development team. This allows us to have larger teams and hence write more
complex software. No individual has to understand everything.

3.9.10. In our solution we have printed out the values calculated by first
computing norminv and then applying normcdf. This combination of functions
should give the identity. See main.cpp in Exercises3, line 242. On the other
hand, our test for the Black Scholes call price is pretty weak at the moment.
We have used someone elses online calculator to find what the answer should
be. The problem is what would we do to test our code if we couldn’t cheat and
use someone else’s answer? We’ll consider this question again in the chapter
on testing.

Section 4.8
4.8.2. See main.cpp in Exercises4, line 84.

4.8.3. See main.cpp in Exercises4, line 96. This question is of financial in-
terest because the integrand is equal to the cumulative density of the normal
distribution up to a factor of 1

2π . This means that we can use this to check
whether the normcdf function written in earlier chapters is correct.

https://nms.kcl.ac.uk/john.armstrong/cppbook/chapter3/browse/Exercises3/main.cpp.html#82
https://nms.kcl.ac.uk/john.armstrong/cppbook/instructor/browse/FMLibInstructor/chapter3.cpp.html#88
https://nms.kcl.ac.uk/john.armstrong/cppbook/chapter3/browse/Exercises3/main.cpp.html#91
https://nms.kcl.ac.uk/john.armstrong/cppbook/chapter3/browse/Exercises3/main.cpp.html#90
https://nms.kcl.ac.uk/john.armstrong/cppbook/chapter3/browse/Exercises3/main.cpp.html#143
https://nms.kcl.ac.uk/john.armstrong/cppbook/chapter3/browse/Exercises3/main.cpp.html#176
https://nms.kcl.ac.uk/john.armstrong/cppbook/chapter3/browse/Exercises3/main.cpp.html#201
https://nms.kcl.ac.uk/john.armstrong/cppbook/chapter3/browse/Exercises3/main.cpp.html#242
https://nms.kcl.ac.uk/john.armstrong/cppbook/chapter4/browse/Exercises4/main.cpp.html#84
https://nms.kcl.ac.uk/john.armstrong/cppbook/chapter4/browse/Exercises4/main.cpp.html#96


6 Solutions to Selected Exercises

4.8.5. The solution is included in the answer to the next question.

4.8.6. See main.cpp in Exercises4, line 169.

4.8.7. You’re not allowed to look anything up!

Section 5.5
5.5.2. The header file contains less detail and so provides a better overview.
This is why comments for users of your library should be put in the header
file because that is what they will be reading.

5.5.4. The question really is where do you think that a user of your library
will expect to find the definition of the number π. Since most people associate
π with basic geometry results, the file geometry.h is probably the best choice.

Section 6.6
6.6.4. The interesting part of this question is deciding how to test the pric-
ing formula for the put option. This requires some creativity. Possible ideas
include:

• Checking that the put option is nearly worthless if the stock price is far
above the strike price

• Checking that the price of the put option is always positive
• Checking that the put option is equal to the integral given in the ap-

pendix during the derivation of the Black–Scholes formula.
• Checking the put-call parity formula.

If you are new to financial mathematics, these ideas are probably not very ob-
vious. It is important to develop your understanding of financial mathematics
to be able to develop financial software, but that is beyond the scope of this
book.

Section 7.7
7.7.2. See matlib.cpp in FMLib9, line 395.

https://nms.kcl.ac.uk/john.armstrong/cppbook/chapter4/browse/Exercises4/main.cpp.html#169
https://nms.kcl.ac.uk/john.armstrong/cppbook/chapter9/browse/FMLib9/matlib.cpp.html#395


Solutions to Selected Exercises 7

7.7.3. See matlib.cpp in FMLib9, line 399.

7.7.4. See matlib.cpp in FMLib9, line 404. See matlib.cpp in FMLib9, line
408.

7.7.5. See matlib.cpp in FMLib9, line 412.

7.7.6. See matlib.cpp in FMLib9, line 421.

7.7.9. See matlib.cpp in FMLib9, line 438.

7.7.11. The key ingredient is a function called escapeJavascriptString.
This replaces characters such as quotation marks with ’ánd so forth. Since
this is a general purpose routine that is likely to be useful for any web ap-
plication we have put it in separate file called textfunctions.cpp. See text-
functions.cpp in FMLib9, line 89. We use this function whenever we write a
string into a web page representing See LineChart.cpp in FMLib9, line 99.

Section 8.6
8.6.1. See PutOption.cpp in FMLib9, line 127.

8.6.2. See LineChart.cpp in FMLib9, line 190.

8.6.3. See geometry.cpp in FMLib9, line 99.

8.6.4. See geometry.h in FMLib9, line 133.
The code will not compile if you omit the const keywords in distanceTo but
leave them in perimeter. Thus if you want to use const in perimeter you
must use const in every function that perimeter uses.

Section 8.8
8.8.1. See PutOption.cpp in FMLib9, line 80.

Section 9.3
9.3.1. Answering this question simply requires copying and pasting the code
for a call option and changing the word call to put throughout. This vio-

https://nms.kcl.ac.uk/john.armstrong/cppbook/chapter9/browse/FMLib9/matlib.cpp.html#399
https://nms.kcl.ac.uk/john.armstrong/cppbook/chapter9/browse/FMLib9/matlib.cpp.html#404
https://nms.kcl.ac.uk/john.armstrong/cppbook/chapter9/browse/FMLib9/matlib.cpp.html#408
https://nms.kcl.ac.uk/john.armstrong/cppbook/chapter9/browse/FMLib9/matlib.cpp.html#408
https://nms.kcl.ac.uk/john.armstrong/cppbook/chapter9/browse/FMLib9/matlib.cpp.html#412
https://nms.kcl.ac.uk/john.armstrong/cppbook/chapter9/browse/FMLib9/matlib.cpp.html#421
https://nms.kcl.ac.uk/john.armstrong/cppbook/chapter9/browse/FMLib9/matlib.cpp.html#438
https://nms.kcl.ac.uk/john.armstrong/cppbook/chapter9/browse/FMLib9/textfunctions.cpp.html#89
https://nms.kcl.ac.uk/john.armstrong/cppbook/chapter9/browse/FMLib9/textfunctions.cpp.html#89
https://nms.kcl.ac.uk/john.armstrong/cppbook/chapter9/browse/FMLib9/LineChart.cpp.html#99
https://nms.kcl.ac.uk/john.armstrong/cppbook/chapter9/browse/FMLib9/PutOption.cpp.html#127
https://nms.kcl.ac.uk/john.armstrong/cppbook/chapter9/browse/FMLib9/LineChart.cpp.html#190
https://nms.kcl.ac.uk/john.armstrong/cppbook/chapter9/browse/FMLib9/geometry.cpp.html#99
https://nms.kcl.ac.uk/john.armstrong/cppbook/chapter9/browse/FMLib9/geometry.h.html#133
https://nms.kcl.ac.uk/john.armstrong/cppbook/chapter9/browse/FMLib9/PutOption.cpp.html#80


8 Solutions to Selected Exercises

lates the once only principle. We see how to address this problem in the next
chapter.

9.3.2. It should be a log normal distribution with mean eµTS0 and standard
deviation σ

√
T .

9.3.3. See UpAndOutOption.cpp in FMLib12, line 104.

9.3.4. This example is calculated in detail in
It is important to notice that the main complexity that is added is not in
the MonteCarloPricer, but in the new UpAndOutOption class. We can test
the modified MonteCarloPricer by checking that it still prices ordinary call
options correctly. If we know that the payoff method of UpAndOutOption is
correct we can be reasonably confident of our code.
See UpAndOutOption.cpp in FMLib12, line 104.
Some sensible additional checks on the final answer would be to see what
happens as the barrier is increased or decreased. For very large barriers, the
price should be approximately the same as an ordinary call option. For low
barriers the price should be approximately the same as an ordinary put option.

Section 10.6
10.6.1. See DigitalCallOption.cpp in FMLib13, line 97. See DigitalPutOp-
tion.cpp in FMLib13, line 97. Note that this implementation actually uses the
extension technique discussed in a later chapter.

10.6.2. See matlib.cpp in FMLib13, line 554.

10.6.3. See matlib.cpp in FMLib13, line 390.

10.6.4. See matlib.cpp in FMLib13, line 560.

10.6.8. See RectangleRulePricer.cpp in FMLib13, line 134.

10.6.9. See FMLib13 for a complete solution.

Section 11.8
11.8.2. See pointersolutions.cpp in FMLib12, line 94.

11.8.4. See pointersolutions.cpp in FMLib12, line 109.

11.8.7. See pointersolutions.cpp in FMLib12, line 149.

https://nms.kcl.ac.uk/john.armstrong/cppbook/chapter12/browse/FMLib12/UpAndOutOption.cpp.html#104
https://nms.kcl.ac.uk/john.armstrong/cppbook/chapter12/browse/FMLib12/UpAndOutOption.cpp.html#104
https://nms.kcl.ac.uk/john.armstrong/cppbook/chapter13/browse/FMLib13/DigitalCallOption.cpp.html#97
https://nms.kcl.ac.uk/john.armstrong/cppbook/chapter13/browse/FMLib13/DigitalPutOption.cpp.html#97
https://nms.kcl.ac.uk/john.armstrong/cppbook/chapter13/browse/FMLib13/DigitalPutOption.cpp.html#97
https://nms.kcl.ac.uk/john.armstrong/cppbook/chapter13/browse/FMLib13/matlib.cpp.html#554
https://nms.kcl.ac.uk/john.armstrong/cppbook/chapter13/browse/FMLib13/matlib.cpp.html#390
https://nms.kcl.ac.uk/john.armstrong/cppbook/chapter13/browse/FMLib13/matlib.cpp.html#560
https://nms.kcl.ac.uk/john.armstrong/cppbook/chapter13/browse/FMLib13/RectangleRulePricer.cpp.html#134
https://nms.kcl.ac.uk/john.armstrong/cppbook/chapter12/browse/FMLib12/pointersolutions.cpp.html#94
https://nms.kcl.ac.uk/john.armstrong/cppbook/chapter12/browse/FMLib12/pointersolutions.cpp.html#109
https://nms.kcl.ac.uk/john.armstrong/cppbook/chapter12/browse/FMLib12/pointersolutions.cpp.html#149


Solutions to Selected Exercises 9

Section 12.9
12.9.1. See DigitalCallOption.cpp in FMLib13, line 97. See DigitalPutOp-
tion.cpp in FMLib13, line 97. Note that this implementation actually uses the
extension technique discussed in a later chapter.

12.9.2. The Asian option should extend ContinuousTimeOptionBase. See
AsianOption.cpp in FMLib14, line 120.

Section 13.5
13.5.1. See Portfolio.cpp in FMLib14, line 195.

13.5.2. See Portfolio.cpp in FMLib14, line 217.
Our Monte Carlo method doesn’t evaluate the portfolio consisting of one Up
and Out option, one Up And In option and minus a Call Option as being
exactly worthless even though we know the payoff must be zero. This is be-
cause we’re using different random numbers to price each component of the
portfolio. This is an area where our code could be improved.

Section 14.4
14.4.1. See HedgingSimulator.cpp in Exercises14, line 212.

14.4.3. See HedgingSimulator.cpp in Exercises14, line 230.

14.4.4. See HedgingSimulator.cpp in Exercises14, line 190.
ContinuousTimeOption has been given a delta method. By default this uses
the new delta function on MonteCarloPricer. PutOption has its own custom
delta function. The toHedge parameter of HedgingSimulator is a pointer to
a ContinuousTimeOption.

14.4.5. See HedgingSimulator.cpp in Exercises14, line 248.
A StockPriceModel class has been introduced. The simulation model of Hedg-
ing Simulator has been changed to use this instead. In addition Hedging-
Simulator now has a riskFreeRate member variable as this should be con-
figured separately from the stock price model. In practice one would configure
an interest rate model that would allow e.g. stochastic interest rates

https://nms.kcl.ac.uk/john.armstrong/cppbook/chapter13/browse/FMLib13/DigitalCallOption.cpp.html#97
https://nms.kcl.ac.uk/john.armstrong/cppbook/chapter13/browse/FMLib13/DigitalPutOption.cpp.html#97
https://nms.kcl.ac.uk/john.armstrong/cppbook/chapter13/browse/FMLib13/DigitalPutOption.cpp.html#97
https://nms.kcl.ac.uk/john.armstrong/cppbook/chapter14/browse/FMLib14/AsianOption.cpp.html#120
https://nms.kcl.ac.uk/john.armstrong/cppbook/chapter14/browse/FMLib14/Portfolio.cpp.html#195
https://nms.kcl.ac.uk/john.armstrong/cppbook/chapter14/browse/FMLib14/Portfolio.cpp.html#217
https://nms.kcl.ac.uk/john.armstrong/cppbook/chapter14/browse/Exercises14/HedgingSimulator.cpp.html#212
https://nms.kcl.ac.uk/john.armstrong/cppbook/chapter14/browse/Exercises14/HedgingSimulator.cpp.html#230
https://nms.kcl.ac.uk/john.armstrong/cppbook/chapter14/browse/Exercises14/HedgingSimulator.cpp.html#190
https://nms.kcl.ac.uk/john.armstrong/cppbook/chapter14/browse/Exercises14/HedgingSimulator.cpp.html#248


10 Solutions to Selected Exercises

14.4.6. See HedgingSimulator.cpp in Exercises14, line 284.
A Strategy class has been introduced together with three subclasses. The
interpretation of the charts is that if you think the drift is very high and the
volatility is very low then, unless you are very risk averse, you will probably
think that investing in stock is a more effective investment strategy than
delta hedging. The philosophical difference is that investing in stock is a risky
strategy, whereas delta hedging is about providing a service to customers in
exchange for a commission.

Section 15.4

Section 16.7
16.7.4. See Matrix.cpp in FMLib20, line 660.

16.7.5. See matlib.cpp in FMLib20, line 600.

Section 17.3
17.3.1. The compiler I used says that the error is in montecarlopricer.h.
We know the error is in CallOption.h. It is very confusing for novice users to
be given inaccurate information as to which file contains the error. It is not
particularly helpful for experienced users either.

Section 18.12
18.12.2. See MargrabeOption.cpp in FMLib20, line 103.

18.12.3. See Portfolio.cpp in FMLib20, line 104.

https://nms.kcl.ac.uk/john.armstrong/cppbook/chapter14/browse/Exercises14/HedgingSimulator.cpp.html#284
https://nms.kcl.ac.uk/john.armstrong/cppbook/chapter20/browse/FMLib20/Matrix.cpp.html#660
https://nms.kcl.ac.uk/john.armstrong/cppbook/chapter20/browse/FMLib20/matlib.cpp.html#600
https://nms.kcl.ac.uk/john.armstrong/cppbook/chapter20/browse/FMLib20/MargrabeOption.cpp.html#103
https://nms.kcl.ac.uk/john.armstrong/cppbook/chapter20/browse/FMLib20/Portfolio.cpp.html#104


Solutions to Selected Exercises 11

Section 19.4
19.4.1. See matlib.cpp in FMLib20, line 768.

19.4.2. See RectangleRulePricer.cpp in FMLib20, line 134.

Section 20.4
20.4.1. See Executor.cpp in Exercises20, line 279.

20.4.2. See chapter20.cpp in Exercises20, line 119.

20.4.3. See Pipeline.h in Exercises20, line 13.
Note that the definitions are in the header as well as the declaration.

20.4.4. See chapter20.cpp in Exercises20, line 185.

20.4.5. See chapter20.cpp in Exercises20, line 185.

https://nms.kcl.ac.uk/john.armstrong/cppbook/chapter20/browse/FMLib20/matlib.cpp.html#768
https://nms.kcl.ac.uk/john.armstrong/cppbook/chapter20/browse/FMLib20/RectangleRulePricer.cpp.html#134
https://nms.kcl.ac.uk/john.armstrong/cppbook/chapter20/browse/Exercises20/Executor.cpp.html#279
https://nms.kcl.ac.uk/john.armstrong/cppbook/chapter20/browse/Exercises20/chapter20.cpp.html#119
https://nms.kcl.ac.uk/john.armstrong/cppbook/chapter20/browse/Exercises20/Pipeline.h.html#13
https://nms.kcl.ac.uk/john.armstrong/cppbook/chapter20/browse/Exercises20/chapter20.cpp.html#185
https://nms.kcl.ac.uk/john.armstrong/cppbook/chapter20/browse/Exercises20/chapter20.cpp.html#185

	Solutions to Selected Exercises

