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Estimating derivatives

m There are many formulae for estimating derivatives numerically.
m For the first derivative alone we have
m Forward difference

f(x+ h) — f(x)

f'(x) =~ h
m Backward difference
fi = =)
m Central difference
F(x) ~ f(x+h)—f(x—nh)

2h
m Higher order estimates, e.g.
F(x) = —f(x+2h) +8f(x + h) — 8f(x — h) + f(x — 2h)
N 12h

+0(h*)
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Graphical representation

Backward Estimate Forward Estimate

o

/- CentraI:Estimate :

x-h X x+h
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Remarks

m The forward difference and backward difference are only
accurate to first order.

m The central difference is accurate to second order (essentially
because the formula is exact for quadratics)

m You can create schemes with arbitrary convergence if f is
sufficiently smooth and you are willing to perform sufficiently
many evaluations of f.
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Other finite difference schemes

m We wish to solve:
ow o2 PW
ot 2 0x2
with final boundary condition given at time T and appropriate
boundary conditions for large and small W.

m For the explicit method we took the backwards estimate for
the time derivative (and used the simplest estimate for the
second derivative term)

m For the implicit method, take the forward estimate for the time
derivative

m For the Crank-Nicolson method use a central estimate.
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Explicit and implicit difference equations

Recall we have discretized the t and x coordinates so W, ; is the
value of W at time point / and space point j. We have N time
steps and M space steps.

m Explicit method: take the backward difference in time and the
simplest estimate in x.

- 6x2

Wij = Wiy 0® (Wi —2Wi; 4+ Wi
ot 2

m Implicit method: take the forward difference in time and the
simplest estimate in x.

ot 2

Wit1j— Wiy o (V‘/ig+1 —2W; + Wi,j—1>
5x?2
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Stencils

J i,j+1 i,j+1 9
i'1,j C%I |,j I!j i+1!j
© i1 17
Explicit Implicit
Method Method

These pictures are called stencils. They summarize how we use the
values of W to estimate the various derivatives.
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Implicit method

To price a call option using the implicit method for the heat
equation, we have the following conditions:

m A difference equation

ot 2

Wit =Wy o <VVi,j+1 —2W; i+ Wi,j—1>
dx?

m Boundary conditions:

iv_/'min = O
1 2, .
Wi jy = €27 7 5moe — T K
_1.2 i
W, j =max{e 27 779 — ¢"TK 0}

m Note: we calculated the boundary conditions last week when
we transformed the Black—Scholes PDE to the heat equation
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Remarks

m The explicit method gave us a formula for W;_y ; in terms of
the value of W at time i.

m The implicit method gives us M + 1 linear equations in the
M +1 unknowns W;_y ; in terms of the values of W at time i.

m (Recall we have N time steps, M space steps and so N + 1
time points and M + 1 space points)

m We can solve these linear equations to compute the values at
time / — 1.

m The method is called implicit because we don’t get an explicit

formula for W; ;, instead we calculated W;; as the value
implied by a set of simultaneous equations.
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Solving the linear equations

m To solve linear equations in MATLAB one writes them in
matrix form Ax = b.

m The solution is then given by x = A\ b. i.e. we divide both
sides by A on the left”.

m Our difference equation is

Wit1j - Wiy o? (VVi,j+1 —2W; + Wi,j—1>

ot 2 dx2

m Rewriting:
Wit1j=—Wij1 + (1 +20)W;; — AW 1
where:
_ 1, dt

A= 27 xp
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The simultaneous equations

m For j € {Jmin+1sJmin+2;- - - sJmax—1 We have
AW i1+ (L+20)Wij — AW, j1 = Wit
m Boundary conditions
W;
W;

= bottom; =0

7jmin
1

24, .
— top; = e 27 i mx — T

sJmax

m This gives a total of M + 1 linear equations in M unknowns.
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Matrix form

1 0 0 0 0 0 0 0 Wi min bottom;
—A 142X -2 0 0 0 0 0 M/ijm\n+1 VV,'+1JW"+1
0 -A 1420 A 0 0 0 0 Wi jint2 Wit jmint2
0 0 A 142X =X 0 0 0 Wi jint3 Wit jmint3
Wijmnts | = :

0 0 0 0 0 ... =X 0 0 : Wit1 jna—3
0 0 0 0 0 ... 142X -2 0 VV,',J',“EX,Q V]/,url,jmx,Q
0 0 0 0 0o . —A 142X = Wi jmax—1 Wit jmax—1
0 0 0 0 0o ... 0 0 1 i jmax top;

m We call this large tri-diagonal matrix A.

m We write a MATLAB helper function createTridiagonal
which creates a tridiagonal matrix given three vectors
containing the three non-zero diagonals.
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MATLAB implementation

First we initialize variables such as the vectors x and t precisely as
we did for the explicit method.

x0 = log( S0 );
xMin = x0 - nSds*sqrt(T)*sigma;
xMax = x0 + nSds*sqrt(T)*sigma;

dt = T/N;
dx = (xMax-xMin)/M;

iMin = 1;

iMax = N+1;

jMin = 1;

jMax = M+1;

x = (xMin:dx:xMax)?’;
t = (0:dt:T);

lambda = 0.b*sigma~2 * dt/(dx)"2;
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The changed code

currW=max (exp(-0.5%sigma~2*T + x) - exp(-(r*T))*K,0);

A = createTridiagonal( [0 ; -lambda*ones(M-1,1) ; 0],
[1 ; (1+2*lambda)*ones(M-1,1) ; 1],
[0 ; -lambda*ones(M-1,1) ; 0] );

bottom = zeros(N+1,1);
top=exp(-0.5%sigma~2 * t + x(jMax))- exp(-r*T)*K;

for i=iMax-1:-1:iMin
vector= [ bottom(i); currW((jMin+1):(jMax-1)); top(i) 1;
currW= A \ vector;

end

price = currW(jMin+M/2);

m currW stores the value of W at time point i, we do not need to
store the entire matrix of values for W

m Note that writing [a; b; c¢] concatenates matrices vertically

m Writing [a2 b c] concatenates matrices horizontally.
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Advantages of the implicit method

Suppose we fix A. Choosing dx then determines dt.
The implicit scheme is stable irrespective of A
The explicit scheme is stable only if (1 —2X) > 0.

The error of the implicit scheme is O(Jt) just as is the explicit
scheme.

For the explicit scheme, for moderately dx you are forced to
have a tiny value for §t to ensure stability.

For the implicit scheme we can choose dx and dt
independently. So we can get good answers with a
comparatively small number of time steps.
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Solving the linear equations

m To implement the implicit scheme, we need to solve a linear
equation
Aw =v
where A is a symmetric, tri-diagonal matrix.

m If we wrote a general-purpose linear equation solver using
Gaussian elimination this would not take advantage of the
simple form.

m Let us see how to solve the equations efficiently
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Gaussian elimination by hand

A tridiagonal system of equations can be written:

bixi +cxo =d; [1]
ax1 +bxa +cox3 =d (2]
+a3xa  +b3x3 +a3xg =d3 3]

+ asx3 + b4X4 + Caxs = d4 [4-]

Take by times equation [2] and subtract a» times equation [1] x;.
This gives the new equation:

(bib2 — craz)xo + bicoxs = bida — axdh

This equation together with equations [3],[4],. .. gives a new
tridiagonal system in x2, X3, ... Xp.
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Thomas algorithm

m 1 dimensional tridiagonal problems are trivial to solve.
X] = d1/b1.

m Assume for induction that we have developed the Thomas
algorithm for problems of dimension n.

m For dimension n+ 1 use the previous slide to find a tridiagonal

system in X2, X3, ..., Xp
m Solve this system by the Thomas algorithm (we can do so by
induction)

m Now use the equation
bixi +caxe =dp

to solve for x;.

m Therefore we can solve a tridiagonal system of equations with
only O(n) multiplication and addition operations.

m A naive implementation of Gaussian elimination will take
N3\ ctanc
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Getting MATLAB to use the Thomas algorithm

m We'd like MATLAB to use the Thomas algorithm
m One option is to implement it ourselves
m Another option is to use MATLAB's built in support for the
algorithm
m MATLAB will automatically use the Thomas algorithm to
solve Ax = b if it detects that A is tri-diagonal.

m In general checking if an arbitrary matrix is tri-diagonal will
take O(n?) steps so we need to give MATLAB a hint.
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Sparse matrices

m A sparse matrix is a matrix where most of the entries are zero.

m To store a sparse matrix it is more efficient to store a list of
the rows and columns that are non-zero and the values at
those rows and columns than to store a large block of memory
most of which is zero.

m In general, the linear algebra algorithms one should use for
sparse matrices are very different from the ones one uses with
full (i.e. non-sparse) matrices.

m We can create a sparse matrix in MATLAB using the
command sparse.

m When you solve the problem Ax = b in MATLAB with A a
sparse matrix, it will automatically check to see whether using
the Thomas algorithm is the best approach.
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Creating a sparse matrix in MATLAB

m Suppose that a matrix A has non zero entries ay, ., where rq,

r, ...rand ¢, ¢, ...c, are some sequences of indices.
m Create a vector rows containing ry, r, ..., ry.
m Create a vector columns containing ¢, G, ..., Cn-
m Create a vector values containing an ¢, an,cps -« -+ .-
m Create a spare matrix A using the command

A = sparse( rows, columns, values );

m In general MATLAB tries to intelligently select the best
available algorithm, therefore you should always use a sparse
matrix to store matrices which are mostly zero so that
MATLAB has a hint as to how to proceed.
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The createTridiagonal function

%CREATETRIDIAGONAL Create a sparse tri-diagonal matrix contianing

% the given upper, diagonal and lower entries.

% Each of these should be a vector of length N, the first entry of
% lower should be zero, the last entry of upper should be zero.
function A= createTridiagonal( lower, diagonal, upper )

N = length( diagonal );

rowsUpper = (1:N-1)7;

colsUpper = (2:N)’;

rowsDiagonal = (1:N)’;

colsDiagonal = (1:N)7?;

rowsLower = (2:N)’;

colsLower = (1:N-1)’;

allRows = [rowsUpper ; rowsDiagonal ; rowsLower ];

allCols = [colsUpper ; colsDiagonal ; colsLower ];

allVals = [ upper(rowsUpper) ; diagonal ; lower(rowsLower)];

A = sparse( allRows, allCols, allVals );

end
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The solveTridiagonal function

function [ x ] = solveTridiagonal( a,b,c,d )

if (length(a)==1)
x = d(1)/(b(1));
else
nextB = b(2:end);
nextB(1) = b(1)*b(2)-c(1)*a(2);
nextC = c(2:end);
nextC(1) = b(1)*c(2);
nextD = d(2:end);
nextD(1) = b(1)*d(2)-d(1)*a(2);

xRemainder = solveTridiagonal(a(2:end),nextB,nextC,nextD);

x1 = (d(1)-c(1)*xRemainder(1))/b(1);
x = [x1 ; xRemainder];

end

end
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Recursion

You can write functions in MATLAB that call themselves

Writing functions in this way is called recursion

m This gives an easy implementation of solveTridiagonal that
matches are inductive definition.

m Its not written as efficiently as it could be because we keep
creating new vectors unnecessarily

m It isn’t hard to replace the recursion with a for loop if preferred
to get a fully efficient implementation. There isn’t much point
in running through the details since we can use sparse matrices
to achieve the same result.
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The Crank-Nicolson method

For the Crank-Nicolson method one uses the stencil:

i,j+1 [ | L
ij ]—J i+1,j
ij1° O i+1,j1

Crank Nicolson
Method

ow Wi — W,

ot ot
rw 1 " Wit1j41 —2Wip1j + Wi
Ox? 2 dx2

1 Wi —2W; + W1
+ 2 % Ix2
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Crank-Nicolson difference equations

The Crank-Nicolson method uses the average of the estimates
for the second derivative at times / and i + 1.

Just as for the implicit method, when we include boundary
conditions, at each time i/ we will get a system of M + 1
equations in the M + 1 unknowns W;, j in terms of the values
of W at time i + 1.

For j not at the boundary.

A A
S Wirrjnn + (L= Wi + S Wity j
A A

Once again this is a tridiagonal system.
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Benefits of Crank-Nicolson scheme

m It is always stable irrespective of choice of A
m Convergence is O(5t?).

m It is an exercise for you to implement this method.
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Pricing American options by the implicit method

m One of the main selling points of the explicit finite difference
method is that we can use it to price American options.

m We have just seen how the implicit and Crank-Nicolson
methods can be used to improve the stability and convergence
of finite difference methods.

m Can these techniques be applied to improve the pricing of
American options?
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Recap

To price an American option A by the explicit method, one
assumes we can compute the price at time i + 1.

We can then use the explicit method to compute the expected
value of a new option A; at time /i that is not-exercisable at
time 7/ but can be exercises at any time from j + 1 onwards.

The price of the American option is then estimated as the
maximum of the immediate exercise price and the price of
option A;.

We can now proceed to time i — 1.

Notice that this argument uses expectations and financial
logic: we haven't actually derived it from the Black Scholes
PDE. It is really a “tree pricing” algorithm rather than a PDE
algorithm.
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What PDE does an American put option satisfy

m An American option does not obey the Black Scholes PDE at
times when early exercise is optimal. At these points it

satisfies:
V=K-5§
8V o2 282V ov
— — %
8t 5852+565 rvV <0

m At times when early exercise is not optimal, it obeys the Black
Scholes PDE and also the condition

V>K-S

8V O' 282 (9V B
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Boundary conditions

m At the boundary between the two regions, V and the delta are
both continuous
V =max{K — S,0}
ov
55 =
m This is called a free boundary problem.

-1

m We haven't proved that these differential inequalities hold, but
you can convince yourself using a no-arbitrage argument.
Since they are differential inequalities you will need to use
continuous time stochastic calculus to prove things rigorously.
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Complimentarity problem

m The following inequalities hold everywhere
V-K+5>0

ov  o? _,0°V ov
e — S8 . S 4+ 1V >0
or 2”952 Pas TV =
Moreover we must have equality for at least one condition.
m The condition that x > 0 and y > 0 and one of x and y

vanishes can be written as x > 0, y > 0 and xy = 0.
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Differential inequalities for American options

m So we have that at all times

V—K+S>0
oV o LRV Vv
A~ S A >
g 25 g5 Sas V=0
and
oV o2 ,0°V oV
(V- K+S)<8t —5 852+585 rV>—

m We can now find discrete approximations to these inequalities
using our choice of stencil and attempt to solve associated
discrete problems.

m |t then seems reasonable to hope that this will lead to a finite
difference scheme for pricing American options with
convergence properties similar to those seen for European
options.
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Moving to the heat equation

m Define W = e "V is the discounted price.
2
x = —(r— %)t +log(S) as usual.
m Boundary conditions are exactly the same as for a pricing a
European put by the heat equation:
m Top boundary condition: W(t, xmax) = 0
m Bottom boundary condition: W(t, xmin) = €~ "(K — S(Xmin))
m Final boundary condition: W(t, xmnax) = E(t, x).
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Transformed differential inequalities

The equations transform to:

oW a2 9°W
<8t+28X2>(W—E(t,X))—O
2 92
oW oW,
ot 2 Ox2 —
W — E(t,x) >0

Here E(t,x) = e~ " max{K — S(x), 0} is the discounted early
exercise price.
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Discretize

Let’s discretize using the implicit scheme, but you could use Crank
Nicolson too.

Wit1j— Wi\ 0 (Wijn —2W; + W _

C( Wigy = Wi\ 0% (Wi —2W + Wi ~0
ot 2 dx? -

Wi, —Eij=0

How on earth do you solve such a system of inequalities?
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Linear complimentarity problem

m The linear complementarity problem is the problem of solving
x.y =0

x>0
y=>0
Ax=b+y

For vectors x and y given a vector b and a matrix A. We'll
assume that A is symmetric and positive definite.
m It is called “linear” because the last condition is linear

m It is called “complementarity” because x and y are
complimentary vectors: for each index j either x; or y; is zero.
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Rewriting

At time / take x to be the vector with components
xj = Wij—Eij

X to be the vector

yi=[- Wity — Wiy _12 Wijr1 —2Wij+ Wi i1
! ot 2 Sx2

So the equations earlier imply xy =0 and x >0, y > 0.

But these expressions for x and y are not independent as they both
involve the same unknowns W; ;. This establishes a linear relation
between x and y of the form y = Ax + b
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|dentifying A and b

m Write W; for the vector with components W; ;. Similarly E;.
m The definition of x tells us that W; = x + E;.

m The definition of y tells us that y = —W; 1 + AW, for an
appropriate A (which will in fact be the tri-diagonal matrix
found in the European case).

m Hence y = —W1 + A(x + E;) = Ax + (AE; — Wiy1)

m Define b = AE; — W;1 and we have shown Ax = b.

m Therefore x and y are solutions of a linear complimentarity
problem.
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Remarks

m The matrix A is the same tridiagonal matrix that occurred in
the implicit method for European options.

m The formulae I've explicitly written only apply for j away from
the boundary — as for European options, we have a 1 in the
top left and the bottom right of A to account for the boundary
conditions.
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Initialization

x0 = log( SO );
xMin = x0 - nSds*sqrt(T)*sigma;
xMax = x0 + nSds*sqrt(T)*sigma;

dt = T/N;
dx = (xMax-xMin)/M;

iMin = 1;
iMax = N+1;
jMin = 1;
jMax = M+1;

x = (xMin:dx:xMax)’;
t = (0:dt:T);

lambda = 0.b*sigma~2 * dt/(dx)"2;



https://tinyurl.com/ycaloqk6
https://pollev.com/johnarmstron561

FMO6 — Web: https://tinyurl.com/ycalogké Polls: https://pollev.com/johnarmstron561
LThe implicit method

Boundary conditions

% Use boundary condition to create vector currW
currW=max(exp(-r*T)*K-exp(-0.5 *sigma~2 * T + x),0);
A = createTridiagonal( [0 ; -lambda*ones(M-1,1) ; 0],
[1 ; (1+2*lambda)*ones(M-1,1) ; 1],
[0 ; -lambda*ones(M-1,1) ; 0] );

bottom = exp(-r*T)*K- exp(-0.5*sigma~2 * t + x(jMin));
top=zeros(1,N+1);
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Iteration

exercised = zeros(N+1,M+1);
W = zeros(N+1, M+1);
W(iMax, : )=currW;
for i=iMax-1:-1:iMin
wIPlusl = [ bottom(i); currW((jMin+1):(jMax-1)); top(i) 1;
if (american)
% e = immediate exercise value
e = max(exp(-r*t(i))*K-exp(-0.5 *sigma~2 * t(i) + x),0);
b = A¥e - wIPlusl;

omega = 1.5;

[xSol,ySol] = solveLCP(4, b, wIPlusl, omega, 10 );
currW = xSol + e;

exercised(i,:)=currii<=(e);

else
currW = A \ wIPlusi;
end
W(i,:)=currW;
end
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Results

Red region is where early exercise has taken place. (Note graph is
given in terms of x not S.)

Discounted Price

60 0 Time
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How to solve the linear complimentarity problem

m The short answer is lookup in the literature how this can be
solved numerically
m We'll give a run-through of the ideas that lead to the standard
numerical solution used to price American options:
m Solving the equation Ax = b iteratively.

m Jacobi method
m Gauss—Seidel method
m Successive over relaxation (SOR))

m Solving the linear complimentarity problem by SOR.
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Jacobi method

m The Jacobi method is a numerical method for solving the
equation Ax = b.

m letuswrite A=D+ R

dil1 d12 ... din all 0 . 0 0 a2 ... ain

a1 a2 ... ap 0 a» ... 0 ani 0 .. A2
. . . = . + .

anl an2 --- amn 0 0 ... am ant am ... 0

m D diagonal part

m R remainder
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|dea

D is easy to invert because it is diagonal.
(D 4+ R)x = b implies Dx = b — Rx which implies
x = D7Y(b— Rx).

Pick an initial guess xg.

Define sequence x, = D™1(b — Rx,_1).

If this converges to a limit it will satisfy the equation Ax = b.
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Recursion

m Consider the sequence

X0

X1 = D~1p— D_lRXO

xo=D7'b— D RD"'b+ D RD1Rx

x3 = D~Yb— D= RD~1b+ D-1RD~'b— D-'RD—'RD~1Rx,

m So long as the spectral radius of DR is less than 1, this will
converge.

m If the matrix is strictly diagonally dominant — i.e.

|ai| > [ay| Vi

i#i

the sequence will converge


https://tinyurl.com/ycaloqk6
https://pollev.com/johnarmstron561

FMO6 — Web: https://tinyurl.com/ycalogké Polls: https://pollev.com/johnarmstron561
LThe implicit method

Applications

m For sparse matrices we can perform the multiplication by
D~1(R) reasonably quickly due to sparseness.

m The convergence of contractions is rapid, so we will only need
a few iterations to get a good estimate.

m If we have a good guess for the initial value it will be more
rapid still.

m Thus for diagonally dominant sparse matrices where we have a
good idea of the initial value the Jacobi method will perform
well.

m Example: for appropriate choices of A the matrix in the
implicit method for European options is diagonally dominant.
We have a good first guess for the price vector at time i, it is
presumably close to the price vector at time i + 1.
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Gauss-Seidel method

m The Jacobi method is a numerical method for solving the
equation Ax = b.

mletuswrite A=L,+U

dil1 412 ... dip ail 0 o 0 0 dai2 ... din

ax ax» ... an a1 ap ... 0 0 0 ... am
= +

anl an2 ... amn anl a2 ... ann 0 0 ... O

m L, lower triangular part

m U strictly upper triangular part
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Algorithm

m Again, L, is easy to invert because it is lower triangular.

m A solution to Ax = b satisfies x = L;1(b — Ux).

m Pick initial guess x(®) and define x(") = [ 1(b — Ux("—1)

m Use the fact that L is lower triangular to write down the
following relationship:

(nt1) _ 1 T () N ()
SR Za”Xf Za”Xf
J<i >1
m This formula contains x-("H) terms on both sides, but only
terms for j < i on the right. So long as we proceed by
calculating in the order i = 1,2, ..., n this will give an explicit
formula for x;.


https://tinyurl.com/ycaloqk6
https://pollev.com/johnarmstron561

FMO6 — Web: https://tinyurl.com/ycalogké Polls: https://pollev.com/johnarmstron561
LThe implicit method

When does this converge

Gauss-Seidel converges:
m If Ais symmetric and positive definite
m If Ais strictly diagonally dominant

(It may converge under other circumstances too)
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Successive over relaxation

m Write A= L+ D + U where L is strictly lower triangular, D is
diagonal and U is upper triangular.

m Ax = b can be rewritten:
(D +wl)x =wb — [wU + (w — 1)D]x

w is some choice of parameter called the "relaxation" factor.

]
m It is a mash-up of Jacobi method and Gauss-Seidel method.
m It converges if A is positive definite and 0 < w < 2.

]

Hope is that for some w > 1 convergence should speed up, we
won't discuss how to choose a good value of w.
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Motivation

m If we have a recursive system x,.1 = f(x,)

m System x/; = (1 — w)x, + wf(x;) gives another process
which, if they both converge will have the same limit.

m Low values of w slow rate of change of x, (in limiting case
w = 0, the sequence remains constant).

m High values of w increase rate of change, so may speed
convergence (or may cause oscillations or convergence to
breakdown if w is too high).
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Explicit formulae for SOR

m Because (D + wl) is lower triangular we can use forward
substitution to write down explicit formulae as for Guass-Seidel

(n+1) _ () Y.  (n+1) ()
X; = (1 -w)x; + - b,—Za,ij —Zauxj

1
! j<i J>i

m Note this formula fits the general pattern given on the previous
slide.

m You can use this to solve the linear equations that occur when
pricing European options using the implicit or Crank-Nicolson
schemes.
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Solving the linear complimentarity problem

m The linear complimentarity problem is to solve
y=Ax+b, x>0, y>0, xy=0

for vectors x, and y.

m Note that in the special case when we have a solution with
y = 0 this reduces to Ax = —b and y = 0 everywhere.

m For example when applied to pricing American options y = 0 is
saying that the Black—Scholes PDE is satisfied everywhere.
The equations Ax = —b are then just the equations that occur
in pricing a European option.

m |dea: perhaps if we take an iterative method for solving
Ax = —b but at each stage we insist that x > 0 we will get a
solution to the linear complimentarity problem?
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Solving linear complimentarity by successive over-relaxation

m Tosolve x>0,y >0,xy=0,y=Ax+b

m Take an initial guess x°

m Define x(" by:

Xi(n+1) = max {(1 - W)X,-(nH) + = (—bi =D i<i aU’S'(n+1) =D i aijxj(n)) ,0}

m So long as A is positive semi-definite and 0 < w < 2 this
converges. "The Solution of a Quadratic Programming
Problem Using Systematic Overelaxation", C Cryer, 1971

m | note that he calls it "Systematic Overrelaxation" while
everyone else calls it "Successive Overrelaxation" so
presumably everyone finds the terminology a little odd!
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Summary

m We have shown how to write American option pricing using
differential inequalities

m This gives rise to a finite difference problem where each time
step is a linear complimentarity problem.

m The linear complimentarity problem can be solved in practice
using a successive over-relaxation technique.

m (Claim) this converges to the true American option price.

m Thus the finite difference method does give a good approach
to American option pricing, but it does involve quite a few new
ideas.

m Pricing American options using the implicit and
Crank-Nicolson finite difference methods is therefore
non-examinable. The explicit method IS examinable.
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