
Arrays, Strings, Pointers

Reasons for learning about pointers

I All C programmers use them heavily, so if you want to use a C

library you'll end up using pointers.

I It is assumed that you are familiar with pointers so lots of

C++ classes are designed so that using them feels just like

working with pointers.

I They allow you to store objects of di�erent types inside a data

structure. This is essential for polymorphism.

Arrays, the C alternative to vectors

 // Create an unintialized of length 5

 int myArray[5];

 for (int i=0; i<5; i++) {

 cout<<"Entry "<<i<<"=";

 cout<<myArray[i];

 cout<<"\n";

 }

I Create an array of 5 integers, without initialising it.

I Run through the entries and print them out.

I Just as with a vector, the entries start at 0.

I Just as with a vector we use [] to access entries.

I There is no size function.

Initialising an array

 // Create an initialised array

 int myArray[] = {1, 1, 2, 3, 5};

 for (int i=0; i<5; i++) {

 cout<<"Entry "<<i<<"=";

 cout<<myArray[i];

 cout<<"\n";

 }

I We can initialise an array by specifying the values.

I Simply place the values in a comma separated list between

curly brackets.

I Notice that we no longer have to specify the length of the

array when we create it.

Initialising an array to zero

 // Create an initialised array

 int myArray[5] = {};

 for (int i=0; i<5; i++) {

 cout<<"Entry "<<i<<"=";

 cout<<myArray[i];

 cout<<"\n";

 }

I We specify the size of the array.

I We assign it the value {}.

I This gives an array of the desired length full of zeros.

General initialisation

 int myArray[5] = {1,2,3};

 for (int i=0; i<5; i++) {

 cout<<"Entry "<<i<<"=";

 cout<<myArray[i];

 cout<<"\n";

 }

I This prints out the values 1, 2, 3, 0, 0.

I The length of the array is speci�ed.

I Some of the values are speci�ed.

I The rest is padded with zero.

Passing arrays to functions

int sumArray(int toSum[], int length) {

 int sum = 0;

 for (int i=0; i<length; i++) {

 sum+=toSum[i];

 }

 return sum;

}

I As well as passing the array, pass the length. Having the array

without knowing its length is useless.

Don't return arrays

I Do NOT return arrays from functions.

I When a function returns, all the variables it has created are

removed from memory. This includes arrays.

I If you attempt to return an array, the behaviour is unde�ned.

I The caller just receives a pointer to where the array used to

be. The computer may have reused that memory for almost

anything.

You can't vary the length of an array

I You cannot change the length of an array.

I You cannot insert a new item or add some at the end.

I In fact the size is �xed AT COMPILE TIME!

Multi-dimensional arrays

 // Create an initialised 3x5 array

 int myArray[][5] = {{1, 2, 3, 4, 5},

 {2, 0, 0, 0, 0},

 {3, 0, 0, 0, 0}};

 for (int i=0; i<3; i++) {

 for (int j=0; j<5; j++) {

 cout<<"Entry ("<<i<<","<<j<<")=";

 cout<<myArray[i][j];

 cout<<"\n";

 }

 }

I The one strange thing here is that you have to specify all the

dimensions but the �rst by hand.

Summary

I Arrays are a bit like vectors

I You can't return them from functions.

I You always need to pass their length as well as the array.

I You can't change their size. You have to choose it when you

write the program (at compile time) rather than in response to

the user (at run time).

I Because of the last feature, they are almost completely useless

except for de�ning constants and data for tests.

Tip: Avoid arrays

Use vector instead of an array.

new[] - Working with memory directly

 int n = 5;

 int* myArray = new int[n];

 for (int i=0; i<n; i++) {

 cout<<"Entry "<<i<<"=";

 cout << myArray[i];

 cout << "\n";

 }

 delete[] myArray;

I We use the new ...[] operator to allocate a chunk of

memory.

I The good thing is you can choose the size at runtime.

I The memory crated will NOT be automatically deleted when

the function exits.

I You must use delete [] operator to manually delete

everything you create with the new[] operator.

Using new[] and delete[]

I The data returned by new int[n] is called a pointer.

I It has type int* which means �a pointer to an int�.

I The default constructor for the data will be called. Since int

data is randomly initialised, the memory in this example will be

randomly initialised.

I In fact the array we used before was of type int*. It's just

that the notation for arrays in C hides this fact.

I All that the int* myArray contains is the memory address

where the array starts.

I We have to remember ourselves that the block of memory is of

length n.

I You can use [] with a pointer to �nd the integer at a given

o�set.

New[] with other data types

I You can use new[] to create blocks of memory with whatever

type of object you like.

I We'll use the following Pair class in examples

class Pair {

public:

 double x;

 double y;

 Pair();

 Pair(double x, double y);

};

New[] a set of Pairs

 int n = 5;

 Pair* myPairs = new Pair[n];

 for (int i=0; i<n; i++) {

 double xValue = myPairs[i].x;

 double yValue = myPairs[i].y;

 cout<<"Pair (";

 cout<< xValue;

 cout<<",";

 cout<< yValue;

 cout<<")\n";

 }

 delete[] myPairs;

I The type is a Pair*, a pointer to a Pair.

I The default constructor is called. So, in this case the points

are all at (0, 0)

Working with pointers

I A pointer is just the address in memory of some data.

I On a 32-bit computer a pointer will be 4 bytes long. On a

64-bit computer it will be 8 bytes long.

I This means a 32-bit computer can have up to 232bytes ≈ 2Gb
of memory.

I 64-bit computers could in principle have vastly more memory.

I It is normal to write memory addresses as a hexadecimal

number. e.g. 9ABF0132 is a typical memory address.

Pointer basics

 int myVariable = 10;

 int* pointerToMyVariable = &myVariable;

 cout << "Memory location of myVariable ";

 cout << pointerToMyVariable;

 cout << "\n";

 cout << "Value of myVariable ";

 cout << (*pointerToMyVariable);

 cout << "\n";

Running this on my 32 bit computer, I got the following output:

Memory location of myVariable 0013FE78

Value of myVariable 10

The operators & and *

I Use & to �nd the memory address of a variable, i.e. to obtain a

pointer.

I Use * to �nd the value at a memory address, i.e. �nd out what

is being pointed to.

I So *p means the same as p[0].

I This is a completely di�erent use of & from the use in pass by

reference!

I When used as part of a type de�nition & means �reference�.

I When used as an operator & means �memory location of�.

The operator ->

 Pair p;

 Pair* pointerToP = &p;

 // Use -> to access fields via a pointer

 pointerToP->x = 123.0;

 pointerToP->y = 456.0;

 // We check that c has changed

 ASSERT(p.x==123.0);

 ASSERT(p.y==456.0);

 // You could use * and .

 ASSERT((*pointerToP).x==123.0);

 ASSERT((*pointerToP).y==456.0);

I Use -> to access �elds of an object via a pointer.
I This is equivalent to using * and . in combination, but is

easier to read.

Working with pointers

int sumUsingPointer(int* toSum, int length) {

 int sum = 0;

 for (int i=0; i<length; i++) {

 sum+=toSum[i];

 }

 return sum;

}

I We specify the type of the parameter as int *.

I The code here is identical to that with arrays except that we

declare the type using * rather than [].

I Note that you have to pass the number of elements as well as

the pointer.

Using the ++ operator with pointers

int sumUsingForAndPlusPlus(int* begin, int n) {

 int sum = 0;

 int* end = begin + n;

 for (int* ptr=begin; ptr!=end; ptr++) {

 sum += *ptr;

 }

 return sum;

}

I You can use ++ to move a pointer on to the next item.

I You can use == to compare pointers.

I This code is equivalent to the last one, we just use ++ instead

of arithmetic.

I Maybe this will be a tiny bit faster, since adding 1 to a

number is easier than adding an arbitrary number?

Mental picture

Mental picture

Pointer arithmetic

int sumUsingPointerArithmetic(int* toSum,

 int length) {

 int sum = 0;

 for (int i=0; i<length; i++) {

 int* ithElement = toSum + i;

 int valueOfIthElement = *ithElement;

 sum+= valueOfIthElement;

 }

 return sum;

}

I You can perform arithmetic on pointers.

I p[23] is the value pointed to by p+23.

I So pointer arithmetic is an alternative to using [].

Coping with pointers sensibly

I Since we always need the number of elements as well as the

pointer it seems wise to introduce a class such as:

class IntArray {

public:

 int* firstElement;

 int length;

};

I We could give this class a helpful function size.

I Of course this class already exists! It is a vector<int>.

new[] summary

I Pointers and new [] allow you to recreate the behaviour of a

vector but with more conceptual overhead.

I You must delete[] anything you create with new [].

I You cannot simply insert new values into data created with

new[].

I You must be careful only to reference valid memory when

using [] otherwise you may get very unpleasant errors.

Tip: Avoid new []

You should avoid using new [] and simply work with vectors

instead. The only possible exception might be if you believed you

could squeeze a bit more performance out of accessing raw

memory. Unlikely.

Pointers to text

 const char* charArray2 = "Hello";

 for (int i=0; i<6; i++) {

 cout << "ASCII VALUE ";

 char c = charArray2[i];

 cout << ((int)c);

 cout << "\n";

 }

Text in C

I In the C language, the standard was to represent text using a

block of memory containing characters terminated by the

ASCII code 0.

I ASCII is the coding used for characters. The code for `A' is

65, the code for `1' is 49, the code for `0' is 48.

I The code 0 doesn't represent any character, so it can be used

to mark the end.

I The C language provides a short-cut for creating an array of

characters ending with the code zero. Just place the desired

characters in double quotes.

I These are called �C-style strings� or �null-terminated strings�

Working with null-terminated strings

int computeLengthOfString(const char* s) {
 int length = 0;
 while ((*s)!=0) {
 s++;
 length++;
 }
 return length;
}

void testComputeLengthOfString() {
 const char* quotation="To be or not to be";
 int l1 = computeLengthOfString(quotation);
 int l2 = strlen(quotation); // built in
 ASSERT(l1==l2);
}

I C contains various functions to help work with null-terminated

strings.

I strlen computes the length. strcpy copies one string into

another.

The di�culties of working with memory

Be careful not to access data outside the array

 char* shortText = new char[20];

 for (int i=0; i<1000; i++) {

 shortText[i] = 'x';

 }

 delete[] shortText;

I This code will behave unpredictably. It will probably crash

horribly.

I When you use a string in debug mode, various checks are

made so you at least get a somewhat helpful error message.

Be careful not to return an array

char* thisFunctionReturnsAnArray() {

 /* This produces a compiler warning */

 char text[] = "Don't do this";

 return text;

}

void someOtherFunction() {

 char text[] = "Alternative text\n";

 cout << text;

 cout << "\n";

}

void testDontReturnArrays() {

 char* text = thisFunctionReturnsAnArray();

 someOtherFunction();

 cout << text;

 cout << "\n";

}

Returning pointers

I Note that the text is an char array, so it will be deleted the

moment the function exits.

I The code on the previous slide will behave unpredictably. It

probably will print some junk if you run it.

I You can return a string without a problem.

I You are allowed to return a pointer created with new [], but

then you'll have to make sure the caller knows whether or not

they will be expected to call delete[] at some point.

I By convention in C and C++, if a function returns a pointer,

the caller is NOT expected to call delete[]. For example, if

you call c_str() on a string you shouldn't delete[] what

it returns.

char* thisFunctionReturnsAPointer() {

 char text[] = "This works";

 int n = strlen(text);

 char* ret = new char[n+1];

 /* We now get a compiler warning here */

 strcpy(ret, text);

 return ret;

}

void testReturnPointerJustAboutOK() {

 char* text = thisFunctionReturnsAPointer();

 someOtherFunction();

 cout << text;

 cout << "\n";

 // don't forget to free the memory

 delete[] text;

}

This violates the convention on NOT deleting the return value of a

function, so it is considered to be confusing code.

Text in C++

I Initialising text using double quotes is too tempting to resist,

so we allow that in C++ too.

I We instantly convert the char* data into a string instance.

I The string instance stores the actual length as a member

variable.

I This is much more e�cient than having to look at every

character of a string every time you want to know its length!

Tip: Avoid char*

Use text in quotation marks, but use string everywhere else. If

you need to create a char* to call a legacy function, use the

c_str() function of string.

Sharing data

Example

We have a class Instrument. It contains lots of data about a

traded instrument, for example, the type of the instrument, the

Bloomberg code, the Reuter's code, etc.

We have another class Position, which consists simply of an

instrument, the quantity held in that instrument, and the name of

the trader who has taken the position. We save memory by reusing

the same Instrument instances.

new and delete

I To create a single object use new.

I When you no longer need it call delete.

I Be very careful to use delete[] when you have used new []

and delete when you have used new.

 Pair* myPair = new Pair;

 myPair->x = 1.3;

 myPair->y = 2.5;

 cout << "Pair (";

 cout << (myPair->x);

 cout << ", ";

 cout << (myPair->y);

 cout << ")\n";

 delete myPair;

Sharing an instrument

class Instrument {

public:

 string bloombergTicker;

 string ricCode;

 string companyName;

 Instrument() {}

};

class Position {

public:

 string trader;

 double quantity;

 Instrument* instrument;

 explicit Position(Instrument * instrument);

};

Position::Position(Instrument* instrument) :

 instrument(instrument) {

}

Remarks

I Note that the Position contains a pointer to an instrument and

not an actual instrument of its own.

I WARNING: If you don't initialise a pointer it will fail badly

when you try to use it.

// Don't do this

Instrument* instrument;

cout << instrument->companyName << "\n";

I This is why we use an Instrument* to construct a Position

I Sometimes you wish to specify that a pointer doesn't yet point

to anything, in which case you initialise it to nullptr.

string getCompanyName(Position& position) {

 if (position.instrument==nullptr) {

 return "Name not set";

 } else {

 return position.instrument->companyName;

 }

}

However, if you use nullptr there is a danger that someone

might forget the check, resulting in a nasty error.

Code to create a vector of positions

vector<Position> constructPositions() {
 // the caller of this function
 // should call delete on the instrument
 // when they are done with all the positions
 vector<Position> positions;

 Instrument* instrument = new Instrument;
 instrument->companyName = "Google";
 instrument->bloombergTicker = "GOOG US Equity";
 instrument->ricCode = "GOOG.OQ";

 Position p1(instrument);
 p1.trader = "Han";
 p1.quantity = 100.00;
 positions.push_back(p1);

 Position p2(instrument);
 p2.trader = "Leia";
 p2.quantity = -100.00;
 p2.instrument = instrument;
 positions.push_back(p2);

 return positions;
}

Problem

void testConstructPositions() {

 vector<Position> r = constructPositions();

 int n = r.size();

 for (int i=0; i<n; i++) {

 cout << "Position "<<i<<"\n";

 Position& p=r[i];

 cout << "Trader "<<p.trader<<"\n";

 cout << "Quantity "<<p.quantity<<"\n";

 cout << "Instrument ";

 cout << p.instrument->companyName<<"\n";

 cout << "\n";

 }

 delete r[0].instrument;

}

The caller of constructPositions has to know precisely how to

call delete. This violates information hiding�you need to know

how constructPositions actually works.

Solution - shared_ptr

I Whenever you use new, store the result using a shared_ptr.

I A smart pointer is a C++ class which behaves like a pointer

but which handles working out when to call delete on your

behalf. shared_ptr is the most useful smart-pointer class.

I shared_ptr keeps track of how often it has been copied.

Once the number of copies of the smart pointer in existence

drops to zero it calls delete

I (More precisely, just before the last remaining copy of the

smart pointer is removed from memory, it calls delete.)

Position version 2

Here is a new version of the Position class which uses a

shared_ptr:

class PositionV2 {

public:

 string trader;

 double quantity;

 shared_ptr<Instrument> instrument;

 explicit PositionV2(shared_ptr<Instrument> ins);

};

PositionV2::PositionV2(shared_ptr<Instrument> ins) :

 instrument(ins) {

}

Using shared_ptr

vector<PositionV2> constructPositionsV2() {
 vector<PositionV2> positions;

 shared_ptr<Instrument> ins
 = make_shared<Instrument>();
 ins->companyName = "Google";
 ins->bloombergTicker = "GOOG US Equity";
 ins->ricCode = "GOOG.OQ";

 PositionV2 p1(ins);
 p1.trader = "Han";
 p1.quantity = 100.00;
 positions.push_back(p1);

 PositionV2 p2(ins);
 p2.trader = "Leia";
 p2.quantity = -100.00;
 p2.instrument = ins;
 positions.push_back(p2);

 return positions;
}

Using a shared_ptr

I We have to initialise the shared_ptr by calling make_shared.

I After that, using a shared_ptr is just like using a pointer. In

particular, * and -> still work.

The payo�

void testConstructPositionsV2() {

 vector<PositionV2> r = constructPositionsV2();

 int n = r.size();

 for (int i=0; i<n; i++) {

 cout << "Position "<<i<<"\n";

 PositionV2& p=r[i];

 cout << "Trader "<<p.trader<<"\n";

 cout << "Quantity "<<p.quantity<<"\n";

 cout << "Instrument ";

 cout << p.instrument->companyName<<"\n";

 cout << "\n";

 }

}

We no longer call delete in this code. Information hiding has been

saved!

Pointers summary

I Don't use pointers directly, use shared_ptr instead.

I Use a shared_ptr when you need to create long-lived objects

that are shared by di�erent objects. Hence the name

shared_ptr, of course.

I Always initialise shared_ptr instances, otherwise you will see

some very nasty errors.

References revisited

I A lot of what you can do with a pointer, you can do with a

reference.

I You can have a member variable which is a reference.

I By storing data by reference you save memory, just as with

pointers.

I You must initialise member variables which are references in

the constructor.

I Owning a shared_ptr to an object means that you are

guaranteed the object won't be deleted until you no longer

need it.

I If you use a reference, there's a danger that someone else

might delete your object.

How NOT to use references as a member variable

class PositionV3 {

public:

 string trader;

 double quantity;

 Instrument& instrument;

 explicit PositionV3(Instrument& instrument);

};

PositionV3::PositionV3(Instrument& instrument) :

 instrument(instrument) {

}

I This code is technically correct. Note that you must initialise a

member variable reference in the constructor.

I The problem is that the Position class has no control over

when the instrument might be deleted.

How NOT to use references as a member variable

PositionV3 constructPositionV3() {
 // This function doesn't work, the instrument
 // is deleted, so all the returned positions
 // contain broken references
 vector<PositionV3> positions;

 Instrument instrument;
 instrument.companyName = "Google";
 instrument.bloombergTicker = "GOOG US Equity";
 instrument.ricCode = "GOOG.OQ";

 PositionV3 position(instrument);
 position.trader = "Han";
 position.quantity = 100.00;
 return position;
}

I This code is a disaster waiting to happen. We're creating a

Position that appears to be initialised, but then immediately

deleting the Instrument it refers to.

I We're not consciously deleting the instrument, it just happens

as part of automatic cleanup when the method exits.

The disaster

void testConstructPositionV3() {

 // This will fail horribly

 PositionV3 p = constructPositionV3();

 cout << "Trader "<<p.trader<<"\n";

 cout << "Quantity "<<p.quantity<<"\n";

 cout << "Instrument ";

 cout << p.instrument.companyName<<"\n";

 cout << "\n";

}

I You can run this code by uncommenting the appropriate line in

the main method.

I There is no guarantee what it will do.

Some acceptable code using a reference as a member

double integralToInfinity(RealFunction& f,
 double lowerLimit, int nPoints) {

 class DefiniteIntegrand : public RealFunction {
 public:
 RealFunction& g;
 double lowerLimit;

 DefiniteIntegrand(RealFunction& g,
 double lowerLimit) :
 g(g), lowerLimit(lowerLimit) {
 }

 double evaluate(double x) {
 return (1/(x*x))
 * g.evaluate(lowerLimit - 1 + (1/x));
 }
 };

 DefiniteIntegrand integrand(f, lowerLimit);
 return integral(integrand, 0, 1, nPoints);
}

Why this is acceptable

I We know that our DefiniteIntegrand instance will only be

kept in memory until the integralToInfinity method

returns.

I The caller has given us a reference, so they are promising that

it won't be deleted until the function returns.

I So we can safely use the reference.

Summary

I Pointers, references and shared_ptr can be used to achieve

similar things.

I References are a bit safer than pointers. For example, you

can't call delete on a reference, and you must initialise

reference variables.

I shared_ptr is a bit slower than a reference or a pointer, but

is really the only viable option for long-lived data.

I In summary:
I Use references if you are sure that the automatic deletion of

local variables won't be a problem.
I Use shared_ptr if you want to create long-lived data.
I Don't use raw pointers.
I If your head is hurting and you don't want to think about it

right now, use shared_ptr

	Arrays, Strings, Pointers

