
Interfaces

The need for interfaces

I The code for pricing a CallOption and the code for pricing a

PutOption by Monte Carlo is identical apart from the

speci�cation of the type of the option.

The fantasy code

double MonteCarloPricer::price(

 const PathIndependentOption& option,

 const BlackScholesModel& model) {

 double total = 0.0;

 for (int i=0; i<nScenarios; i++) {

 vector<double> path= model.

 generateRiskNeutralPricePath(

 option.getMaturity(),

 1);

 double stockPrice = path.back();

 double payoff = option.payoff(stockPrice);

 total+= payoff;

 }

 double mean = total/nScenarios;

 double r = model.riskFreeRate;

 double T = option.getMaturity() - model.date;

 return exp(-r*T)*mean;

}

Explanation of the concepts

I Our code to price a CallOption only generates prices with

one time step, so it is only valid for path-independent options.

I Wouldn't it be nice if we could price all path-independent

options with the same code?

I Given that C++ requires us to specify the type of all

parameters, we need to de�ne a type that represents a general

path-independent option.

Other examples

I An ostream is a general type.
I We can write to a general ostream.
I An ostream might be a �le, a printer or the Internet.

I In the real world, a car is a general type.
I We can steer to the right, we can steer to the left.
I There are lots of makes of car, but we use them all the same

way.

I In a computer game a monster is a general type.
I We can draw a monster on screen.
I We can ask it where it will move next.
I Goblins and elves behave quite di�erently, but we call the same

functions to paint them on the screen and to decide their next

moves.

I In a trading simulation, a strategy is a general type.
I We can use the strategy to determine what to buy.
I There are lots of strategies, but a simulator should cope with

all strategies.

The idea of an interface

I We need to separate interface from implementation.

I The interface de�nes how you can interact with an object.

I It de�nes a contract that must be ful�lled by the function

Example

A path-independent option must implement two functions:

I double payoff(double finalStockPrice);

I double getMaturity(); This de�nes the interface of a

path-independent option.

An interface class in C++

Example

A path-independent option must implement two functions:

I double payoff(double finalStockPrice);

I double getMaturity();

C++ equivalent is:

class PathIndependentOption {

public:

 /* A virtual destructor */

 virtual ~PathIndependentOption() {}

 /* Returns the payoff at maturity */

 virtual double payoff(

 double finalStockPrice) const = 0;

 /* Returns the maturity of the option */

 virtual double getMaturity() const

 = 0;

};

How to write an interface

I Come up with a name for your class that describes the

interface clearly. For example PathIndependentOption,

Monster or ostream.

I Write a class declaration that contains all the functions you

would like to present in the class.

I Add the keyword virtual at the front of every function

declaration.

I Add the text =0 before the semi-colon at the end of the

declaration.

I Add the mystical text

 virtual ~CLASS_NAME() {}

to the list of declarations.

What is this voodoo?

I The =0 means �this function is not implemented directly�. This

is the norm for interfaces. There is no general function you

can write that will compute the payoff of all options, so that

is why we do not implement it directly.

I We'll discuss inheritance later in the course and will see how to

use the word virtual more generally. This will explain why

we need to use it here.

I The mystical text:

virtual ~CLASS_NAME() {}

is called a virtual destructor. We'll explain the need for this

when we discuss destructors later in the course.

I I'm teaching you how to do the right thing without explaining

it fully. This is because it's much easier to learn what you

should type than why you should type it!

How to implement an interface

I To specify that you implement an interface use the following

construction:

class CallOption : public PathIndependentOption {

I This means that a CallOption is a

PathIndependentOption. You can now pass a reference to a

CallOption to any function that simply requires a reference

to a PathIndepdendentOption.

I A PutOption is a path-independent option too, so we change

the declaration of PutOption too.

I Our MonteCarloPricer now works equally well with put

options and call options.

The general syntax

class CLASS_NAME : public INTERFACE_NAME {

... declarations for CLASS_NAME ...

};

I You will need to provide a new declaration and de�nition for

every function de�ned in the interface INTERFACE_NAME.

I They must have exactly the same types, const declarations

and so forth.

What has this bought us?

I You can now price ANY path-independent option using the

MonteCarloPricer. This includes options you've never

thought of before.

I The MonteCarloPricer code will remain unchanged even

when you think of a new option you want to price.

I This makes the MonteCarloPricer pluggable. You can

extend its functionality by simply plugging in new options. You

don't need to rewrite the code.

I More generally, the use of interfaces means you can extend a

trading system with new types of �nancial contract, without

having to retest the whole thing.

I Notice that electrical plugs are �pluggable� precisely because

they have a well-de�ned interface. You can use the same

electricity for dishwashers, lamps and televisions!

Another example

I It is easy to write a function that integrates exp−x2 from a to

b using the rectangle rule. But how can we write a function

that can integrate any real-valued function from a to b using

the rectangle rule?
I Here is our fantasy code:

double integral(RealFunction& f,

 double a,

 double b,

 int nPoints) {

 double h = (b-a)/nPoints;

 double x = a + 0.5*h;

 double total = 0.0;

 for (int i=0; i<nPoints; i++) {

 double y = f.evaluate(x);

 total+=y;

 x+=h;

 }

 return h*total;

}

RealFunction

I I've introduced a type called RealFunction. This name

describes the kinds of object I can integrate.

I All we need from a RealFunction is that it can compute a

value at a given point x ∈ R. We de�ne the interface by

requiring that it has a function evaluate that computes the

desired value.

class RealFunction {

public:

 /* A virtual destructor */

 virtual ~RealFunction() {};

 /* This method is abstract, there is

 no definition */

 virtual double evaluate(double x) = 0;

};

I We've followed all the voodoo rules about virtual and =0.

Implement RealFunction

I Every time we want to integrate a real-valued function we

need to write an appropriate implementation class.

class SinFunction : public RealFunction {

 double evaluate(double x);

};

double SinFunction::evaluate(double x) {

 return sin(x);

}

static void testIntegral() {

 SinFunction integrand;

 double actual = integral(integrand, 1, 3, 1000);

 double expected = -cos(3.0)+cos(1.0);

 ASSERT_APPROX_EQUAL(actual, expected, 0.000001);

}

Local classes

static void testIntegralVersion2() {

 class Sin : public RealFunction {

 public:

 double evaluate(double x) {

 return sin(x);

 }

 };

 Sin integrand;

 double actual = integral(integrand, 1, 3, 1000);

 double expected = -cos(3.0)+cos(1.0);

 ASSERT_APPROX_EQUAL(actual, expected, 0.000001);

}

Local classes

I You can de�ne a �throwaway� class inside a function.

I Notice that the de�nition is provided for each member

function not just the declaration.

I Java and C# fans will be disappointed to learn that you can't

access local variables of the containing function.

How to spot when an interface is needed 1

Do you have an ever growing list of parameters to your function to

handle di�erent cases. For example if your function takes:

I A strike,

I A maturity,

I A barrier level,

I A bool specifying whether this is a knock-out or a knock-in

option,

I A bool specifying whether this is a put or a call,

I A bool specifying whether this is a digital or vanilla option,

I A bool specifying whether this is a European or an American

option

I . . .

this is a clue that you are missing an interface. Lots of bool

parameters are a particularly strong clue.

How to spot when an interface is needed 2

Do you keep changing the same function? For example, if every

time a trader comes up with a new investment strategy you �nd

you have to rewrite the function backTestInvestmentStrategy

this is a sign that you should introduce an in interface.

Perhaps you need to design classes MarketData and Portfolio

and a general interface for strategies like this:

class InvestmentStrategy {

 virtual ~InvestmentStrategy() {};

 virtual Portfolio rebalancePortfolio(

 const MarketData& marketData,

 const Portfolio& oldPortfolio) =0;

};

How to spot when an interface is needed 3

I Whenever you need to know the type of the data to solve the

problem. E.g., I can only price an option if I know what type

of option it is.

I This is why C++ makes such a big deal of the type of all

parameters. By specifying types, we are also specifying

behaviour.

I Whenever you �nd yourself using a switch statement or an

enormous if, else if, else if . . . statement.

I Whenever you feel you want to pass functionality around. For
example if you want the user to be able to select:

I The algorithm to use�for example the random-number

generation algorithm.
I The methodology to use to solve a problem�for example,

should we measure risk using VAR or CVAR?
I The action to perform�for example, what should we do when

we discover an arbitrage opportunity, alert the trader or just go

ahead and trade?

How to spot when an interface is needed 4

I Experience!
I There are many books available on object-oriented design

patterns.
I A design pattern is a technique someone has used in the past

to successfully solve a problem.
I By becoming familiar with design patterns, you can use the

same ideas in your own code.
I For example, we have seen a design pattern to write a generic

integral function. Could you write a generic

differentiate function?
I Learning design patterns is a way of consciously learning from

other people's experience.

Summary

I By de�ning interfaces we can write code that will work with

inputs we haven't even thought of yet.

I This is essential to writing real code for the �nancial industry

where new products are invented every day.

I Interfaces are common in every day life: for example cars,

doors, guitars and plug sockets all give familiar examples of

interfaces.

I Learning how to use interfaces is probably the most important

skill in object-oriented design.

	Interfaces

