
Using C++ classes

C++ classes

I The types double and int etc. are too restrictive. What

about complex numbers, strings, matrices . . . ?

I #include <complex> to use complex numbers. Actually, we

won't need this.

I #include <string> to use strings.

I #include <sstream> to use strings e�ciently.

I #include <vector> to work with vectors.

I #include <fstream> to work with �les.

I Matrices? Sorry, you have to write your own!

You can write your own custom types. That is the main thing C++

programmer's actually do.

Add all these #include statements to stdafx.h. We can then use

all of these libraries easily. We'll assume using namespace std;

throughout.

Using a vector - slide 1

// create a vector

vector<double> myVector;

// add three elements to the end

myVector.push_back(12.0);

myVector.push_back(13.0);

myVector.push_back(14.0);

// read the first, second and third elements

cout << myVector[0] <<"\n";

cout << myVector[1] <<"\n";

cout << myVector[2] <<"\n";

Remember C++ programmer's count from 0. This is one reason

why.

Using a vector - slide 2

// change the values of a vector

myVector[0] = 0.1;

myVector[1] = 0.2;

myVector[2] = 0.3;

// loop through a vector

int n = myVector.size();

for (int i=0; i<n; i++) {

 cout << myVector[i] <<"\n";

}

Note we start counting from zero.

Using a vector - slide 3

// Create a vector of length 10

// consisting entirely of 3.0's

vector<double> ten3s(10, 3.0);

// Create a vector which is a copy of another

vector<double> copy(ten3s);

ASSERT(ten3s.size() == copy.size());

// replace it with myVector

copy = myVector;

ASSERT(myVector.size() == copy.size());

Passing big objects around

When you write a function that takes a vector parameter you

should write it like this:

double sum(const vector<double>& v) {

 double total = 0.0;

 int n = v.size();

 for (int i=0; i<n; i++) {

 total += v[i];

 }

 return total;

}

I It would be a good idea to learn this program o� by heart.

I Notice the strange const and & symbol. We need these

because vectors are too big to keep copying all the time.

Pass by value

void printNextValue(int x) {

 x = x + 1;

 cout << "B: Value of x is "<<x<<"\n";

}

void main() {

 int x = 10;

 cout << "A: Value of x is "<<x<<"\n";

 printNextValue(x);

 cout << "C: Value of x is "<<x<<"\n";

 return 0;

}

Pass by reference

void printNextValue2(int& x) {

 x = x + 1;

 cout << "B: Value of x is "<<x<<"\n";

}

void main() {

 int x = 10;

 cout << "A: Value of x is "<<x<<"\n";

 printNextValue2(x);

 cout << "C: Value of x is "<<x<<"\n";

 return 0;

}

I For very small data types (double, int, bool), pass by value

is quicker.

I For everything else, pass by reference is quicker.

I But there is a danger of confusing code.

Pass by const reference

void printNextValue(const int& x) {

 x = x + 1;

 cout << "B: Value of x is "<<x<<"\n";

}

This code does not compile

Another use of pass by reference
C++ does not allow you to return multiple values. You can use

pass by reference to get round this.

void polarToCartesian(double r, double theta,

 double& x, double& y) {

 x = r*cos(theta);

 y = r*sin(theta);

}

static void testPolarToCartesian() {

 double r = 2.0;

 double theta = PI/2;

 double x=0.0,y=0.0;

 polarToCartesian(r,theta,x,y);

 ASSERT_APPROX_EQUAL(x,0.0,0.001);

 ASSERT_APPROX_EQUAL(y,2.0,0.001);

}

Writing to a �le

// create an ofstream

ofstream out;

// choose where to write

out.open("myfile.txt");

out << "The first line\n";

out << "The second line\n";

out << "The third line\n";

// always close when you are finished

out.close();

Works just like std::cout except for the open and closing.

Passing a stream as a parameter
Pass a reference to an ostream.

void writeHaiku(ostream& out) {

 out << "The wren\n";

 out << "Earns his living\n";

 out << "Noiselessly.\n";

}

void testWriteHaiku() {

 // write a Haiku to cout

 writeHaiku(cout);

 // write a Haiku to a file

 ofstream out;

 out.open("haiku.txt");

 writeHaiku(out);

 out.close();

}

An ofstream is an ostream.

Working with strings

// Create a string

string s("Some text.");

// Write it to a stream

cout << s<< "\n";

cout << "Contains "

 << s.size() <<

 " characters \n";

// Change it

s.insert(5, "more ");

cout << s <<"\n";

// Append to it with +

s += " Yet more text.";

cout << s <<"\n";

// Test equality

ASSERT(s=="Some more text. Yet more text.");

Technical points about strings

I When you write text in double quotation marks you obtain

data of type char*. This means a pointer to a memory

address containing a sequence of characters.

I We'll cover pointers in detail later in the course.

I C++ will automatically cast this to a string under most

circumstances.

I Using a string is better than using a char* because they're

more e�cient and have lots of helpful functions.

I Use \" to write quotation marks inside quotation marks. Use

\\ to write backslashes inside quotation marks.

Working with strings e�ciently
Using + to build up strings is slow. Don't do this:

string s("");

for (int i=0; i<100; i++) {

 s+="blah ";

}

cout << s<<"\n";

Do this:

stringstream ss;

for (int i=0; i<100; i++) {

 ss<<"blah ";

}

string s1 =ss.str();

cout << s1 <<"\n";

A stringstream is an ostream.

Writing a chart in C++

Solution 1: Just write the data and create the chart in Excel.

void writeCSVChartData(ostream& out,
 const vector<double>& x,
 const vector<double>& y) {
 ASSERT(x.size()==y.size());
 int n = x.size();
 for (int i=0; i<n; i++) {
 out << x[i] <<","<<y[i] <<"\n";
 }
}
void writeCSVChart(const string& filename,
 const vector<double>& x,
 const vector<double>& y) {
 ofstream out;
 out.open(filename.c_str());
 writeCSVChartData(out, x, y);
 out.close();
}

Using classes in header �les

To make this part of a library we need to declare it in the header.

void writeCSVChart(const std::string& filename,

 const std::vector<double>& x,

 const std::vector<double>& y);

Unfortunately, you should never write using namespace std; in a

header �le so all these std:: pre�xes are required. Boring!

Writing a chart in C++

Solution 2: Create a web page containing a chart.

I Create a �le called myPieChart.html. Open it with a text

editor (e.g. Notepad)

I Visit https://google-developers.appspot.com/chart/

interactive/docs/quick_start.

I Copy the code example into your �le.

I Save the �le.

I Open the �le in a web browser.

https://google-developers.appspot.com/chart/interactive/docs/quick_start
https://google-developers.appspot.com/chart/interactive/docs/quick_start

What does this �le do?

I I am not going to tell you in detail!

I We're learning C++ from the bottom up. Let's learn web

development the easy way.

I Guess how to change the chart to display what you want.

I See if you were correct.

Writing a charting function steps

1) Create a header �le charts.h.

2) Create a C++ source �le called charts.cpp.

3) Add placeholders for testing.

4) Write functions to write the charting boiler plate.

5) Write a simple version of the interesting bit of code.

6) Test the pie chart works in a browser.

7) Write a �nal version of the interesting bit of code.

8) Write a test for the interesting code.

9) Write a function that wraps it all together.

10) Add that function to your header �le.

Step 1 - the header �le

What are the required steps when writing a header �le?

Step 1 - the header �le

I Right-click on "header �les" to create.

I Call the �le charts.h.

I All header �les should start with #pragma once.

I Include standard libraries with #include "stdafx.h".

I (We'll cover tests later.)

#pragma once

#include "stdafx.h"

Step 2 - the C++ source �le

What are the required steps when writing a source �le?

Step 2 - the C++ source �le

I Right click on "source �les" to create.

I Call the �le charts.cpp.

I All source �les should #include the header.

I (We'll cover tests later.)

#include "charts.h"

Step 3 - add placeholders for testing

When creating new �les, how do you build in testing? This will

depend upon your testing framework, of course.

Step 3 - add placholders for testing
In charts.h:

void testCharts();

In main.cpp

int main() {

 testMatlib();

 testGeometry();

 testCharts();

 testUsageExamples();

}

In charts.cpp:

void testCharts() {

}

Step 4 - an easy functions

I We pass an ostream& reference to the function.

I We use \" to escape quotes in quotes.

I The spacing in HTML �les isn't very important, so this function

doesn't reproduce the spacing of Google's example pie chart

precisely.

static void writeTopBoilerPlateOfPieChart(ostream& out) {
 out<<"<html>\n";
 out<<"<head>\n";
 out<<"<!--Load the AJAX API-->\n";
 out<<"<script type=\"text/javascript\"";
 out<<"src=\"https://www.google.com/jsapi\">";
 out<<"</script>\n";
 out<<"<script type=\"text/javascript\">\n";
 out<<"google.load('visualization', '1.0',";
 out<<" {'packages':['corechart']});\n";
 out<<"google.setOnLoadCallback(drawChart);\n";
 out<<"function drawChart() {\n";
 out<<"var data=new google.visualization.DataTable();";
 out<<"\n";
 out<<"data.addColumn('string', 'Label');\n";
 out<<"data.addColumn('number', 'Value');\n";
}

Step 5 - easy versions of the remaining code

I Writing a function for the bottom boiler plate code is just as

easy.

I Writing a function writeFixedPieChartData that prints out

the data for a �xed pie chart is easy too. The harder bit will

be making it work with changing data.

I Let's �cheat� for now, and write this easy function so we can

see if we can write a chart to �le that works in a browser.

I This is a sensible practice. Work in small pieces. Once you've

solved one simple problem, move on to the next simple

problem.

Step 5 - The simpli�ed solution

static void writeFixedPieChartData(ostream& out) {

 out<<"data.addRows([\n";

 out<<"['Bananas', 100],\n";

 out<<"['Apples', 200],\n";

 out<<"['Kumquats', 150]\n";

 out<<"]);\n";

}

Step 6 - Writing a test

static void testFixedPieChart() {

 ofstream out;

 out.open("FixedPieChart.html");

 writeTopBoilerPlateOfPieChart(out);

 writeFixedPieChartData(out);

 writeBottomBoilerPlateOfPieChart(out);

 out.close();

}

void testCharts() {

 TEST(testFixedPieChart);

}

I We've written enough code to test. So, let's run it.
I If you run this test in Visual Studio it will create the �le in the

same folder as main.cpp.

Step 7 - The interesting code

Given a string of labels produce output that looks like this:

data.addRows([

['Bananas', 100],

['Apples', 200],

['Kumquats', 150]

]);

I We'll assume the labels don't contain quotation marks or other

special characters.

I Note that the last line is special - there is no comma.

Step 7 - Write the interesting code

static void writeDataOfPieChart(ostream& out,

 const vector<string>& labels,

 const vector<double>& values) {

 out<< "data.addRows([\n";

 int nLabels = labels.size();

 for (int i=0; i<nLabels; i++) {

 string label = labels[i];

 double value = values[i];

 out<<"['"<<label<<"', "<<value<<"]";

 if (i!=nLabels-1) {

 out<<",";

 }

 out<<"\n";

 }

 out<<"]);\n";

}

Step 8 - Testing the interesting code

How can we test the interesting bit of code?

Step 8 - Test page 1
We �rst create a string containing the actual data.

static void testPieChartData() {

 // this test automates the checking

 stringstream out;

 vector<string> labels(3);

 vector<double> vals(3);

 for (int i=0; i<3; i++) {

 stringstream ss;

 ss<<"A Label "<<i;

 labels[i] =ss.str();

 INFO(labels[i]);

 vals[i]=(double)i;

 }

 writeDataOfPieChart(out,

 labels,

 vals);

 string asString = out.str();

Step 8 - Test page 2

We then compare it against a string containing the expected data.

 stringstream expected;

 expected<<"data.addRows([\n";

 expected<<"['A Label 0', 0],\n";

 expected<<"['A Label 1', 1],\n";

 expected<<"['A Label 2', 2]\n";

 expected<<"]);\n";

 string expectedStr = expected.str();

 ASSERT(asString==expectedStr);

}

I Since fstream and stringstream are both types of stream,

the interesting code was easy to test.

I It is perfectly possible to write meaningful tests for almost any

code. If you can't test it, you've designed your code incorrectly

or don't understand the problem properly.

Step 9 - Write a function that wraps it all together

This is essentially the same code as the function

testFixedPieChart:

void pieChart(const string& file,

 const vector<string>& labels,

 const vector<double>& values) {

 ofstream out;

 out.open(file.c_str());

 writeTopBoilerPlateOfPieChart(out);

 writeDataOfPieChart(out, labels, values);

 writeBottomBoilerPlateOfPieChart(out);

 out.close();

}

Step 10 - Add the function to the header �le

void pieChart(std::string& file,

 std::vector<std::string>& labels,

 std::vector<double>& values);

This is copied from the code in the .cpp �le except we've had to

put in lots of std:: statements since you should never write

using namespace std; in a header �le.

Software Architecture

I We created our chart by writing a web browser �le rather than

writing our own graphics code.

I This idea is behind the entire design of the World Wide Web!

I Servers receive text data (from users �lling in forms and typing

URLs).

I Servers produce text data (HTML �les).

I Its all very easy to debug and test, because it all happens

through text �les.

I You could easily adapt our library to be used in a web app.

Use C++ for what C++ is good at (e.g., fast calculations), but

use other languages where appropriate (e.g., user interfaces,

prototyping).

Summary

By putting everything we've learned together, we can write

something very sophisticated.

I Use vector<double> for a vector. Pass them as

const vector<double>&.

I Use string to represent strings. Pass them as

const string&.

I Use stringstream to build complex strings.

I Use fstream to write to �les.

I A stringstream an fstream and cout are all examples of

ostream. Pass them as ostream&.

I Sometimes you might want to drop the const when passing

vectors and strings, but not often.

I Don't return by reference (yet...).

	Using C++ classes

