
Monte Carlo Pricing

What we have learned:

I As exercises we have written a large amount of MATLAB style
functionality in the �le matlib.cpp. In particular we can:

I Generate random numbers with randUniform and randn.
I Generate plots with plot and hist.
I Compute statistics of vectors with min, mean, prctile etc.

I We have learned how to write simple classes.

What we will do now:

I Add a function to BlackScholesModel to generate price

paths.

I Test our price paths using mean etc. and plot them using plot.

I Write a class MonteCarloPricer that uses a

BlackScholesModel to generate price paths and then uses

risk-neutral pricing to price a CallOption by Monte Carlo.

Generate price path speci�cation

We wish to write a function generatePricePath which takes a

�nal date toDate and a number of steps nSteps and generates a

random Black�Scholes Price path with the given number of steps.

class BlackScholesModel {

public:

 ... other members of BlackScholesModel ...

 std::vector<double> generatePricePath(

 double toDate,

 int nSteps) const;

};

Note that the class declaration e�ectively contains the

speci�cation. If you choose good function and variable names, you

won't need too many comments.

Generate risk-neutral price path speci�cation

We also want a function generateRiskNeutralPricePath which

behaves the same, except it uses the Q-measure to compute the

path.

\begin{cpp}

class BlackScholesModel {

public:

 ... other members of BlackScholesModel ...

 std::vector<double> generateRiskNeutralPricePath(

 double toDate,

 int nSteps) const;

};

\end{cpp}

Private helper function

To implement these functions, we introduce a private function

that allows you to choose the drift in the simulation of the price

path.

class BlackScholesModel {

 ... other members of BlackScholesModel ...

private:

 std::vector<double> generateRiskNeutralPricePath(

 double toDate,

 int nSteps,

 double drift) const;

};

This function is private because we've only created it to make the

implementation easier. Users of the class don't need (or even want)

to know about it.

Algorithm for Black�Scholes price paths

Algorithm

I De�ne

δti = ti − ti−1

I Choose independent, normally distributed εi , with mean 0 and

standard deviation 1.

I De�ne

sti = sti−1
+

(
µ− 1

2
σ2
)
δti + σ

√
δtiεi

I De�ne Sti = exp(sti).

I Sti simulate the stock price at the desired times.

Implement the helper function

vector<double> BlackScholesModel::generatePricePath(

 double toDate,

 int nSteps,

 double drift) const {

 vector<double> path(nSteps,0.0);

 vector<double> epsilon = randn(nSteps);

 double dt = (toDate-date)/nSteps;

 double a = (drift - volatility*volatility*0.5)*dt;

 double b = volatility*sqrt(dt);

 double currentLogS = log(stockPrice);

 for (int i=0; i<nSteps; i++) {

 double dLogS = a + b*epsilon[i];

 double logS = currentLogS + dLogS;

 path[i] = exp(logS);

 currentLogS = logS;

 }

 return path;

}

Implement the public functions

vector<double> BlackScholesModel::generatePricePath(

 double toDate,

 int nSteps) const {

 return generatePricePath(toDate, nSteps, drift);

}

vector<double> BlackScholesModel::

 generateRiskNeutralPricePath(

 double toDate,

 int nSteps) const {

 return generatePricePath(

 toDate, nSteps, riskFreeRate);

}

Notice that with this design we've avoided writing the same

complex code twice.

Implement a visual test

We'd like to see a price path, we can use the LineChart class.

void testVisually() {
 BlackScholesModel bsm;
 bsm.riskFreeRate = 0.05;
 bsm.volatility = 0.1;
 bsm.stockPrice = 100.0;
 bsm.date = 2.0;

 int nSteps = 1000;
 double maturity = 4.0;

 vector<double> path =
 bsm.generatePricePath(maturity, nSteps);
 double dt = (maturity-bsm.date)/nSteps;
 vector<double> times =
 linspace(dt,maturity,nSteps);
 LineChart lineChart;
 lineChart.setTitle("Stock price path");
 lineChart.setSeries(times, path);
 lineChart.writeAsHTML("examplePricePath.html");
}}

Extending matlib

I We've used the linspace function on the previous slide.

I This wasn't one of the homework exercises, but would have

been easy enough.

I Adding new functions like this to matlib is so simple that we

may do so from time to time without bothering to mention

that we have done so.

void testRiskNeutralPricePath() {
 rng("default");

 BlackScholesModel bsm;
 bsm.riskFreeRate = 0.05;
 bsm.volatility = 0.1;
 bsm.stockPrice = 100.0;
 bsm.date = 2.0;

 int nPaths = 10000;
 int nsteps = 5;
 double maturity = 4.0;
 vector<double> finalPrices(nPaths,0.0);
 for (int i=0; i<nPaths; i++) {
 vector<double> path =
 bsm.generateRiskNeutralPricePath(
 maturity, nsteps);
 finalPrices[i] = path.back();
 }
 ASSERT_APPROX_EQUAL(mean(finalPrices),
 exp(bsm.riskFreeRate*2.0)*bsm.stockPrice,
 0.5);
}

Understanding the automated test

I If our risk-neutral pricing function is correct, then the

discounted mean of the �nal stock price should equal the

initial price.

I Since this test depends upon generating random numbers, we

seed the random-number generator. I've written a function

rng to do this. Just like MATLAB you should pass in the string

'default'.

MonteCarloPricer speci�cation

We want to write a class called MonteCarloPricer that:

I Is con�gured with nScenarios, the number of scenarios to

generate. This should default to 10000.

I Has a function price which takes a CallOption and a

BlackScholesModel, and computes (by Monte Carlo) the

price of the CallOption.

We'll see that the declaration for MonteCarloPricer is pretty

much the same thing as this speci�cation.

MonteCarloPricer declaration

#pragma once

#include "stdafx.h"

#include "CallOption.h"

#include "BlackScholesModel.h"

class MonteCarloPricer {

public:

 /* Constructor */

 MonteCarloPricer();

 /* Number of scenarios */

 int nScenarios;

 /* Price a call option */

 double price(const CallOption& option,

 const BlackScholesModel& model);

};

void testMonteCarloPricer();

Revision

I The header �le is called . . .

I The header �le always begins with . . .

I We always #include . . .

I A constructor looks like a function declaration except . . .

I We pass the option and the model by . . .

I Whenever we write code we . . . it.

MonteCarloPricer.cpp

#include "MonteCarloPricer.h"

#include "matlib.h"

using namespace std;

MonteCarloPricer::MonteCarloPricer() :

 nScenarios(10000) {

}

Revision

I The cpp �le is called . . .

I We always start a cpp �le with . . .

I The code beginning MonteCarloPricer::MonteCarloPricer

is . . .

Monte Carlo Pricing

Algorithm (Monte Carlo Pricing)

To compute the Black�Scholes price of an option whose payo� is

given in terms of the prices at times t1, t2, . . . , tn:

I Simulate stock price paths in the risk-neutral measure. i.e. use

the algorithm above with µ = r .

I Compute the payo� for each price path.

I Compute the discounted mean value.

I This gives an unbiased estimate of the true risk-neutral price.

The implementation of price

double MonteCarloPricer::price(

 const CallOption& callOption,

 const BlackScholesModel& model) {

 double total = 0.0;

 for (int i=0; i<nScenarios; i++) {

 vector<double> path= model.

 generateRiskNeutralPricePath(

 callOption.maturity,

 1);

 double stockPrice = path.back();

 double payoff = callOption.payoff(stockPrice);

 total+= payoff;

 }

 double mean = total/nScenarios;

 double r = model.riskFreeRate;

 double T = callOption.maturity - model.date;

 return exp(-r*T)*mean;

}

Remarks

I We only need the �nal payo� to price a call option, so we only

request one step in the price path.

We need a test

static void testPriceCallOption() {

 rng("default");

 CallOption c;

 c.strike = 110;

 c.maturity = 2;

 BlackScholesModel m;

 m.volatility = 0.1;

 m.riskFreeRate = 0.05;

 m.stockPrice = 100.0;

 m.drift = 0.1;

 m.date = 1;

 MonteCarloPricer pricer;

 double price = pricer.price(c, m);

 double expected = c.price(m);

 ASSERT_APPROX_EQUAL(price, expected, 0.1);

}

Random Numbers

I The C++ random-number generator rand isn't very good. In

particular it will give biased answers for large Monte Carlo

simulations.

I A standard random-number generator for Monte Carlo

simulations is called the Mersenne Twister algorithm.

I Implemented as mt19937 in <random>

I randUniform and randn have been modi�ed to use this class.

Generating random numbers

vector<double> randuniform(int n) {

 vector<double> ret(n, 0.0);

 for (int i=0; i<n; i++) {

 ret[i] = (mersenneTwister()+0.5)/

 (mersenneTwister.max()+1.0);

 }

 return ret;

}

Note the use of operator overloading.

Reseeding the random-number generator

void rng(const string& description) {

 ASSERT(description=="default");

 mersenneTwister.seed(mt19937::default_seed);

}

We are using a static variable here. This is a global variable

associated with a class.

Summary

Key functionality for the course:

matlib Functionality similar to MATLAB

BlackScholesModel Represents the Black�Scholes Model

CallOption Represents a call option contract

PutOption Represents a put option contract

MonteCarloPricer Prices options by Monte Carlo

Non �nancial functionality:

LineChart Plots line charts

Histogram Plots histograms

PieChart Plots pie charts

geometry Some elementary mathematical examples

Code you can use, but don't fully understand:

testing Macros to make testing less boring

	Monte Carlo Pricing

