
Functions

What are functions?

I They can be used to represent maths functions.

I More generally they are �reusable pieces of code�.

In C++ one builds complex programs by composing functions.

Example

The function blackScholesCallPrice calls the functions

I sqrt,

I normcdf.

You will write these functions as homework exercises.

Example

The function pricePortfolio calls functions to:

I Read the trading position from a database.

I Read market data from Bloomberg.

I Price a vanilla European call.

I Price a knock-out American option.

I . . .

Each of these functions calls more smaller functions.

I blackScholesCallPrice calls sqrt and normcdf.

The C++ function syntax

compoundInterest : R× R× Z −→ R

given by

compoundInterest(P, i , n) = P

(
1+

i

100

)n

− P.

Corresponds to:

double compoundInterest(double P, double i, int n) {

 double interest = P * pow(1 + 0.01*i, n) - P;

 return interest;

}

Using a function

#include <iostream>
#include <cmath>
using namespace std;

double compoundInterest(double P, double i, int n) {
 double interest = P * pow(1 + 0.01*i, n) - P;
 return interest;
}

int main() {
 int principal;
 double interestRate;
 int numberOfYears;
 cout << "How much are you investing ?\n";
 cin >> principal;
 cout << " What's the annual interest rate(%)?\n";
 cin >> interestRate;
 cout << "How long for (years)?\n";
 cin >> numberOfYears;
 double interest
 = compoundInterest(principal,
 interestRate,
 numberOfYears);
 cout << "You will earn ";
 cout << interest;
 cout << "\n";
 return 0;
}

The structure of the �le

Note the general syntax:

1) include statements

2) using statements

3) function A { . . . }

4) function B { . . . }

In our example there are two functions main and
compoundInterest.
Functions are de�ned sequentially. You can't de�ne a function
inside another function.

What has this bought us?

I Reuse.

I Division of labour.

I Testability.

I Readability.

Type safety

Every variable, every parameter, every return type must have its
type declared. The good:

I The compiler can �nd bugs.

I Code can be faster.

I Auto complete.

The bad:

I More typing.

I Discourages testing.

I You may become the compiler's slave.

Recursion

You can often de�ne a sequence using recurrence relations.

xn = nxn−1 n ≥ 1

x0 = 1

Clearly xn = n!.

int factorial(int n) {

 if (n==0) {

 return 1;

 }

 return n * factorial(n-1);

}

Recursion

The good:

I Can make code easier to read.

The bad:

I Can make code harder to read.

I Can make ine�ciencies hard to spot.

I Some languages are optimised for recursion. C++ is not.

The main method

I Speci�cation for a command line program is that it must have
a method called main that returns an integer.

I Speci�cation for a windows application is that it must have a
method called WinMain (that must take a speci�c set of
parameters).

I Speci�cation for a web app is . . .

I Speci�cation for an iPad app is . . .

Libraries

I A library is a collection of functions that can be called by other
applications and libraries.

I We will be writing a pricing library.

I We'll only use the main method for testing.

A challenging problem

You must declare a function before you can use it.

Example

I blackScholesPrice depends on sqrt and normcdf

I pricePortfolio depends on readDatabase and
blackScholesPrice.

A valid order is sqrt, normcdf, blackScholesPrice,
readDatabase, pricePortfolio.

Suppose we have 10000 functions and for each function we have a
list of which other functions that depends upon. How would you
choose a valid order of declarations?

Declaration and de�nition

This is why C++ allows you to separate declaration and de�nition.
A declaration:

double compoundInterest(double P, double i, int n);

A de�nition:

double compoundInterest(double P, double i, int n) {

 double interest = P * pow(1 + 0.01*i, n) - P;

 return interest;

}

Moving code around

#include <iostream>
#include <cmath>
using namespace std;

double compoundInterest(double P, double i, int n);

int main() {
 int principal;
 double interestRate;
 int numberOfYears;
 cout << "How much are you investing ?\n";
 cin >> principal;
 cout << " What's the annual interest rate(%)?\n";
 cin >> interestRate;
 cout << "How long for (years)?\n";
 cin >> numberOfYears;
 double interest
 = compoundInterest(principal,
 interestRate,
 numberOfYears);
 cout << "You will earn ";
 cout << interest;
 cout << "\n";
 return 0;
}

double compoundInterest(double P, double i, int n) {
 double interest = P * pow(1 + 0.01*i, n) - P;
 return interest;
}

Advice on code order

1. include statements.

2. using statements.

3. Declarations - most interesting �rst.

4. De�nitions - most interesting �rst.

Declaration and de�nition of variables

Declaration:

double principal;

De�nition:

principal = 1000.0;

Declaration and de�nition together:

double principal = 1000.0;

Functions that don't return a value

void printHello() {

 cout << "Hello\n";

}

Default values

double computePrice(double strike,

 double timeToMaturity,

 double spot,

 double riskFreeRate,

 double volatility,

 double dividendRate = 0.0);

Put the default value into the declaration.

Overloading

You can have two functions with the same name if they have
di�erent numbers of arguments.

double average(double a, double b) {

 return 0.5 * (a+b);

}

double average(double a, double b, double c) {

 return (a+b+c)/3.0;

}

Overloading

You can have two functions with the same name if they have
di�erent types of arguments.

int max(int a, int b) {

 if (a>b)

 return a;

 return b;

}

double max(double a, double b) {

 if (a>b)

 return a;

 return b;

}

Global variables

const double PI = 3.141592653589793;

double computeArea(int r) {

 double answer = 0.5 * PI * r * r;

 return answer;

}

double computeCircumference(int r) {

 double answer = 2.0 * PI * r;

 return answer;

}

Tip: Avoid using global variables

You should normally only use global variables to de�ne constants.
They make code very hard to read because they are GLOBAL. You
need to understand ALL of the project to understand their e�ects.
They violate information hiding.

Namespaces

I Is average really a good name for a function?

I There is a danger of name clashes.

#include <iostream>

// comment out the namespace

// using namespace std;

int main() {

 std::cout << "Hello World\n";

}

	Functions

