
Project structure - working with multiple �les

Declaration and de�nition

Recall the di�erence between declaration. . .

double max(double a, double b);

and de�nition. . .

double max(double a, double b) {

 if (a>b) {

 return a;

 } else {

 return b;

 }

}

The rules for multiple �les

I Every .cpp �le that uses a function must contain a declaration

for that function.

I Every function that is used must be de�ned in exactly one

.cpp �le or in a library.

This is why:

I #include "anotherfile" means perform all the C++

instructions contained in anotherfile.

I One writes header �les (.h) which contain all the declarations

needed in one place, ready to be #included.

Creating a header �le

We want to be able to reuse the functions:

I normcdf�the cumulative distribution function of the normal

distribution;

I norminv�the inverse of normcdf;

I and also a constant PI.

Let's create a new project called MyLib. Now create a header �le:

I Right click on the folder Header Files.

I Create a header �le called matlib.h.

I Type in the �rst line #pragma once

A complete header �le
Starts #pragma once, followed by any required include statements,

then the declarations for our functions (with comments):

#pragma once

const double PI = 3.14159265358979;

/*

 * Computes the cumulative

 * distribution function of the

 * normal distribution

 */

double normcdf(double x);

/*

 * Computes the inverse of normcdf

 */

double norminv(double x);

Some code that uses the functions

In a source �le called main.cpp write the following code

#include <iostream>

#include "matlib.h"

using namespace std;

int main() {

 cout << "normcdf(1.96)="

 << normcdf(1.96) << "\n";

 cout << "norminv(0.975)="

 << norminv(0.975) << "\n";

 return 0;

}

Note angle brackets for standard libraries, quotation marks for your

libraries.

Angle brackets really mean �this �le won't have changed since I last

compiled�.

Attempt to build the code

I Try to build and run the code now.

I It will fail. This is because we haven't de�ned the functions.

main.obj : error LNK2019:

unresolved external symbol "double __cdecl

norminv(double)" (?norminv@@YANN@Z) referenced

in function _main

This is called a linker error. The phrase �unresolved external� is an

unhelpful way of saying roughly either

I You forgot the de�nition altogether;

I Or the type information in the de�nition doesn't exactly match

the type information in the declaration.

The build process

I The pre-processor performs simple text manipulation on the

cpp �les such as #include statements.

I The resulting cpp �les are compiled.

I The compiled versions of all the �les and all the libraries are

linked together. Each use of a function is linked to the place

where it is de�ned.

De�ne the functions

I Create a �le called matlib.cpp to contain the function

de�nitions.

I Start the �le with the line #include "matlib.h".

I Write the necessary code for the function de�nitions.

If you completed the homework, you could copy-and-paste the

relevant bit of your solution. For the time being let's cheat for

speed.

double norminv(double x) {

 return 1234.0; // TODO fix this

}

double normcdf(double x) {

 return 1234.0; // TODO fix this

}

Check everything builds

I You should now be able to build and run the code.

I Check that if you change the type in the de�nitions, you get

build errors.

// change double to float

double norminv(float x) {

 return 1234.0; // TODO fix this

}

Allowing the same �le to be included twice

Delete the #pragma once. Now if you #include matlib.h twice,

you get a build error. Either:

I Start every header �le with #pragma once.

I For each header �le pick a unique number

(4569327457263475698023452376519876247) and then start

and end every header �le as follows:

#ifndef G4569327457263475698023452376519876247

#define G4569327457263475698023452376519876247

... rest of code ...

#endif

The �rst is easy but not o�cially part of the C++ language. The

second is a pain but o�cially correct.

Tip: Recommended rules for header �les

I Start every .h �le with #pragma once.

I For every .h �le there should be one .cpp �le that de�nes

everything it declares.

I The exception that proves the rule is you should have one

header called stdafx.h that includes the standard libraries

you're using.

I You should have a main.cpp �le for testing too.

I The �rst line of the .cpp �les should #include the

corresponding .h �le.

I NEVER type using namespace into a header �le.

Information hiding

I Don't put helper functions in the header �le. This means

helper functions won't be part of your library.

I Users of your library will only see the .h �les.

I Your users don't need to think about these functions.

I They won't phone you at 3 a.m.

I You can delete or change the functions.

Enhanced information hiding with static

I Try to declare global variables and functions that are not in

your header �le as static.

I This makes it impossible for someone else to write their own

declarations and so use your functions.

I This avoids possible name clashes in large projects.

Example

We have created constants called a0, a1, a2 etc. which make sense

in the context of Moro's algorithm, but whose names we might

want to reuse.

Another modi�er: inline

I There is a small amount of overhead involved in calling a

function.

I Marking a function as inline means �duplicate the code in

this function whenever it is called rather than call the

function�.

I Functions which are inline might be marginally faster.

I You can't separate declaration and de�nition for inline

functions.

I Too much inlining leads to bigger executables and hence

slower programs.

I Our hornerFunction functions would be better inlined.

I It's just a hint. The compiler might ignore you.

Complete example

Unzip the project FMLib.zip from the website.

I The hornerFunction functions are not in the header �le. We

think users of our library won't want to know about them.

I The hornerFunction functions are static.

I The constants a1, a2 etc. are all static.

I The hornerFunction functions are inline.

Using other libraries

How does Visual Studio �nd include �les and libraries?

I Go to Project→Properties and look at Con�guration

Properties→VC++ directories.

I This lists the directories searched for include statements and

the directories searched for libraries.

I If you decide to use a non-standard library you will need to tell

it where the libraries .h �les are saved. You do this by adding

an entry to the �Include directories�.

I You will need to say where the libraries binary �le (.lib) is

saved. Use �Library directories� for this.

I If you are writing a library, you should change the linker

settings to create a .lib �le and not a .exe.

	Project structure - working with multiple files

