
Unit testing

Unit testing

I Every function (near enough) should have at least one test.

I Code that is not tested does not work.

I Keep your tests forever. You'll be pleased when you need them
again.

A testing framework for C++

I Unit testing revolution occurred in late 1990's.

I C++ is too old to have decent testing support.

I You need to choose a testing framework:
I Boost unit test framework (http://www.boost.org),
I cppunit,
I Google test,
I . . .
I We'll use a simple one of our own. Its built into FMLib6.zip.

Macros de�ned by testing.h

I ASSERT

I ASSERT_APPROX_EQUAL

I DEBUG_PRINT

I INFO

I TEST

The preprocessor for C allows you to de�ne macros to avoid
repetitive typing. Generally using macros is a bad idea because they
lead to a language within a language. We'll use block caps for all
macros.
Using macros looks pretty much the same as calling C++ functions
. . . unless you look closely.

The ASSERT macro

ASSERT(test);

I This checks whether test is true and throws an error if it is
not true.

I To speed up performance of a real system, all ASSERT checks
are skipped when running the release build.

I This needs to be a macro because it prints out the line where
the assertion failed and the test is eliminated in the release
build. You can't do this with functions.

double safeSqrt(double x) {

 ASSERT(x>=0);

 return sqrt(x);

}

The ASSERT_APPROX_EQUAL macro

I Tests if two double values are nearly equal.

I Throws an error if they are not su�ciently close.

I Needs to be a macro for the same reasons as ASSERT.

void testNormInv() {

 ASSERT_APPROX_EQUAL(norminv(0.975), 1.96, 0.01);

}

The INFO macro

I Prints out a message together with the �le name and line
number.

I Allows you to build messages using <<.

double priceOptionByMonteCarlo(int numScenarios) {

 if (numScenarios>1000000) {

 INFO(

 "Embarking upon a calculation with "

 <<numScenarios<<

 " scenarios");

 }

 ... /* length calculation goes here */ ...

}

The DEBUG_PRINT macro

I Prints out a message so long as:
I You are running the debug build.
I You have enabled debug by calling setDebugEnabled(true).

I Allows you to build messages using <<.

I This stops DEBUG_PRINT slowing down release code.

I It stops you being overwhelmed with DEBUG_PRINT messages.

double max(double a, double b) {

 DEBUG_PRINT("Entering max("<<a<<", "<<b<<")");

 double ret = a>b ? a : b;

 DEBUG_PRINT("Returning "<<ret);

 return ret;

}

The TEST macro

I Prints out that it is about to run a test.

I Runs the test.

I Indicates whether the test passed.

I Needs to be a macro to print out the name of the function
automatically.

void testMatlib() {

 TEST(testNormInv);

 TEST(testNormCdf);

}

This looks a bit like a function call, but in reality you can't pass
functions around like this in normal C++. This is typical of macros
(and why we will try to avoid using them).

Using testing.h - part 1

In each of your �les #include "testing.h".
For each test that you want to perform, write a function whose
name begins test.

#include "testing.h"

... /*non testing code here*/ ...

static void testNormCdf() {

 ASSERT_APPROX_EQUAL(normcdf(1.96), 0.975, 0.001);

}

static void testNormInv() {

 ASSERT_APPROX_EQUAL(norminv(0.975), 1.96, 0.01);

}

Using testing.h - part 2

I In each �le, write a single function which calls all the other
test functions in turn. Use the TEST macro.

I Name this function after the .cpp �le.

I Declare this function in the header.

In matlib.cpp

void testMatlib() {

 TEST(testNormInv);

 TEST(testNormCdf);

}

In matlib.h

void testMatlib();

Using testing.h - part 3

I In your main method, you should call all the test functions
de�ned in the header �les.

In matlib.cpp

int main() {

 testMatlib();

 ... /* run other tests */ ...

}

Insert DEBUG_PRINT where necessary

I Write lots of DEBUG_PRINT statements to help you follow what
is going on. They won't be called until you call
setDebugEnabled(true).

void testMatlib() {

 // switch on the DEBUG_PRINT statements

 setDebugEnabled(true);

 TEST(testNormInv);

 setDebugEnabled(false);

 // switch them off again

 TEST(testNormCdf);

}

What have we gained?

I We no longer need to keep writing main methods and creating
new projects

I We have a record of all the tests performed.

I Whenever we change our code we can retest immediately.

I We know that our code always works! (So long as we have
enough tests).

I We have useful DEBUG_PRINT statements that will help us
�gure-out what is going on if we �nd a bug in future.

testing.h itself

I The �le testing.h contains the de�nition of all the macros.

I It looks ugly and confusing.

I Writing macros is not advisable unless you are writing
development tools so I won't explain how it works.

I Writing macros isn't recommended unless you need their
special features. This really only applies to writing
development tools like a testing framework.

Other frameworks are available

I We've rolled together a basic logging framework and testing
framework.

I Lots of libraries you can use instead for both.

I Cool features like pie charts of how many tests are
passing/failing, sending log messages to a database etc..

I Ask your boss which to use.

Test driven development

Write the tests �rst!

I No danger of you being too lazy to write them

I Forces you think about what problem you are actually trying to
solve

I Tests your tests! They should fail to begin with.

	Unit testing

