Flow of control

A while loop

void launchRocket() {
int count = 10;
while (count>0) {
cout << count;
cout << "\n";
count--;
}
cout << "Blast off!\n";
}

The general syntax is:

while (<expression>) {
<statements>

+

Flow chart

count=10

count>0?

Decrement
count

Blast off!

While loop

Another while loop

void printPowers0f2() {

int count = O;

int currentPower = 1;

while (currentPower<1000) {
cout << "2°" << count << "=";
cout << currentPower;
cout << "\n";
currentPower *=2;
count++;

Looping forever

void loopForever() {
while (true) {
cout << "Still looping\n";

+

You will need to type CTRL + C to stop this running.

Do-while loops

void launchRocket_DoWhileVersion() {
int count = 10;
do {
cout << count;
cout << "\n";
count--;
} while (count>=1);
cout << "Blast off!\n";
b

The body of a do-while loop is always executed at least once.

Do-while loops

The general syntax is:

do {
<statements>;
} while (<expression>);

Anything you can do with a do-while loop could be done with a
while loop anyway.

For loops

<initialize loop variables>;

while (<test loop variables>) {
<perform main steps of code>
<update loop variables>

b

This is captured in a for loop

for (<initialize loop variables>;

<test loop variables>;

<update loop variables>) {
<perform main steps of code>

Example for loop

for (int i=10; i>0; i--) {
cout << 1i;
cout << "\n";

}

cout << "Blast off!\n";

Learn this by heart

for (int i=0; i<10; i++) {
cout << 1ij;
cout << "\n";

b

In C++ you should:
» Start counting at 0.
> Use ++ to mean increment.

» Use a less than to decide when to stop.

Another for loop

Here's a for loop in steps of 10.

for (int i=0; i<100; i+=10) {
cout << 1ij;
cout << "\n";

Which loop to use?

» Use for for simple loops with fixed end points and step size.
» Use while for complex and infinite loops.

» Use do-while only on the very rare occasions that it makes
code easier to understand.

break

cout << "Enter positive numbers followed ";
cout << "by a negative number to quit\n";
int total = 0;
while (true) {

int next;

cin >> next;

if (next<0) {

break;

}

total += next;
}
cout << "The total is '"<<total<<"\n";

continue

cout << "Enter positive numbers ";
cout << "Type CTRL+C to quit\n";
int total = 0;
while (true) {

int next;

cin >> next;

if (next<0) {

continue;

}

total += next;

cout << "Positive total is "<<total<<"\n";

return

void countdown() {
int i=10;
while (true) {
if (i==0) {
return;
+
cout << i << "\n";
1--3

Using break, continue and return

Tip: Avoid break and continue

Most code is easier to read if you avoid using break, continue and
early return statements.

Indicating an error

At the top of the file you should write

#include <stdexcept>

When an error has occurred write

throw logic_error("You can’t do that");

Provide some helpful text instead of “You can’t do that”.

Error handling example

double debitAccount(double balance, double amount) {
double newAmount = balance-amount;
if (newAmount<0.0) {
throw logic_error("No overdraft agreed");
b

return newAmount;

Question

Which is better
(A) a program that stops immediately when an error occurs;

(B) a program that attempts to continue when an error has
occurred?

Advice on error handling

v

Throw an error the moment you spot one.

v

Nobody reads the log file.

v

We're writing a maths library. Trying again doesn’t make
sense.

v

Continuing in the face of errors is an advanced topic.

Switch statements

void printMessage(int score) {
switch (score){

case 0:

case 1:

case 2:

case 3:

case 4:
cout << "You have failed.\n";
break;

case 5:

case 6:
cout << "You have passed.\n'";
break;

case T:
cout<< "Merit.\n";
break;

case 8:

case 9:
cout<<'"Distinction.\n";
break;

default:
cout<< "Invalid score.\n";
break;

¥

cout << "Good luck in your future career.\n

Switch statements

» Avoid switch statements. They're hard to read.

» Avoid switch statements. They're a sign of code that will be
hard to maintain. Use object orientation instead.

» Always add break statements and a default case.

X What style rule did we break in the last slide?

Flow of control and &&

bool testl1() {
cout << "In testl\n";
return false;

bool test2() {
cout << "In test2\n";
return true;

int main() {
bool value = testl1() && test2();
cout << '"Value "<<value<<"\n";
return 0;

The ternary operator

int max(int a, int b) {
return a>b ? a : b;

b

Is equivalent to

int max(int a, int b) {
if (a>b) {
return a;
} else {
return b;
}
}

The ternary operator

<test expression> 7 <value if true> : <value if false>

Avoid using the ternary operator.
If statements are easy to read. The ternary operator is hard to read.

	Flow of control

