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The implicit method

Estimating derivatives

There are many formulae for estimating derivatives numerically.
For the �rst derivative alone we have

Forward di�erence

f ′(x) ≈ f (x + h)− f (x)

h

Backward di�erence

f ′(x) ≈ f (x)− f (x − h)

h

Central di�erence

f ′(x) ≈ f (x + h)− f (x − h)

2h

Higher order estimates, e.g.

f ′(x) =
−f (x + 2h) + 8f (x + h)− 8f (x − h) + f (x − 2h)

12h
+O(h4)
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The implicit method

Graphical representation
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The implicit method

Remarks

The forward di�erence and backward di�erence are only

accurate to �rst order.

The central di�erence is accurate to second order (essentially

because the formula is exact for quadratics)

You can create schemes with arbitrary convergence if f is

su�ciently smooth and you are willing to perform su�ciently

many evaluations of f .
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The implicit method

Other �nite di�erence schemes

We wish to solve:

∂W

∂t
= −σ

2

2

∂2W

∂x2

with �nal boundary condition given at time T and appropriate

boundary conditions for large and small W .

For the explicit method we took the backwards estimate for

the time derivative (and used the simplest estimate for the

second derivative term)

For the implicit method, take the forward estimate for the time

derivative

For the Crank-Nicolson method use a central estimate.
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The implicit method

Explicit and implicit di�erence equations

Recall we have discretized the t and x coordinates so Wi ,j is the

value of W at time point i and space point j . We have N time

steps and M space steps.

Explicit method: take the backward di�erence in time and the

simplest estimate in x .

Wi ,j −Wi−1,j
δt

= −σ
2

2

(
Wi ,j+1 − 2Wi ,j +Wi ,j−1

δx2

)
Implicit method: take the forward di�erence in time and the

simplest estimate in x .

Wi+1,j −Wi ,j

δt
= −σ

2

2

(
Wi ,j+1 − 2Wi ,j +Wi ,j−1

δx2

)
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The implicit method

Stencils

These pictures are called stencils. They summarize how we use the

values of W to estimate the various derivatives.
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The implicit method

Implicit method

To price a call option using the implicit method for the heat

equation, we have the following conditions:

A di�erence equation

Wi+1,j −Wi ,j

δt
= −σ

2

2

(
Wi ,j+1 − 2Wi ,j +Wi ,j−1

δx2

)
Boundary conditions:

Wi ,jmin
= 0

Wi ,jmax = e−
1
2
σ2ti+xjmax − erTK

Wimax,j = max{e−
1
2
σ2T+xj − erTK , 0}

Note: we calculated the boundary conditions last week when

we transformed the Black�Scholes PDE to the heat equation
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The implicit method

Remarks

The explicit method gave us a formula for Wi−1,j in terms of

the value of W at time i .

The implicit method gives us M + 1 linear equations in the

M + 1 unknowns Wi−1,j in terms of the values of W at time i .

(Recall we have N time steps, M space steps and so N + 1

time points and M + 1 space points)

We can solve these linear equations to compute the values at

time i − 1.

The method is called implicit because we don't get an explicit

formula for Wi ,j , instead we calculated Wi ,j as the value

implied by a set of simultaneous equations.
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The implicit method

Solving the linear equations

To solve linear equations in MATLAB one writes them in

matrix form Ax = b.

The solution is then given by x = A \ b. i.e. we divide both

sides by A on the left�.

Our di�erence equation is

Wi+1,j −Wi ,j

δt
= −σ

2

2

(
Wi ,j+1 − 2Wi ,j +Wi ,j−1

δx2

)
Rewriting:

Wi+1,j = −λWi ,j+1 + (1+ 2λ)Wi ,j − λWi ,j−1

where:

λ =
1

2
σ2

δt

(δx)2
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The implicit method

The simultaneous equations

For j ∈ {jmin+1, jmin+2, . . . , jmax−1 we have

−λWi ,j+1 + (1+ 2λ)Wi ,j − λWi ,j−1 = Wi+1,j

Boundary conditions

Wi ,jmin
= bottomi = 0

Wi ,jmax = topi = e−
1
2
σ2ti+xjmax − erT

This gives a total of M + 1 linear equations in M unknowns.
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The implicit method

Matrix form



1 0 0 0 0 . . . 0 0 0

−λ 1+ 2λ −λ 0 0 . . . 0 0 0

0 −λ 1+ 2λ −λ 0 . . . 0 0 0

0 0 −λ 1+ 2λ −λ . . . 0 0 0
...

...

0 0 0 0 0 . . . −λ 0 0

0 0 0 0 0 . . . 1+ 2λ −λ 0

0 0 0 0 0 . . . −λ 1+ 2λ −λ
0 0 0 0 0 . . . 0 0 1





Wi ,jmin

Wi ,jmin+1

Wi ,jmin+2

Wi ,jmin+3

Wi ,jmin+4
...

Wi ,jmax−2
Wi ,jmax−1
Wi ,jmax


=



bottomi

Wi+1,jmin+1

Wi+1,jmin+2

Wi+1,jmin+3
...

Wi+1,jmax−3
Wi+1,jmax−2
Wi+1,jmax−1

topi


We call this large tri-diagonal matrix A.

We write a MATLAB helper function createTridiagonal

which creates a tridiagonal matrix given three vectors

containing the three non-zero diagonals.
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The implicit method

MATLAB implementation

First we initialize variables such as the vectors x and t precisely as

we did for the explicit method.

x0 = log( S0 );

xMin = x0 - nSds*sqrt(T)*sigma;

xMax = x0 + nSds*sqrt(T)*sigma;

dt = T/N;

dx = (xMax-xMin)/M;

iMin = 1;

iMax = N+1;

jMin = 1;

jMax = M+1;

x = (xMin:dx:xMax)';

t = (0:dt:T);

lambda = 0.5*sigma^2 * dt/(dx)^2;
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The implicit method

The changed code

currW=max(exp(-0.5*sigma^2*T + x) - exp(-(r*T))*K,0);

A = createTridiagonal( [0 ; -lambda*ones(M-1,1) ; 0], ...

                       [1 ; (1+2*lambda)*ones(M-1,1) ; 1], ...

                       [0 ; -lambda*ones(M-1,1) ; 0] );

bottom = zeros(N+1,1);

top=exp(-0.5*sigma^2 * t + x(jMax))- exp(-r*T)*K;

for i=iMax-1:-1:iMin

    vector= [ bottom(i); currW((jMin+1):(jMax-1)); top(i) ];

    currW= A \ vector;

end

price = currW(jMin+M/2);

currW stores the value of W at time point i, we do not need to

store the entire matrix of values for W

Note that writing [a; b; c] concatenates matrices vertically

Writing [a b c] concatenates matrices horizontally.
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The implicit method

Advantages of the implicit method

Suppose we �x λ. Choosing δx then determines δt.

The implicit scheme is stable irrespective of λ

The explicit scheme is stable only if (1− 2λ) > 0.

The error of the implicit scheme is O(δt) just as is the explicit

scheme.

For the explicit scheme, for moderately δx you are forced to

have a tiny value for δt to ensure stability.

For the implicit scheme we can choose δx and δt
independently. So we can get good answers with a

comparatively small number of time steps.
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The implicit method

Solving the linear equations

To implement the implicit scheme, we need to solve a linear

equation

Aw = v

where A is a symmetric, tri-diagonal matrix.

If we wrote a general-purpose linear equation solver using

Gaussian elimination this would not take advantage of the

simple form.

Let us see how to solve the equations e�ciently
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The implicit method

Gaussian elimination by hand

A tridiagonal system of equations can be written:

b1x1 + c1x2 = d1 [1]
a2x1 + b2x2 + c2x3 = d2 [2]

+ a3x2 + b3x3 + c3x4 = d3 [3]
+ a4x3 + b4x4 + c4x5 = d4[4]

. . .

Take b1 times equation [2] and subtract a2 times equation [1] x1.
This gives the new equation:

(b1b2 − c1a2)x2 + b1c2x3 = b1d2 − a2d1

This equation together with equations [3], [4], . . . gives a new

tridiagonal system in x2, x3, . . . xn.
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The implicit method

Thomas algorithm

1 dimensional tridiagonal problems are trivial to solve.

x1 = d1/b1.
Assume for induction that we have developed the Thomas

algorithm for problems of dimension n.
For dimension n + 1 use the previous slide to �nd a tridiagonal

system in x2, x3, . . . , xn
Solve this system by the Thomas algorithm (we can do so by

induction)

Now use the equation

b1x1 + c1x2 = d1

to solve for x1.
Therefore we can solve a tridiagonal system of equations with

only O(n) multiplication and addition operations.

A naive implementation of Gaussian elimination will take

O(n3) steps.

https://tinyurl.com/ycaloqk6
https://pollev.com/johnarmstron561


FMO6 � Web: https://tinyurl.com/ycaloqk6 Polls: https://pollev.com/johnarmstron561

The implicit method

Getting MATLAB to use the Thomas algorithm

We'd like MATLAB to use the Thomas algorithm

One option is to implement it ourselves

Another option is to use MATLAB's built in support for the

algorithm

MATLAB will automatically use the Thomas algorithm to

solve Ax = b if it detects that A is tri-diagonal.

In general checking if an arbitrary matrix is tri-diagonal will

take O(n2) steps so we need to give MATLAB a hint.
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The implicit method

Sparse matrices

A sparse matrix is a matrix where most of the entries are zero.

To store a sparse matrix it is more e�cient to store a list of

the rows and columns that are non-zero and the values at

those rows and columns than to store a large block of memory

most of which is zero.

In general, the linear algebra algorithms one should use for

sparse matrices are very di�erent from the ones one uses with

full (i.e. non-sparse) matrices.

We can create a sparse matrix in MATLAB using the

command sparse.

When you solve the problem Ax = b in MATLAB with A a

sparse matrix, it will automatically check to see whether using

the Thomas algorithm is the best approach.
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The implicit method

Creating a sparse matrix in MATLAB

Suppose that a matrix A has non zero entries ari ,ci where r1,
r2, . . . rn and c1, c2, . . . cn are some sequences of indices.

Create a vector rows containing r1, r2, . . . , rn.
Create a vector columns containing c1, c2, . . . , cn.
Create a vector values containing ar1,c1 , ar2,c2 , . . . , arn,cn .
Create a spare matrix A using the command

A = sparse( rows , columns , values );

In general MATLAB tries to intelligently select the best

available algorithm, therefore you should always use a sparse

matrix to store matrices which are mostly zero so that

MATLAB has a hint as to how to proceed.
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The implicit method

The createTridiagonal function

%CREATETRIDIAGONAL Create a sparse tri-diagonal matrix contianing

%  the given upper, diagonal and lower entries.

%  Each of these should be a vector of length N, the first entry of

%  lower should be zero, the last entry of upper should be zero.

function A= createTridiagonal( lower, diagonal, upper )

N = length( diagonal );

rowsUpper = (1:N-1)';

colsUpper = (2:N)';

rowsDiagonal = (1:N)';

colsDiagonal = (1:N)';

rowsLower = (2:N)';

colsLower = (1:N-1)';

allRows = [rowsUpper ; rowsDiagonal ; rowsLower ];

allCols = [colsUpper ; colsDiagonal ; colsLower ];

allVals = [ upper(rowsUpper) ; diagonal ; lower(rowsLower)];

A = sparse( allRows, allCols, allVals );

end
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The implicit method

The solveTridiagonal function

function [ x ] = solveTridiagonal( a,b,c,d )

if (length(a)==1)

    x = d(1)/(b(1));

else

    nextB = b(2:end);

    nextB(1) = b(1)*b(2)-c(1)*a(2);

    nextC = c(2:end);

    nextC(1) = b(1)*c(2);

    nextD = d(2:end);

    nextD(1) = b(1)*d(2)-d(1)*a(2);

    xRemainder = solveTridiagonal(a(2:end),nextB,nextC,nextD);

    x1 = (d(1)-c(1)*xRemainder(1))/b(1);

    x = [x1 ; xRemainder];

end

end
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The implicit method

Recursion

You can write functions in MATLAB that call themselves

Writing functions in this way is called recursion

This gives an easy implementation of solveTridiagonal that

matches are inductive de�nition.

Its not written as e�ciently as it could be because we keep

creating new vectors unnecessarily

It isn't hard to replace the recursion with a for loop if preferred

to get a fully e�cient implementation. There isn't much point

in running through the details since we can use sparse matrices

to achieve the same result.
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The implicit method

The Crank-Nicolson method

For the Crank-Nicolson method one uses the stencil:

∂W

∂t
≈

Wi+1,j −Wi ,j

δt
∂2W

∂x2
≈ 1

2
×

Wi+1,j+1 − 2Wi+1,j +Wi+1,j−1
δx2

+
1

2
×

Wi ,j+1 − 2Wi ,j +Wi ,j−1
δx2
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The implicit method

Crank-Nicolson di�erence equations

The Crank-Nicolson method uses the average of the estimates

for the second derivative at times i and i + 1.

Just as for the implicit method, when we include boundary

conditions, at each time i we will get a system of M + 1

equations in the M + 1 unknowns Wi , j in terms of the values

of W at time i + 1.

For j not at the boundary.

λ

2
Wi+1,j+1 + (1− λ)Wi+1,j +

λ

2
Wi+1,j−1

= −λ
2
Wi ,j+1 + (1+ λ)Wi ,j −

λ

2
Wi ,j−1

Once again this is a tridiagonal system.
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The implicit method

Bene�ts of Crank-Nicolson scheme

It is always stable irrespective of choice of λ

Convergence is O(δt2).

It is an exercise for you to implement this method.
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The implicit method

Pricing American options by the implicit method

One of the main selling points of the explicit �nite di�erence

method is that we can use it to price American options.

We have just seen how the implicit and Crank-Nicolson

methods can be used to improve the stability and convergence

of �nite di�erence methods.

Can these techniques be applied to improve the pricing of

American options?

https://tinyurl.com/ycaloqk6
https://pollev.com/johnarmstron561


FMO6 � Web: https://tinyurl.com/ycaloqk6 Polls: https://pollev.com/johnarmstron561

The implicit method

Recap

To price an American option A by the explicit method, one

assumes we can compute the price at time i + 1.

We can then use the explicit method to compute the expected

value of a new option Ãi at time i that is not-exercisable at
time i but can be exercises at any time from i + 1 onwards.

The price of the American option is then estimated as the

maximum of the immediate exercise price and the price of

option Ãi .

We can now proceed to time i − 1.

Notice that this argument uses expectations and �nancial

logic: we haven't actually derived it from the Black Scholes

PDE. It is really a �tree pricing� algorithm rather than a PDE

algorithm.
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The implicit method

What PDE does an American put option satisfy

An American option does not obey the Black Scholes PDE at

times when early exercise is optimal. At these points it

satis�es:

V = K − S

∂V

∂t
+
σ2

2
S2∂

2V

∂S2
+ rS

∂V

∂S
− rV < 0

At times when early exercise is not optimal, it obeys the Black

Scholes PDE and also the condition

V > K − S

∂V

∂t
+
σ2

2
S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0
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The implicit method

Boundary conditions

At the boundary between the two regions, V and the delta are

both continuous

V = max{K − S , 0}
∂V

∂S
= −1

This is called a free boundary problem.

We haven't proved that these di�erential inequalities hold, but

you can convince yourself using a no-arbitrage argument.

Since they are di�erential inequalities you will need to use

continuous time stochastic calculus to prove things rigorously.
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The implicit method

Complimentarity problem

The following inequalities hold everywhere

V − K + S ≥ 0

−∂V
∂t
− σ2

2
S2∂

2V

∂S2
− rS

∂V

∂S
+ rV ≥ 0

Moreover we must have equality for at least one condition.

The condition that x ≥ 0 and y ≥ 0 and one of x and y
vanishes can be written as x ≥ 0, y ≥ 0 and xy = 0.
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The implicit method

Di�erential inequalities for American options

So we have that at all times

V − K + S ≥ 0

−∂V
∂t
− σ2

2
S2∂

2V

∂S2
− rS

∂V

∂S
+ rV ≥ 0

and

(V − K + S)

(
∂V

∂t
+
σ2

2
S2∂

2V

∂S2
+ rS

∂V

∂S
− rV

)
= 0

We can now �nd discrete approximations to these inequalities

using our choice of stencil and attempt to solve associated

discrete problems.

It then seems reasonable to hope that this will lead to a �nite

di�erence scheme for pricing American options with

convergence properties similar to those seen for European

options.
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The implicit method

Moving to the heat equation

De�ne W = e−rtV is the discounted price.

x = −(r − σ2

2
)t + log(S) as usual.

Boundary conditions are exactly the same as for a pricing a
European put by the heat equation:

Top boundary condition: W (t, xmax) = 0

Bottom boundary condition: W (t, xmin) = e−rt(K − S(xmin))
Final boundary condition: W (t, xmax) = E (t, x).
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The implicit method

Transformed di�erential inequalities

The equations transform to:(
∂W

∂t
+
σ2

2

∂2W

∂x2

)
(W − E (t, x)) = 0

−∂W
∂t
− σ2

2

∂2W

∂x2
≥ 0

W − E (t, x) ≥ 0

Here E (t, x) = e−rt max{K − S(x), 0} is the discounted early

exercise price.
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The implicit method

Discretize

Let's discretize using the implicit scheme, but you could use Crank

Nicolson too.(
−
(
Wi+1,j −Wi ,j

δt

)
− σ2

2

(
Wi ,j+1 − 2Wi ,j +Wi ,j−1

δx2

))
(Wi ,j−Ei ,j) = 0

(
−
(
Wi+1,j −Wi ,j

δt

)
− σ2

2

(
Wi ,j+1 − 2Wi ,j +Wi ,j−1

δx2

))
≥ 0

Wi ,j − Ei ,j ≥ 0

How on earth do you solve such a system of inequalities?

https://tinyurl.com/ycaloqk6
https://pollev.com/johnarmstron561


FMO6 � Web: https://tinyurl.com/ycaloqk6 Polls: https://pollev.com/johnarmstron561

The implicit method

Linear complimentarity problem

The linear complementarity problem is the problem of solving

x .y = 0

x ≥ 0

y ≥ 0

Ax = b + y

For vectors x and y given a vector b and a matrix A. We'll

assume that A is symmetric and positive de�nite.

It is called �linear� because the last condition is linear

It is called �complementarity� because x and y are

complimentary vectors: for each index j either xj or yj is zero.
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The implicit method

Rewriting

At time i take x to be the vector with components

xj = Wi ,j − Ei ,j

x to be the vector

yj =

(
−
(
Wi+1,j −Wi ,j

δt

)
− σ2

2

(
Wi ,j+1 − 2Wi ,j +Wi ,j−1

δx2

))
So the equations earlier imply xy = 0 and x ≥ 0, y ≥ 0.

But these expressions for x and y are not independent as they both

involve the same unknowns Wi ,j . This establishes a linear relation

between x and y of the form y = Ax + b
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The implicit method

Identifying A and b

Write Wi for the vector with components Wi ,j . Similarly Ei .

The de�nition of x tells us that Wi = x + Ei .

The de�nition of y tells us that y = −Wi+1 + AWi for an

appropriate A (which will in fact be the tri-diagonal matrix

found in the European case).

Hence y = −Wi+1 + A(x + Ei ) = Ax + (AEi −Wi+1)

De�ne b = AEi −Wi+1 and we have shown Ax = b.

Therefore x and y are solutions of a linear complimentarity

problem.
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The implicit method

Remarks

The matrix A is the same tridiagonal matrix that occurred in

the implicit method for European options.

The formulae I've explicitly written only apply for j away from

the boundary � as for European options, we have a 1 in the

top left and the bottom right of A to account for the boundary

conditions.
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The implicit method

Initialization

x0 = log( S0 );

xMin = x0 - nSds*sqrt(T)*sigma;

xMax = x0 + nSds*sqrt(T)*sigma;

dt = T/N;

dx = (xMax-xMin)/M;

iMin = 1;

iMax = N+1;

jMin = 1;

jMax = M+1;

x = (xMin:dx:xMax)';

t = (0:dt:T);

lambda = 0.5*sigma^2 * dt/(dx)^2;

https://tinyurl.com/ycaloqk6
https://pollev.com/johnarmstron561


FMO6 � Web: https://tinyurl.com/ycaloqk6 Polls: https://pollev.com/johnarmstron561

The implicit method

Boundary conditions

% Use boundary condition to create vector currW

currW=max(exp(-r*T)*K-exp(-0.5 *sigma^2 * T + x),0);

A = createTridiagonal( [0 ; -lambda*ones(M-1,1) ; 0], ...

                       [1 ; (1+2*lambda)*ones(M-1,1) ; 1], ...

                       [0 ; -lambda*ones(M-1,1) ; 0] );

bottom = exp(-r*T)*K- exp(-0.5*sigma^2 * t + x(jMin));

top=zeros(1,N+1);
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The implicit method

Iteration

exercised = zeros(N+1,M+1);

W = zeros(N+1, M+1);

W(iMax,:)=currW;

for i=iMax-1:-1:iMin

    wIPlus1 = [ bottom(i); currW((jMin+1):(jMax-1)); top(i) ];

    if (american)

        % e = immediate exercise value

        e = max(exp(-r*t(i))*K-exp(-0.5 *sigma^2 * t(i) + x),0);

        b = A*e - wIPlus1;

        omega = 1.5;

        [xSol,ySol] = solveLCP(A, b, wIPlus1, omega, 10 );

        currW =  xSol + e;

        exercised(i,:)=currW<=(e);

    else

        currW = A \ wIPlus1;

    end

    W(i,:)=currW;

end
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The implicit method

Results

Red region is where early exercise has taken place. (Note graph is

given in terms of x not S .)
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The implicit method

How to solve the linear complimentarity problem

The short answer is lookup in the literature how this can be

solved numerically

We'll give a run-through of the ideas that lead to the standard
numerical solution used to price American options:

Solving the equation Ax = b iteratively.

Jacobi method
Gauss�Seidel method
Successive over relaxation (SOR))

Solving the linear complimentarity problem by SOR.
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The implicit method

Jacobi method

The Jacobi method is a numerical method for solving the

equation Ax = b.

Let us write A = D + R
a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
...

an1 an2 . . . ann

 =


a11 0 . . . 0

0 a22 . . . 0
...

...
...

0 0 . . . ann

+


0 a12 . . . a1n
a21 0 . . . a2n
...

...
...

an1 an2 . . . 0


D diagonal part

R remainder
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The implicit method

Idea

D is easy to invert because it is diagonal.

(D + R)x = b implies Dx = b − Rx which implies

x = D−1(b − Rx).

Pick an initial guess x0.

De�ne sequence xn = D−1(b − Rxn−1).

If this converges to a limit it will satisfy the equation Ax = b.
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The implicit method

Recursion

Consider the sequence

x0
x1 = D−1b − D−1Rx0
x2 = D−1b − D−1RD−1b + D−1RD−1Rx0
x3 = D−1b−D−1RD−1b+D−1RD−1b−D−1RD−1RD−1Rx0
. . .

So long as the spectral radius of D−1R is less than 1, this will

converge.

If the matrix is strictly diagonally dominant � i.e.

|aii | >
∑
i 6=j

|aij | ∀i

the sequence will converge
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The implicit method

Applications

For sparse matrices we can perform the multiplication by

D−1(R) reasonably quickly due to sparseness.

The convergence of contractions is rapid, so we will only need

a few iterations to get a good estimate.

If we have a good guess for the initial value it will be more

rapid still.

Thus for diagonally dominant sparse matrices where we have a

good idea of the initial value the Jacobi method will perform

well.

Example: for appropriate choices of λ the matrix in the

implicit method for European options is diagonally dominant.

We have a good �rst guess for the price vector at time i , it is
presumably close to the price vector at time i + 1.
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The implicit method

Gauss-Seidel method

The Jacobi method is a numerical method for solving the

equation Ax = b.

Let us write A = L∗ + U
a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
...

an1 an2 . . . ann

 =


a11 0 . . . 0

a21 a22 . . . 0
...

...
...

an1 an2 . . . ann

+


0 a12 . . . a1n
0 0 . . . a2n
...

...
...

0 0 . . . 0


L∗ lower triangular part

U strictly upper triangular part
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The implicit method

Algorithm

Again, L∗ is easy to invert because it is lower triangular.

A solution to Ax = b satis�es x = L−1∗ (b − Ux).

Pick initial guess x (0) and de�ne x (n) = L−1∗ (b − Ux (n−1))

Use the fact that L is lower triangular to write down the

following relationship:

x
(n+1)
i =

1

aii

bi −
∑
j<i

aijx
(n+1)
j −

∑
j>i

aijx
(n)
j


This formula contains x

(n+1)
j terms on both sides, but only

terms for j < i on the right. So long as we proceed by

calculating in the order i = 1, 2, . . . , n this will give an explicit

formula for xi .
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The implicit method

When does this converge

Gauss-Seidel converges:

If A is symmetric and positive de�nite

If A is strictly diagonally dominant

(It may converge under other circumstances too)
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The implicit method

Successive over relaxation

Write A = L+ D + U where L is strictly lower triangular, D is

diagonal and U is upper triangular.

Ax = b can be rewritten:

(D + ωL)x = ωb− [ωU + (ω − 1)D]x

ω is some choice of parameter called the "relaxation" factor.

It is a mash-up of Jacobi method and Gauss-Seidel method.

It converges if A is positive de�nite and 0 < ω < 2.

Hope is that for some ω > 1 convergence should speed up, we

won't discuss how to choose a good value of ω.
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The implicit method

Motivation

If we have a recursive system xn+1 = f (xn)

System x ′n+1 = (1− ω)x ′n + ωf (x ′n) gives another process
which, if they both converge will have the same limit.

Low values of ω slow rate of change of xn (in limiting case

ω = 0, the sequence remains constant).

High values of ω increase rate of change, so may speed

convergence (or may cause oscillations or convergence to

breakdown if ω is too high).
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The implicit method

Explicit formulae for SOR

Because (D + ωL) is lower triangular we can use forward

substitution to write down explicit formulae as for Guass-Seidel

x
(n+1)
i = (1− ω)x (n)i +

ω

aii

bi −
∑
j<i

aijx
(n+1)
j −

∑
j>i

aijx
(n)
j


Note this formula �ts the general pattern given on the previous

slide.

You can use this to solve the linear equations that occur when

pricing European options using the implicit or Crank-Nicolson

schemes.
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The implicit method

Solving the linear complimentarity problem

The linear complimentarity problem is to solve

y = Ax + b, x ≥ 0, y ≥ 0, x .y = 0

for vectors x , and y .

Note that in the special case when we have a solution with

y = 0 this reduces to Ax = −b and y = 0 everywhere.

For example when applied to pricing American options y = 0 is

saying that the Black�Scholes PDE is satis�ed everywhere.

The equations Ax = −b are then just the equations that occur

in pricing a European option.

Idea: perhaps if we take an iterative method for solving

Ax = −b but at each stage we insist that x ≥ 0 we will get a

solution to the linear complimentarity problem?
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The implicit method

Solving linear complimentarity by successive over-relaxation

To solve x ≥ 0, y ≥ 0, xy = 0, y = Ax + b

Take an initial guess x0

De�ne x (n) by:
x
(n+1)
i = max

{
(1− ω)x (n+1)

i + ω
aii

(
−bi −

∑
j<i aijx

(n+1)
j −

∑
j>i aijx

(n)
j

)
, 0
}

So long as A is positive semi-de�nite and 0 < ω < 2 this

converges. "The Solution of a Quadratic Programming

Problem Using Systematic Overelaxation", C Cryer, 1971

I note that he calls it "Systematic Overrelaxation" while

everyone else calls it "Successive Overrelaxation" so

presumably everyone �nds the terminology a little odd!
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The implicit method

Summary

We have shown how to write American option pricing using

di�erential inequalities

This gives rise to a �nite di�erence problem where each time

step is a linear complimentarity problem.

The linear complimentarity problem can be solved in practice

using a successive over-relaxation technique.

(Claim) this converges to the true American option price.

Thus the �nite di�erence method does give a good approach

to American option pricing, but it does involve quite a few new

ideas.

Pricing American options using the implicit and

Crank-Nicolson �nite di�erence methods is therefore

non-examinable. The explicit method IS examinable.
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