
Delta Hedging

Delta Hedging

I Show how C++ can be used to test e�ectiveness of delta

hedging

I Exercises give lots of examples of how to use object-oriented

programming to enhance this example.

Overview

At time 0, a trader sells a European call option on the stock with

strike K and maturity T to a customer at the Black�Scholes price.

This means that in exchange for the price P , the trader is

committed to paying the customer the amount

max{ST − K , 0}

at time T .

The trader's strategy is to delta hedge this liability. They delta

hedge at N discrete time steps. So each time step has length

δt = T
N .

Initial cash�ows

We write bi for the Trader's bank balance at each time point i . At
time point 0 the trader puts

b0 = P −∆0S0 (1)

into their risk-free account and invests the remainder of the

principal, ∆0S0 in stock.

Cash�ows at time i

I Accumulate interest.

I Rebalance portfolio. They wish to own a total of ∆i stocks.

They currently hold ∆i−1 units. They must buy the di�erence.

bi = erδtbi−1 − (∆i −∆i−1)Siδt . (2)

Cash�ows at maturity

I Accumulate interest.

I Sell stock that was used for hedging.

I Pay the customer if required.

bN = erδtbN−1 + ∆N−1ST −max{S − K , 0}. (3)

Member variables of Hedging Simulator

We write a class HedgingSimulator with these variables

private:

 /* The option that has been written */

 std::shared_ptr<CallOption> toHedge;

 /* The model used to simulate stock prices */

 std::shared_ptr<BlackScholesModel>

 simulationModel;

 /* The model used to compute prices and deltas */

 std::shared_ptr<BlackScholesModel> pricingModel;

 /* The number of steps to use */

 int nSteps;

Comments

I Store data using shared_ptr. This is essential if we want to

be able to store subclasses.

I Use shared_ptr as the default option to reference other

classes.

I We have a pricing model and a simulation model so we can see

what happens if they are di�erent.

I We have getters and setters for these, and a default

constructor.

runSimulations

The interesting method is runSimulations. Returns a vector of

pro�ts and losses.

 std::vector<double> runSimulations(

 int nSimulations) const;

`

Helper methods

 /* Run a simulation and compute

 the profit and loss */

 double runSimulation() const;

 /* How much should we charge the customer */

 double chooseCharge(double stockPrice) const;

 /* Hoe much stock should we hold */

 double selectStockQuantity(

 double date,

 double stockPrice) const;

runSimulation does all the work. The other methods make the

code easier to read.

Cash�ows at time 0

double HedgingSimulator::runSimulation() const {

 double T = toHedge->getMaturity();

 double S0 = simulationModel->stockPrice;

 vector<double> pricePath =

 simulationModel->generatePricePath(T, nSteps);

 double dt = T / nSteps;

 double charge = chooseCharge(S0);

 double stockQuantity = selectStockQuantity(0, S0);

 double bankBalance = charge - stockQuantity*S0;

Cash�ows at time i

 for (int i = 0; i< nSteps-1; i++) {

 double balanceWithInterest = bankBalance *

 exp(simulationModel->riskFreeRate*dt);

 double S = pricePath[i];

 double date = dt*(i + 1);

 double newStockQuantity =

 selectStockQuantity(date, S);

 double costs =

 (newStockQuantity - stockQuantity)*S;

 bankBalance = balanceWithInterest - costs;

 stockQuantity = newStockQuantity;

 }

Cash�ows at maturity

 double balanceWithInterest = bankBalance *

 exp(simulationModel->riskFreeRate*dt);

 double S = pricePath[nSteps - 1];

 double stockValue = stockQuantity*S;

 double payout = toHedge->payoff(S);

 return balanceWithInterest + stockValue - payout;

}

Implementing selectStockQuantity

double HedgingSimulator::selectStockQuantity(

 double date,

 double stockPrice) const {

 // create a copy of the pricing model

 BlackScholesModel pm = *pricingModel;

 pm.stockPrice = stockPrice;

 pm.date = date;

 return toHedge->delta(pm);

}

Note that we are taking a copy of the pricing model. So, we change

its stock price and date to re�ect the simulation.

Implementing chooseCharge

double HedgingSimulator::chooseCharge(

 double stockPrice) const {

 // create a copy of the pricing model

 BlackScholesModel pm = *pricingModel;

 pm.stockPrice = stockPrice;

 return toHedge->price(pm);

}

Computing delta

double CallOption::delta(

 const BlackScholesModel& bsm) const {

 double S = bsm.stockPrice;

 double K = getStrike();

 double sigma = bsm.volatility;

 double r = bsm.riskFreeRate;

 double T = getMaturity() - bsm.date;

 double numerator = log(S / K) + (r + sigma*sigma*0.5)*T;

 double denominator = sigma * sqrt(T);

 double d1 = numerator / denominator;

 return normcdf(d1);

}

Results

-0.030 -0.015 0.000 0.015 0.030

0

750

1,500

2,250

3,000

Summary

I We have developed a C++ trading simulator to test the

e�ectiveness of the delta hedging strategy. It backs up the

Black�Scholes theory, but also shows that in discrete time it is

not a risk-free strategy.

I The exercises show how object-orientated programming

techniques can be used to make our trading simulator

extremely versatile.

	Delta Hedging

