
Flow of control

A while loop

void launchRocket() {

 int count = 10;

 while (count>0) {

 cout << count;

 cout << "\n";

 count--;

 }

 cout << "Blast off!\n";

}

The general syntax is:

while (<expression>) {

<statements>

}

Flow chart

Another while loop

void printPowersOf2() {

 int count = 0;

 int currentPower = 1;

 while (currentPower<1000) {

 cout << "2^" << count << "=";

 cout << currentPower;

 cout << "\n";

 currentPower *=2;

 count++;

 }

}

Looping forever

void loopForever() {

 while (true) {

 cout << "Still looping\n";

 }

}

You will need to type CTRL + C to stop this running.

Do-while loops

void launchRocket_DoWhileVersion() {

 int count = 10;

 do {

 cout << count;

 cout << "\n";

 count--;

 } while (count>=1);

 cout << "Blast off!\n";

}

The body of a do-while loop is always executed at least once.

Do-while loops

The general syntax is:

do {

<statements>;

} while (<expression>);

Anything you can do with a do-while loop could be done with a

while loop anyway.

For loops

<initialize loop variables>;

while (<test loop variables>) {

<perform main steps of code>

<update loop variables>

}

This is captured in a for loop

for (<initialize loop variables>;

<test loop variables>;

<update loop variables>) {

<perform main steps of code>

}

Example for loop

for (int i=10; i>0; i--) {

 cout << i;

 cout << "\n";

}

cout << "Blast off!\n";

Learn this by heart

for (int i=0; i<10; i++) {

 cout << i;

 cout << "\n";

}

In C++ you should:

I Start counting at 0.

I Use ++ to mean increment.

I Use a less than to decide when to stop.

Another for loop

Here's a for loop in steps of 10.

for (int i=0; i<100; i+=10) {

 cout << i;

 cout << "\n";

}

Which loop to use?

I Use for for simple loops with �xed end points and step size.

I Use while for complex and in�nite loops.

I Use do-while only on the very rare occasions that it makes

code easier to understand.

break

cout << "Enter positive numbers followed ";

cout << "by a negative number to quit\n";

int total = 0;

while (true) {

 int next;

 cin >> next;

 if (next<0) {

 break;

 }

 total += next;

}

cout << "The total is "<<total<<"\n";

continue

cout << "Enter positive numbers ";

cout << "Type CTRL+C to quit\n";

int total = 0;

while (true) {

 int next;

 cin >> next;

 if (next<0) {

 continue;

 }

 total += next;

 cout << "Positive total is "<<total<<"\n";

}

return

void countdown() {

 int i=10;

 while (true) {

 if (i==0) {

 return;

 }

 cout << i << "\n";

 i--;

 }

}

Using break, continue and return

Tip: Avoid break and continue

Most code is easier to read if you avoid using break, continue and

early return statements.

Indicating an error

At the top of the �le you should write

#include <stdexcept>

When an error has occurred write

throw logic_error("You can't do that");

Provide some helpful text instead of �You can't do that�.

Error handling example

double debitAccount(double balance, double amount) {

 double newAmount = balance-amount;

 if (newAmount<0.0) {

 throw logic_error("No overdraft agreed");

 }

 return newAmount;

}

Question

Which is better

(A) a program that stops immediately when an error occurs;

(B) a program that attempts to continue when an error has

occurred?

Advice on error handling

I Throw an error the moment you spot one.

I Nobody reads the log �le.

I We're writing a maths library. Trying again doesn't make

sense.

I Continuing in the face of errors is an advanced topic.

Switch statements

void printMessage(int score) {
 switch (score){
 case 0:
 case 1:
 case 2:
 case 3:
 case 4:
 cout << "You have failed.\n";
 break;
 case 5:
 case 6:
 cout << "You have passed.\n";
 break;
 case 7:
 cout<< "Merit.\n";
 break;
 case 8:
 case 9:
 cout<<"Distinction.\n";
 break;
 default:
 cout<< "Invalid score.\n";
 break;
 }
 cout << "Good luck in your future career.\n";
}

Switch statements

I Avoid switch statements. They're hard to read.

I Avoid switch statements. They're a sign of code that will be

hard to maintain. Use object orientation instead.

I Always add break statements and a default case.

8 What style rule did we break in the last slide?

Flow of control and &&

bool test1() {

 cout << "In test1\n";

 return false;

}

bool test2() {

 cout << "In test2\n";

 return true;

}

int main() {

 bool value = test1() && test2();

 cout << "Value "<<value<<"\n";

 return 0;

}

The ternary operator

int max(int a, int b) {

 return a>b ? a : b;

}

Is equivalent to

int max(int a, int b) {

 if (a>b) {

 return a;

 } else {

 return b;

 }

}

The ternary operator

<test expression> ? <value if true> : <value if false>

Avoid using the ternary operator.

If statements are easy to read. The ternary operator is hard to read.

	Flow of control

