## FMO6 — Web:

https://tinyurl.com/ycaloqk6 Polls: https://pollev.com/johnarmstron561 Lecture 9

## Dr John Armstrong

King's College London

August 22, 2020

## Estimating derivatives

- There are many formulae for estimating derivatives numerically.
- For the first derivative alone we have
- Forward difference

$$
f^{\prime}(x) \approx \frac{f(x+h)-f(x)}{h}
$$

- Backward difference

$$
f^{\prime}(x) \approx \frac{f(x)-f(x-h)}{h}
$$

- Central difference

$$
f^{\prime}(x) \approx \frac{f(x+h)-f(x-h)}{2 h}
$$

- Higher order estimates, e.g.

$$
f^{\prime}(x)=\frac{-f(x+2 h)+8 f(x+h)-8 f(x-h)+f(x-2 h)}{12 h}+O\left(h^{4}\right)
$$

## Graphical representation



## Remarks

- The forward difference and backward difference are only accurate to first order.
- The central difference is accurate to second order (essentially because the formula is exact for quadratics)
- You can create schemes with arbitrary convergence if $f$ is sufficiently smooth and you are willing to perform sufficiently many evaluations of $f$.


## Other finite difference schemes

■ We wish to solve:

$$
\frac{\partial W}{\partial t}=-\frac{\sigma^{2}}{2} \frac{\partial^{2} W}{\partial x^{2}}
$$

with final boundary condition given at time $T$ and appropriate boundary conditions for large and small $W$.

- For the explicit method we took the backwards estimate for the time derivative (and used the simplest estimate for the second derivative term)
- For the implicit method, take the forward estimate for the time derivative
- For the Crank-Nicolson method use a central estimate.


## Explicit and implicit difference equations

Recall we have discretized the $t$ and $x$ coordinates so $W_{i, j}$ is the value of $W$ at time point $i$ and space point $j$. We have $N$ time steps and $M$ space steps.

- Explicit method: take the backward difference in time and the simplest estimate in $x$.

$$
\frac{W_{i, j}-W_{i-1, j}}{\delta t}=-\frac{\sigma^{2}}{2}\left(\frac{W_{i, j+1}-2 W_{i, j}+W_{i, j-1}}{\delta x^{2}}\right)
$$

- Implicit method: take the forward difference in time and the simplest estimate in $x$.

$$
\frac{W_{i+1, j}-W_{i, j}}{\delta t}=-\frac{\sigma^{2}}{2}\left(\frac{W_{i, j+1}-2 W_{i, j}+W_{i, j-1}}{\delta x^{2}}\right)
$$

## Stencils



| Explicit | Implicit |
| :--- | :--- |
| Method | Method |

These pictures are called stencils. They summarize how we use the values of $W$ to estimate the various derivatives.

## Implicit method

To price a call option using the implicit method for the heat equation, we have the following conditions:

- A difference equation

$$
\frac{W_{i+1, j}-W_{i, j}}{\delta t}=-\frac{\sigma^{2}}{2}\left(\frac{W_{i, j+1}-2 W_{i, j}+W_{i, j-1}}{\delta x^{2}}\right)
$$

- Boundary conditions:

$$
\begin{gathered}
W_{i, j_{\min }}=0 \\
W_{i, j_{\max }}=e^{-\frac{1}{2} \sigma^{2} t_{i}+x_{j \max }}-e^{r T} K \\
W_{i_{\max }, j}=\max \left\{e^{-\frac{1}{2} \sigma^{2} T+x_{j}}-e^{r T} K, 0\right\}
\end{gathered}
$$

- Note: we calculated the boundary conditions last week when we transformed the Black-Scholes PDE to the heat equation


## Remarks

- The explicit method gave us a formula for $W_{i-1, j}$ in terms of the value of $W$ at time $i$.
- The implicit method gives us $M+1$ linear equations in the $M+1$ unknowns $W_{i-1, j}$ in terms of the values of $W$ at time $i$.
- (Recall we have $N$ time steps, $M$ space steps and so $N+1$ time points and $M+1$ space points)
- We can solve these linear equations to compute the values at time $i-1$.
- The method is called implicit because we don't get an explicit formula for $W_{i, j}$, instead we calculated $W_{i, j}$ as the value implied by a set of simultaneous equations.


## Solving the linear equations

- To solve linear equations in MATLAB one writes them in matrix form $A x=b$.
- The solution is then given by $\mathrm{x}=\mathrm{A} \backslash$ b. i.e. we divide both sides by A on the left".
- Our difference equation is

$$
\frac{W_{i+1, j}-W_{i, j}}{\delta t}=-\frac{\sigma^{2}}{2}\left(\frac{W_{i, j+1}-2 W_{i, j}+W_{i, j-1}}{\delta x^{2}}\right)
$$

- Rewriting:

$$
W_{i+1, j}=-\lambda W_{i, j+1}+(1+2 \lambda) W_{i, j}-\lambda W_{i, j-1}
$$

where:

$$
\lambda=\frac{1}{2} \sigma^{2} \frac{\delta t}{(\delta x)^{2}}
$$

## The simultaneous equations

■ For $j \in\left\{j_{\min +1}, j_{\min +2}, \ldots, j_{\max -1}\right.$ we have

$$
-\lambda W_{i, j+1}+(1+2 \lambda) W_{i, j}-\lambda W_{i, j-1}=W_{i+1, j}
$$

- Boundary conditions

$$
\begin{aligned}
& W_{i, j_{\text {min }}}=\text { bottom }_{i}=0 \\
& W_{i, j_{\text {max }}}=\operatorname{top}_{i}=e^{-\frac{1}{2} \sigma^{2} t_{i}+x_{j \max }}-e^{r T}
\end{aligned}
$$

- This gives a total of $M+1$ linear equations in $M$ unknowns.


## Matrix form

- We call this large tri-diagonal matrix $A$.
- We write a MATLAB helper function createTridiagonal which creates a tridiagonal matrix given three vectors containing the three non-zero diagonals.


## MATLAB implementation

First we initialize variables such as the vectors $x$ and $t$ precisely as we did for the explicit method.

```
x0 = log( S0 );
xMin = x0 - nSds*sqrt(T)*sigma;
xMax = x0 + nSds*sqrt(T)*sigma;
dt = T/N;
dx = (xMax-xMin)/M;
iMin = 1;
iMax = N+1;
jMin = 1;
jMax = M+1;
x = (xMin:dx:xMax)';
t = (0:dt:T);
lambda = 0.5*sigma^2 * dt/(dx)^2;
```


## The changed code

```
currW=max(exp(-0.5*sigma^2*T + x) - exp(- (r*T))*K,0);
A = createTridiagonal( [0 ; -lambda*ones(M-1,1) ; 0], ...
[1 ; (1+2*lambda)*ones(M-1,1) ; 1], ...
    [0 ; -lambda*ones(M-1,1) ; 0] );
bottom = zeros(N+1,1);
top=exp(-0.5*sigma^2 * t + x(jMax))- exp(-r*T)*K;
for i=iMax-1:-1:iMin
    vector= [ bottom(i); currW((jMin+1):(jMax-1)); top(i) ];
    currW= A \ vector;
end
price = currW(jMin+M/2);
```

- currW stores the value of $W$ at time point $i$, we do not need to store the entire matrix of values for W
■ Note that writing [a; b; c] concatenates matrices vertically
■ Writing [acc] concatenates matrices horizontally.


## Advantages of the implicit method

- Suppose we fix $\lambda$. Choosing $\delta x$ then determines $\delta t$.
- The implicit scheme is stable irrespective of $\lambda$
- The explicit scheme is stable only if $(1-2 \lambda)>0$.
- The error of the implicit scheme is $O(\delta t)$ just as is the explicit scheme.
■ For the explicit scheme, for moderately $\delta x$ you are forced to have a tiny value for $\delta t$ to ensure stability.
- For the implicit scheme we can choose $\delta x$ and $\delta t$ independently. So we can get good answers with a comparatively small number of time steps.


## Solving the linear equations

- To implement the implicit scheme, we need to solve a linear equation

$$
A w=v
$$

where $A$ is a symmetric, tri-diagonal matrix.
■ If we wrote a general-purpose linear equation solver using Gaussian elimination this would not take advantage of the simple form.
■ Let us see how to solve the equations efficiently

## Gaussian elimination by hand

A tridiagonal system of equations can be written:

$$
\begin{array}{rllll}
b_{1} x_{1} & +c_{1} x_{2} & & & =d_{1} \\
a_{2} x_{1} & +b_{2} x_{2} & +c_{2} x_{3} & & \\
& +a_{3} x_{2} & +b_{3} x_{3}+c_{3} x_{4} & & =d_{2} \\
& +a_{4} x_{3}+b_{4} x_{4} & +c_{4} x_{5} & =d_{4}[4]
\end{array}
$$

Take $b_{1}$ times equation [2] and subtract $a_{2}$ times equation [1] $x_{1}$. This gives the new equation:

$$
\left(b_{1} b_{2}-c_{1} a_{2}\right) x_{2}+b_{1} c_{2} x_{3}=b_{1} d_{2}-a_{2} d_{1}
$$

This equation together with equations [3], [4], ... gives a new tridiagonal system in $x_{2}, x_{3}, \ldots x_{n}$.

## Thomas algorithm

- 1 dimensional tridiagonal problems are trivial to solve.

$$
x_{1}=d_{1} / b_{1}
$$

- Assume for induction that we have developed the Thomas algorithm for problems of dimension $n$.
- For dimension $n+1$ use the previous slide to find a tridiagonal system in $x_{2}, x_{3}, \ldots, x_{n}$
■ Solve this system by the Thomas algorithm (we can do so by induction)
- Now use the equation

$$
b_{1} x_{1}+c_{1} x_{2}=d_{1}
$$

to solve for $x_{1}$.

- Therefore we can solve a tridiagonal system of equations with only $O(n)$ multiplication and addition operations.
- A naive implementation of Gaussian elimination will take $O\left(n^{3}\right)$ stens


## Getting MATLAB to use the Thomas algorithm

- We'd like MATLAB to use the Thomas algorithm
- One option is to implement it ourselves
- Another option is to use MATLAB's built in support for the algorithm
■ MATLAB will automatically use the Thomas algorithm to solve $A x=b$ if it detects that $A$ is tri-diagonal.
- In general checking if an arbitrary matrix is tri-diagonal will take $O\left(n^{2}\right)$ steps so we need to give MATLAB a hint.


## Sparse matrices

- A sparse matrix is a matrix where most of the entries are zero.
- To store a sparse matrix it is more efficient to store a list of the rows and columns that are non-zero and the values at those rows and columns than to store a large block of memory most of which is zero.
- In general, the linear algebra algorithms one should use for sparse matrices are very different from the ones one uses with full (i.e. non-sparse) matrices.
- We can create a sparse matrix in MATLAB using the command sparse.
- When you solve the problem $A x=b$ in MATLAB with $A$ a sparse matrix, it will automatically check to see whether using the Thomas algorithm is the best approach.


## Creating a sparse matrix in MATLAB

■ Suppose that a matrix $A$ has non zero entries $a_{r_{i}, c_{i}}$ where $r_{1}$, $r_{2}, \ldots r_{n}$ and $c_{1}, c_{2}, \ldots c_{n}$ are some sequences of indices.

- Create a vector rows containing $r_{1}, r_{2}, \ldots, r_{n}$.
- Create a vector columns containing $c_{1}, c_{2}, \ldots, c_{n}$.

■ Create a vector values containing $a_{r_{1}, c_{1}}, a_{r_{2}, c_{2}}, \ldots, a_{r_{n}, c_{n}}$.

- Create a spare matrix A using the command

```
A = sparse( rows, columns, values );
```

■ In general MATLAB tries to intelligently select the best available algorithm, therefore you should always use a sparse matrix to store matrices which are mostly zero so that MATLAB has a hint as to how to proceed.

## The createTridiagonal function

```
%CREATETRIDIAGONAL Create a sparse tri-diagonal matrix contianing
% the given upper, diagonal and lower entries.
% Each of these should be a vector of length N, the first entry of
% lower should be zero, the last entry of upper should be zero.
function A= createTridiagonal( lower, diagonal, upper )
N = length( diagonal );
rowsUpper = (1:N-1)';
colsUpper = (2:N)';
rowsDiagonal = (1:N)';
colsDiagonal = (1:N)';
rowsLower = (2:N)';
colsLower = (1:N-1)';
allRows = [rowsUpper ; rowsDiagonal ; rowsLower ];
allCols = [colsUpper ; colsDiagonal ; colsLower ];
allVals = [ upper(rowsUpper) ; diagonal ; lower(rowsLower)];
A = sparse( allRows, allCols, allVals );
end
```


## The solveTridiagonal function

```
function [ x ] = solveTridiagonal( a,b,c,d )
if (length(a)==1)
    x = d(1)/(b(1));
else
    nextB = b(2:end);
    nextB(1) = b(1)*b(2)-c(1)*a(2);
    nextC = c(2:end);
    nextC(1) = b(1)*c(2);
    nextD = d(2:end);
    nextD(1) = b(1)*d(2)-d(1)*a(2);
    xRemainder = solveTridiagonal(a(2:end),nextB,nextC,nextD);
    x1 = (d(1)-c(1)*xRemainder(1))/b(1);
    x = [x1 ; xRemainder];
end
end
```


## Recursion

- You can write functions in MATLAB that call themselves
- Writing functions in this way is called recursion

■ This gives an easy implementation of solveTridiagonal that matches are inductive definition.

- Its not written as efficiently as it could be because we keep creating new vectors unnecessarily
- It isn't hard to replace the recursion with a for loop if preferred to get a fully efficient implementation. There isn't much point in running through the details since we can use sparse matrices to achieve the same result.


## The Crank-Nicolson method

For the Crank-Nicolson method one uses the stencil:


Crank Nicolson
Method

$$
\begin{aligned}
\frac{\partial W}{\partial t} & \approx \frac{W_{i+1, j}-W_{i, j}}{\delta t} \\
\frac{\partial^{2} W}{\partial x^{2}} & \approx \frac{1}{2} \times \frac{W_{i+1, j+1}-2 W_{i+1, j}+W_{i+1, j-1}}{\delta x^{2}} \\
& +\frac{1}{2} \times \frac{W_{i, j+1}-2 W_{i, j}+W_{i, j-1}}{\delta x^{2}}
\end{aligned}
$$

## Crank-Nicolson difference equations

- The Crank-Nicolson method uses the average of the estimates for the second derivative at times $i$ and $i+1$.
- Just as for the implicit method, when we include boundary conditions, at each time $i$ we will get a system of $M+1$ equations in the $M+1$ unknowns $W_{i}, j$ in terms of the values of $W$ at time $i+1$.
- For $j$ not at the boundary.

$$
\begin{aligned}
& \frac{\lambda}{2} W_{i+1, j+1}+(1-\lambda) W_{i+1, j}+\frac{\lambda}{2} W_{i+1, j-1} \\
&=-\frac{\lambda}{2} W_{i, j+1}+(1+\lambda) W_{i, j}-\frac{\lambda}{2} W_{i, j-1}
\end{aligned}
$$

- Once again this is a tridiagonal system.


## Benefits of Crank-Nicolson scheme

- It is always stable irrespective of choice of $\lambda$
- Convergence is $O\left(\delta t^{2}\right)$.
- It is an exercise for you to implement this method.


## Pricing American options by the implicit method

■ One of the main selling points of the explicit finite difference method is that we can use it to price American options.
■ We have just seen how the implicit and Crank-Nicolson methods can be used to improve the stability and convergence of finite difference methods.

- Can these techniques be applied to improve the pricing of American options?
- To price an American option $A$ by the explicit method, one assumes we can compute the price at time $i+1$.
- We can then use the explicit method to compute the expected value of a new option $\tilde{A}_{i}$ at time $i$ that is not-exercisable at time $i$ but can be exercises at any time from $i+1$ onwards.
- The price of the American option is then estimated as the maximum of the immediate exercise price and the price of option $\tilde{A}_{i}$.
- We can now proceed to time $i-1$.

■ Notice that this argument uses expectations and financial logic: we haven't actually derived it from the Black Scholes PDE. It is really a "tree pricing" algorithm rather than a PDE algorithm.

## What PDE does an American put option satisfy

- An American option does not obey the Black Scholes PDE at times when early exercise is optimal. At these points it satisfies:

$$
\begin{gathered}
V=K-S \\
\frac{\partial V}{\partial t}+\frac{\sigma^{2}}{2} S^{2} \frac{\partial^{2} V}{\partial S^{2}}+r S \frac{\partial V}{\partial S}-r V<0
\end{gathered}
$$

- At times when early exercise is not optimal, it obeys the Black Scholes PDE and also the condition

$$
\begin{gathered}
V>K-S \\
\frac{\partial V}{\partial t}+\frac{\sigma^{2}}{2} S^{2} \frac{\partial^{2} V}{\partial S^{2}}+r S \frac{\partial V}{\partial S}-r V=0
\end{gathered}
$$

## Boundary conditions

- At the boundary between the two regions, $V$ and the delta are both continuous

$$
\begin{gathered}
V=\max \{K-S, 0\} \\
\frac{\partial V}{\partial S}=-1
\end{gathered}
$$

- This is called a free boundary problem.
- We haven't proved that these differential inequalities hold, but you can convince yourself using a no-arbitrage argument. Since they are differential inequalities you will need to use continuous time stochastic calculus to prove things rigorously.


## Complimentarity problem

- The following inequalities hold everywhere

$$
\begin{gathered}
V-K+S \geq 0 \\
-\frac{\partial V}{\partial t}-\frac{\sigma^{2}}{2} S^{2} \frac{\partial^{2} V}{\partial S^{2}}-r S \frac{\partial V}{\partial S}+r V \geq 0
\end{gathered}
$$

Moreover we must have equality for at least one condition.

- The condition that $x \geq 0$ and $y \geq 0$ and one of $x$ and $y$ vanishes can be written as $x \geq 0, y \geq 0$ and $x y=0$.


## Differential inequalities for American options

- So we have that at all times

$$
\begin{gathered}
V-K+S \geq 0 \\
-\frac{\partial V}{\partial t}-\frac{\sigma^{2}}{2} S^{2} \frac{\partial^{2} V}{\partial S^{2}}-r S \frac{\partial V}{\partial S}+r V \geq 0
\end{gathered}
$$

and

$$
(V-K+S)\left(\frac{\partial V}{\partial t}+\frac{\sigma^{2}}{2} S^{2} \frac{\partial^{2} V}{\partial S^{2}}+r S \frac{\partial V}{\partial S}-r V\right)=0
$$

■ We can now find discrete approximations to these inequalities using our choice of stencil and attempt to solve associated discrete problems.

- It then seems reasonable to hope that this will lead to a finite difference scheme for pricing American options with convergence properties similar to those seen for European options.


## Moving to the heat equation

- Define $W=e^{-r t} V$ is the discounted price. $x=-\left(r-\frac{\sigma^{2}}{2}\right) t+\log (S)$ as usual.
- Boundary conditions are exactly the same as for a pricing a European put by the heat equation:
- Top boundary condition: $W\left(t, x_{\max }\right)=0$
- Bottom boundary condition: $W\left(t, x_{\min }\right)=e^{-r t}\left(K-S\left(x_{\text {min }}\right)\right)$
- Final boundary condition: $W\left(t, x_{\max }\right)=E(t, x)$.


## Transformed differential inequalities

The equations transform to:

$$
\begin{gathered}
\left(\frac{\partial W}{\partial t}+\frac{\sigma^{2}}{2} \frac{\partial^{2} W}{\partial x^{2}}\right)(W-E(t, x))=0 \\
-\frac{\partial W}{\partial t}-\frac{\sigma^{2}}{2} \frac{\partial^{2} W}{\partial x^{2}} \geq 0 \\
W-E(t, x) \geq 0
\end{gathered}
$$

Here $E(t, x)=e^{-r t} \max \{K-S(x), 0\}$ is the discounted early exercise price.

## Discretize

Let's discretize using the implicit scheme, but you could use Crank Nicolson too.

$$
\begin{gathered}
\left(-\left(\frac{W_{i+1, j}-W_{i, j}}{\delta t}\right)-\frac{\sigma^{2}}{2}\left(\frac{W_{i, j+1}-2 W_{i, j}+W_{i, j-1}}{\delta x^{2}}\right)\right)\left(W_{i, j}-E_{i, j}\right)= \\
\left(-\left(\frac{W_{i+1, j}-W_{i, j}}{\delta t}\right)-\frac{\sigma^{2}}{2}\left(\frac{W_{i, j+1}-2 W_{i, j}+W_{i, j-1}}{\delta x^{2}}\right)\right) \geq 0 \\
W_{i, j}-E_{i, j} \geq 0
\end{gathered}
$$

How on earth do you solve such a system of inequalities?

## Linear complimentarity problem

■ The linear complementarity problem is the problem of solving

$$
\begin{gathered}
x . y=0 \\
x \geq 0 \\
y \geq 0 \\
A x=b+y
\end{gathered}
$$

For vectors $x$ and $y$ given a vector $b$ and a matrix $A$. We'll assume that $A$ is symmetric and positive definite.

- It is called "linear" because the last condition is linear

■ It is called "complementarity" because $x$ and $y$ are complimentary vectors: for each index $j$ either $x_{j}$ or $y_{j}$ is zero.

## Rewriting

At time $i$ take $x$ to be the vector with components

$$
x_{j}=W_{i, j}-E_{i, j}
$$

$x$ to be the vector

$$
y_{j}=\left(-\left(\frac{W_{i+1, j}-W_{i, j}}{\delta t}\right)-\frac{\sigma^{2}}{2}\left(\frac{W_{i, j+1}-2 W_{i, j}+W_{i, j-1}}{\delta x^{2}}\right)\right)
$$

So the equations earlier imply $x y=0$ and $x \geq 0, y \geq 0$.
But these expressions for $x$ and $y$ are not independent as they both involve the same unknowns $W_{i, j}$. This establishes a linear relation between $x$ and $y$ of the form $y=A x+b$

## Identifying $A$ and $b$

- Write $W_{i}$ for the vector with components $W_{i, j}$. Similarly $E_{i}$.
- The definition of $x$ tells us that $W_{i}=x+E_{i}$.
- The definition of $y$ tells us that $y=-W_{i+1}+A W_{i}$ for an appropriate $A$ (which will in fact be the tri-diagonal matrix found in the European case).
■ Hence $y=-W_{i+1}+A\left(x+E_{i}\right)=A x+\left(A E_{i}-W_{i+1}\right)$
- Define $b=A E_{i}-W_{i+1}$ and we have shown $A x=b$.
- Therefore $x$ and $y$ are solutions of a linear complimentarity problem.


## Remarks

- The matrix $A$ is the same tridiagonal matrix that occurred in the implicit method for European options.
- The formulae I've explicitly written only apply for $j$ away from the boundary - as for European options, we have a 1 in the top left and the bottom right of $A$ to account for the boundary conditions.


## Initialization

```
x0 = log( SO );
xMin = xO - nSds*sqrt(T)*sigma;
xMax = x0 + nSds*sqrt(T)*sigma;
dt = T/N;
dx = (xMax-xMin)/M;
iMin = 1;
iMax = N+1;
jMin = 1;
jMax = M+1;
x = (xMin:dx:xMax)';
t = (0:dt:T);
lambda = 0.5*sigma^2 * dt/(dx)^2;
```


## Boundary conditions

```
% Use boundary condition to create vector currW
currW=max (exp(-r*T)*K-exp(-0.5 *sigma^2 * T + x),0);
A = createTridiagonal( [0 ; -lambda*ones(M-1,1) ; 0], ...
    [1 ; (1+2*lambda)*ones(M-1,1) ; 1], ...
    [0 ; -lambda*ones(M-1,1) ; 0] );
bottom = exp(-r*T)*K- exp(-0.5*sigma^2 * t + x(jMin));
top=zeros(1,N+1);
```


## Iteration

```
exercised = zeros(N+1,M+1);
W = zeros(N+1, M+1);
W(iMax,: )=currW;
for i=iMax-1:-1:iMin
    wIPlus1 = [ bottom(i); currW((jMin+1):(jMax-1)); top(i) ];
    if (american)
            % e = immediate exercise value
            e = max(exp(-r*t(i))*K-exp(-0.5 *sigma^2 * t(i) + x),0);
            b = A*e - wIPlus1;
            omega = 1.5;
            [xSol,ySol] = solveLCP(A, b, wIPlus1, omega, 10 );
            currW = xSol + e;
            exercised(i,:)=currW<=(e);
    else
            currW = A \ wIPlus1;
    end
    W(i,:)=currW;
end
```


## Results

Red region is where early exercise has taken place. (Note graph is given in terms of $x$ not $S$.)


## How to solve the linear complimentarity problem

- The short answer is lookup in the literature how this can be solved numerically
- We'll give a run-through of the ideas that lead to the standard numerical solution used to price American options:
- Solving the equation $A x=b$ iteratively.
- Jacobi method

■ Gauss-Seidel method

- Successive over relaxation (SOR))

■ Solving the linear complimentarity problem by SOR.

## Jacobi method

- The Jacobi method is a numerical method for solving the equation $A x=b$.
- Let us write $A=D+R$
$\left(\begin{array}{cccc}a_{11} & a_{12} & \ldots & a_{1 n} \\ a_{21} & a_{22} & \ldots & a_{2 n} \\ \vdots & \vdots & & \vdots \\ a_{n 1} & a_{n 2} & \ldots & a_{n n}\end{array}\right)=\left(\begin{array}{cccc}a_{11} & 0 & \ldots & 0 \\ 0 & a_{22} & \ldots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \ldots & a_{n n}\end{array}\right)+\left(\begin{array}{cccc}0 & a_{12} & \ldots & a_{1 n} \\ a_{21} & 0 & \ldots & a_{2 n} \\ \vdots & \vdots & & \vdots \\ a_{n 1} & a_{n 2} & \ldots & 0\end{array}\right)$
- $D$ diagonal part
- $R$ remainder
- $D$ is easy to invert because it is diagonal.

■ $(D+R) x=b$ implies $D x=b-R x$ which implies $x=D^{-1}(b-R x)$.
■ Pick an initial guess $x_{0}$.

- Define sequence $x_{n}=D^{-1}\left(b-R x_{n-1}\right)$.
- If this converges to a limit it will satisfy the equation $A x=b$.


## Recursion

- Consider the sequence
- $x_{0}$
- $x_{1}=D^{-1} b-D^{-1} R x_{0}$

■ $x_{2}=D^{-1} b-D^{-1} R D^{-1} b+D^{-1} R D^{-1} R x_{0}$
■ $x_{3}=D^{-1} b-D^{-1} R D^{-1} b+D^{-1} R D^{-1} b-D^{-1} R D^{-1} R D^{-1} R x_{0}$

- So long as the spectral radius of $D^{-1} R$ is less than 1 , this will converge.
- If the matrix is strictly diagonally dominant - i.e.

$$
\left|a_{i i}\right|>\sum_{i \neq j}\left|a_{i j}\right| \quad \forall i
$$

the sequence will converge

## Applications

- For sparse matrices we can perform the multiplication by $D^{-1}(R)$ reasonably quickly due to sparseness.
- The convergence of contractions is rapid, so we will only need a few iterations to get a good estimate.
- If we have a good guess for the initial value it will be more rapid still.
- Thus for diagonally dominant sparse matrices where we have a good idea of the initial value the Jacobi method will perform well.
- Example: for appropriate choices of $\lambda$ the matrix in the implicit method for European options is diagonally dominant. We have a good first guess for the price vector at time $i$, it is presumably close to the price vector at time $i+1$.


## Gauss-Seidel method

- The Jacobi method is a numerical method for solving the equation $A x=b$.

■ Let us write $A=L_{*}+U$
$\left(\begin{array}{cccc}a_{11} & a_{12} & \ldots & a_{1 n} \\ a_{21} & a_{22} & \ldots & a_{2 n} \\ \vdots & \vdots & & \vdots \\ a_{n 1} & a_{n 2} & \ldots & a_{n n}\end{array}\right)=\left(\begin{array}{cccc}a_{11} & 0 & \ldots & 0 \\ a_{21} & a_{22} & \ldots & 0 \\ \vdots & \vdots & & \vdots \\ a_{n 1} & a_{n 2} & \ldots & a_{n n}\end{array}\right)+\left(\begin{array}{cccc}0 & a_{12} & \ldots & a_{1 n} \\ 0 & 0 & \ldots & a_{2 n} \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \ldots & 0\end{array}\right)$

- $L_{*}$ lower triangular part
- U strictly upper triangular part


## Algorithm

- Again, $L_{*}$ is easy to invert because it is lower triangular.
- A solution to $A x=b$ satisfies $x=L_{*}^{-1}(b-U x)$.
- Pick initial guess $x^{(0)}$ and define $x^{(n)}=L_{*}^{-1}\left(b-U x{ }^{(n-1)}\right)$
- Use the fact that $L$ is lower triangular to write down the following relationship:

$$
x_{i}^{(n+1)}=\frac{1}{a_{i i}}\left(b_{i}-\sum_{j<i} a_{i j} x_{j}^{(n+1)}-\sum_{j>i} a_{i j} x_{j}^{(n)}\right)
$$

- This formula contains $x_{j}^{(n+1)}$ terms on both sides, but only terms for $j<i$ on the right. So long as we proceed by calculating in the order $i=1,2, \ldots, n$ this will give an explicit formula for $x_{i}$.


## When does this converge

Gauss-Seidel converges:

- If $A$ is symmetric and positive definite
- If $A$ is strictly diagonally dominant
(It may converge under other circumstances too)


## Successive over relaxation

- Write $A=L+D+U$ where $L$ is strictly lower triangular, $D$ is diagonal and $U$ is upper triangular.
- $A x=b$ can be rewritten:

$$
(D+\omega L) \mathbf{x}=\omega \mathbf{b}-[\omega U+(\omega-1) D] \mathbf{x}
$$

- $\omega$ is some choice of parameter called the "relaxation" factor.

■ It is a mash-up of Jacobi method and Gauss-Seidel method.

- It converges if $A$ is positive definite and $0<\omega<2$.

■ Hope is that for some $\omega>1$ convergence should speed up, we won't discuss how to choose a good value of $\omega$.

## Motivation

■ If we have a recursive system $x_{n+1}=f\left(x_{n}\right)$
■ System $x_{n+1}^{\prime}=(1-\omega) x_{n}^{\prime}+\omega f\left(x_{n}^{\prime}\right)$ gives another process which, if they both converge will have the same limit.
■ Low values of $\omega$ slow rate of change of $x_{n}$ (in limiting case $\omega=0$, the sequence remains constant).
■ High values of $\omega$ increase rate of change, so may speed convergence (or may cause oscillations or convergence to breakdown if $\omega$ is too high).

## Explicit formulae for SOR

- Because $(D+\omega L)$ is lower triangular we can use forward substitution to write down explicit formulae as for Guass-Seidel

$$
x_{i}^{(n+1)}=(1-\omega) x_{i}^{(n)}+\frac{\omega}{a_{i i}}\left(b_{i}-\sum_{j<i} a_{i j} x_{j}^{(n+1)}-\sum_{j>i} a_{i j} x_{j}^{(n)}\right)
$$

- Note this formula fits the general pattern given on the previous slide.
- You can use this to solve the linear equations that occur when pricing European options using the implicit or Crank-Nicolson schemes.


## Solving the linear complimentarity problem

- The linear complimentarity problem is to solve

$$
y=A x+b, \quad x \geq 0, \quad y \geq 0, \quad x \cdot y=0
$$

for vectors $x$, and $y$.

- Note that in the special case when we have a solution with $y=0$ this reduces to $A x=-b$ and $y=0$ everywhere.
- For example when applied to pricing American options $y=0$ is saying that the Black-Scholes PDE is satisfied everywhere.
The equations $A x=-b$ are then just the equations that occur in pricing a European option.
- Idea: perhaps if we take an iterative method for solving $A x=-b$ but at each stage we insist that $x \geq 0$ we will get a solution to the linear complimentarity problem?


## Solving linear complimentarity by successive over-relaxation

- To solve $x \geq 0, y \geq 0, x y=0, y=A x+b$
- Take an initial guess $x^{0}$
- Define $x^{(n)}$ by:

$$
x_{i}^{(n+1)}=\max \left\{(1-\omega) x_{i}^{(n+1)}+\frac{\omega}{a_{i i}}\left(-b_{i}-\sum_{j<i} a_{i j} x_{j}^{(n+1)}-\sum_{j>i} a_{i j} x_{j}^{(n)}\right), 0\right\}
$$

- So long as $A$ is positive semi-definite and $0<\omega<2$ this converges. "The Solution of a Quadratic Programming Problem Using Systematic Overelaxation", C Cryer, 1971
- I note that he calls it "Systematic Overrelaxation" while everyone else calls it "Successive Overrelaxation" so presumably everyone finds the terminology a little odd!


## Summary

- We have shown how to write American option pricing using differential inequalities
- This gives rise to a finite difference problem where each time step is a linear complimentarity problem.
- The linear complimentarity problem can be solved in practice using a successive over-relaxation technique.
- (Claim) this converges to the true American option price.
- Thus the finite difference method does give a good approach to American option pricing, but it does involve quite a few new ideas.
- Pricing American options using the implicit and Crank-Nicolson finite difference methods is therefore non-examinable. The explicit method IS examinable.

