FMO6 — Web: https://tinyurl.com/ycaloqk6 Polls: https://pollev.com/johnarmstron561 Lecture 9

Dr John Armstrong

King's College London

August 22, 2020

Estimating derivatives

- There are many formulae for estimating derivatives numerically.
- For the first derivative alone we have
 - Forward difference

$$f'(x) \approx rac{f(x+h) - f(x)}{h}$$

Backward difference

$$f'(x) \approx \frac{f(x) - f(x-h)}{h}$$

Central difference

$$f'(x) pprox rac{f(x+h) - f(x-h)}{2h}$$

Higher order estimates, e.g.

$$f'(x) = \frac{-f(x+2h) + 8f(x+h) - 8f(x-h) + f(x-2h)}{12h} + O(h^4)$$

FMO6 — Web: https://tinyurl.com/ycaloqk6 Polls: https://pollev.com/johnarmstron561

 \vdash The implicit method

Graphical representation

Remarks

- The forward difference and backward difference are only accurate to first order.
- The central difference is accurate to second order (essentially because the formula is exact for quadratics)
- You can create schemes with arbitrary convergence if f is sufficiently smooth and you are willing to perform sufficiently many evaluations of f.

Other finite difference schemes

We wish to solve:

$$\frac{\partial W}{\partial t} = -\frac{\sigma^2}{2} \frac{\partial^2 W}{\partial x^2}$$

with final boundary condition given at time T and appropriate boundary conditions for large and small W.

- For the *explicit* method we took the backwards estimate for the time derivative (and used the simplest estimate for the second derivative term)
- For the *implicit* method, take the forward estimate for the time derivative
- For the *Crank-Nicolson* method use a central estimate.

Explicit and implicit difference equations

Recall we have discretized the t and x coordinates so $W_{i,j}$ is the value of W at time point i and space point j. We have N time steps and M space steps.

Explicit method: take the backward difference in time and the simplest estimate in x.

$$\frac{W_{i,j} - W_{i-1,j}}{\delta t} = -\frac{\sigma^2}{2} \left(\frac{W_{i,j+1} - 2W_{i,j} + W_{i,j-1}}{\delta x^2} \right)$$

Implicit method: take the forward difference in time and the simplest estimate in x.

$$\frac{W_{i+1,j} - W_{i,j}}{\delta t} = -\frac{\sigma^2}{2} \left(\frac{W_{i,j+1} - 2W_{i,j} + W_{i,j-1}}{\delta x^2} \right)$$

FMO6 - Web: https://tinyurl.com/ycaloqk6 Polls: https://pollev.com/johnarmstron561

Stencils

These pictures are called *stencils*. They summarize how we use the values of W to estimate the various derivatives.

Implicit method

To price a call option using the implicit method for the heat equation, we have the following conditions:

A difference equation

$$\frac{W_{i+1,j} - W_{i,j}}{\delta t} = -\frac{\sigma^2}{2} \left(\frac{W_{i,j+1} - 2W_{i,j} + W_{i,j-1}}{\delta x^2} \right)$$

Boundary conditions:

$$W_{i,j_{min}} = 0$$
$$W_{i,j_{max}} = e^{-\frac{1}{2}\sigma^2 t_i + x_{j_{max}}} - e^{rT}K$$
$$W_{i_{max},j} = \max\{e^{-\frac{1}{2}\sigma^2 T + x_j} - e^{rT}K, 0\}$$

 Note: we calculated the boundary conditions last week when we transformed the Black-Scholes PDE to the heat equation └─The implicit method

Remarks

- The *explicit* method gave us a formula for *W*_{*i*-1,*j*} in terms of the value of *W* at time *i*.
- The *implicit* method gives us M + 1 linear equations in the M + 1 unknowns $W_{i-1,i}$ in terms of the values of W at time i.
- (Recall we have N time steps, M space steps and so N + 1 time points and M + 1 space points)
- We can solve these linear equations to compute the values at time *i* − 1.
- The method is called *implicit* because we don't get an explicit formula for W_{i,j}, instead we calculated W_{i,j} as the value implied by a set of simultaneous equations.

Solving the linear equations

- To solve linear equations in MATLAB one writes them in matrix form Ax = b.
- The solution is then given by x = A \ b. i.e. we divide both sides by A on the left".
- Our difference equation is

$$\frac{W_{i+1,j} - W_{i,j}}{\delta t} = -\frac{\sigma^2}{2} \left(\frac{W_{i,j+1} - 2W_{i,j} + W_{i,j-1}}{\delta x^2} \right)$$

Rewriting:

$$W_{i+1,j} = -\lambda W_{i,j+1} + (1+2\lambda)W_{i,j} - \lambda W_{i,j-1}$$

where:

$$\lambda = \frac{1}{2}\sigma^2 \frac{\delta t}{(\delta x)^2}$$

The simultaneous equations

For
$$j \in \{j_{\min+1}, j_{\min+2}, \dots, j_{\max-1} \text{ we have}$$

 $-\lambda W_{i,j+1} + (1+2\lambda)W_{i,j} - \lambda W_{i,j-1} = W_{i+1,j}$

Boundary conditions

$$W_{i,j_{\min}} = \text{bottom}_i = 0$$
$$W_{i,j_{\max}} = \text{top}_i = e^{-\frac{1}{2}\sigma^2 t_i + x_{j_{\max}}} - e^{rT}$$

• This gives a total of M + 1 linear equations in M unknowns.

└─The implicit method

Matrix form

ſ	1	0	0	0	0	 0	0	0 \	1	$W_{i,j_{\min}}$		bottom;
	$-\lambda$	$1+2\lambda$	$-\lambda$	0	0	 0	0	0	11	$W_{i,j_{\min}+1}$		$W_{i+1,j_{\min}+1}$
	0	$-\lambda$	$1+2\lambda$	$-\lambda$	0	 0	0	0		$W_{i,j_{\min}+2}$		$W_{i+1,j_{\min}+2}$
	0	0	$-\lambda$	$1+2\lambda$	$-\lambda$	 0	0	0		$W_{i,j_{\min}+3}$		$W_{i+1,j_{\min}+3}$
	:							÷		$W_{i,j_{\min}+4}$	=	
	0	0	0	0	0	 $-\lambda$	0	0		÷		$W_{i+1,i_{max}-3}$
	0	0	0	0	0	 $1+2\lambda$	$-\lambda$	0		$W_{i,i_{max}-2}$		$W_{i+1,i_{max}-2}$
	0	0	0	0	0	 $-\lambda$	$1+2\lambda$	$-\lambda$		$W_{i,j_{max}-1}$		$W_{i+1,j_{\max}-1}$
	0	0	0	0	0	 0	0	1 /	/ \	W _{i,jmax} /		top;

• We call this large tri-diagonal matrix A.

We write a MATLAB helper function createTridiagonal which creates a tridiagonal matrix given three vectors containing the three non-zero diagonals.

MATLAB implementation

First we initialize variables such as the vectors x and t precisely as we did for the explicit method.

```
x0 = log(S0);
xMin = x0 - nSds*sqrt(T)*sigma;
xMax = x0 + nSds*sqrt(T)*sigma;
dt = T/N:
dx = (xMax - xMin)/M:
iMin = 1;
iMax = N+1:
jMin = 1;
jMax = M+1;
x = (xMin:dx:xMax)';
t = (0:dt:T);
lambda = 0.5*sigma^2 * dt/(dx)^2;
```

The changed code

- currW stores the value of W at time point i, we do not need to store the entire matrix of values for W
- Note that writing [a; b; c] concatenates matrices vertically
- Writing [a b c] concatenates matrices horizontally.

Advantages of the implicit method

- Suppose we fix λ . Choosing δx then determines δt .
- The implicit scheme is stable irrespective of λ
- The explicit scheme is stable only if $(1-2\lambda) > 0$.
- The error of the implicit scheme is $O(\delta t)$ just as is the explicit scheme.
- For the explicit scheme, for moderately δx you are forced to have a tiny value for δt to ensure stability.
- For the implicit scheme we can choose δx and δt independently. So we can get good answers with a comparatively small number of time steps.

Solving the linear equations

To implement the implicit scheme, we need to solve a linear equation

$$Aw = v$$

where A is a symmetric, tri-diagonal matrix.

- If we wrote a general-purpose linear equation solver using Gaussian elimination this would not take advantage of the simple form.
- Let us see how to solve the equations efficiently

Gaussian elimination by hand

A tridiagonal system of equations can be written:

$$\begin{array}{rcl} b_1x_1 & + c_1x_2 & = d_1 & [1] \\ a_2x_1 & + b_2x_2 & + c_2x_3 & = d_2 & [2] \\ & + a_3x_2 & + b_3x_3 & + c_3x_4 & = d_3 & [3] \\ & & + a_4x_3 & + b_4x_4 & + c_4x_5 & = d_4[4] \end{array}$$

Take b_1 times equation [2] and subtract a_2 times equation [1] x_1 . This gives the new equation:

$$(b_1b_2 - c_1a_2)x_2 + b_1c_2x_3 = b_1d_2 - a_2d_1$$

This equation together with equations [3], [4], ... gives a new tridiagonal system in $x_2, x_3, \ldots x_n$.

Thomas algorithm

- 1 dimensional tridiagonal problems are trivial to solve. $x_1 = d_1/b_1$.
- Assume for induction that we have developed the Thomas algorithm for problems of dimension *n*.
- For dimension n + 1 use the previous slide to find a tridiagonal system in x₂, x₃, ..., x_n
- Solve this system by the Thomas algorithm (we can do so by induction)
- Now use the equation

$$b_1x_1 + c_1x_2 = d_1$$

to solve for x_1 .

- Therefore we can solve a tridiagonal system of equations with only O(n) multiplication and addition operations.
- A naive implementation of Gaussian elimination will take $O(n^3)$ steps

Getting MATLAB to use the Thomas algorithm

- We'd like MATLAB to use the Thomas algorithm
 - One option is to implement it ourselves
 - Another option is to use MATLAB's built in support for the algorithm
- MATLAB will automatically use the Thomas algorithm to solve Ax = b if it detects that A is tri-diagonal.
- In general checking if an arbitrary matrix is tri-diagonal will take $O(n^2)$ steps so we need to give MATLAB a hint.

Sparse matrices

- A *sparse matrix* is a matrix where most of the entries are zero.
- To store a sparse matrix it is more efficient to store a list of the rows and columns that are non-zero and the values at those rows and columns than to store a large block of memory most of which is zero.
- In general, the linear algebra algorithms one should use for sparse matrices are very different from the ones one uses with full (i.e. non-sparse) matrices.
- We can create a sparse matrix in MATLAB using the command sparse.
- When you solve the problem Ax = b in MATLAB with A a sparse matrix, it will automatically check to see whether using the Thomas algorithm is the best approach.

Creating a sparse matrix in MATLAB

- Suppose that a matrix A has non zero entries a_{r_i,c_i} where r_1 , r_2 , ..., r_n and c_1 , c_2 , ..., c_n are some sequences of indices.
 - Create a vector rows containing r₁, r₂, ..., r_n.
 - Create a vector columns containing c₁, c₂, ..., c_n.
 - Create a vector values containing a_{r_1,c_1} , a_{r_2,c_2} , ..., a_{r_n,c_n} .
 - Create a spare matrix A using the command

A = sparse(rows, columns, values);

In general MATLAB tries to intelligently select the best available algorithm, therefore you should always use a sparse matrix to store matrices which are mostly zero so that MATLAB has a hint as to how to proceed.

The createTridiagonal function

```
%CREATETRIDIAGONAL Create a sparse tri-diagonal matrix contianing
  the given upper, diagonal and lower entries.
%
\% Each of these should be a vector of length N, the first entry of
% lower should be zero, the last entry of upper should be zero.
function A= createTridiagonal( lower, diagonal, upper )
N = length( diagonal );
rowsUpper = (1:N-1)';
colsUpper = (2:N)';
rowsDiagonal = (1:N)';
colsDiagonal = (1:N)';
rowsLower = (2:\mathbb{N})':
colsLower = (1:N-1)';
allRows = [rowsUpper ; rowsDiagonal ; rowsLower ];
allCols = [colsUpper ; colsDiagonal ; colsLower ];
allVals = [ upper(rowsUpper) ; diagonal ; lower(rowsLower)];
A = sparse( allRows, allCols, allVals );
end
```

The solveTridiagonal function

```
function [ x ] = solveTridiagonal( a,b,c,d )
if (length(a)==1)
    x = d(1)/(b(1)):
else
    nextB = b(2:end);
    nextB(1) = b(1)*b(2)-c(1)*a(2);
    nextC = c(2:end):
    nextC(1) = b(1)*c(2):
    nextD = d(2:end):
    nextD(1) = b(1)*d(2)-d(1)*a(2);
    xRemainder = solveTridiagonal(a(2:end),nextB,nextC,nextD);
    x1 = (d(1) - c(1) * xRemainder(1))/b(1);
    x = [x1 ; xRemainder];
end
end
```

Recursion

- You can write functions in MATLAB that call themselves
- Writing functions in this way is called recursion
- This gives an easy implementation of solveTridiagonal that matches are inductive definition.
- Its not written as efficiently as it could be because we keep creating new vectors unnecessarily
- It isn't hard to replace the recursion with a for loop if preferred to get a fully efficient implementation. There isn't much point in running through the details since we can use sparse matrices to achieve the same result.

The Crank-Nicolson method

For the Crank-Nicolson method one uses the stencil:

Crank-Nicolson difference equations

- The Crank-Nicolson method uses the average of the estimates for the second derivative at times i and i + 1.
- Just as for the implicit method, when we include boundary conditions, at each time *i* we will get a system of M + 1 equations in the M + 1 unknowns W_i , *j* in terms of the values of *W* at time *i* + 1.

■ For *j* not at the boundary.

$$egin{aligned} & rac{\lambda}{2} W_{i+1,j+1} + (1-\lambda) W_{i+1,j} + rac{\lambda}{2} W_{i+1,j-1} \ & = -rac{\lambda}{2} W_{i,j+1} + (1+\lambda) W_{i,j} - rac{\lambda}{2} W_{i,j-1} \end{aligned}$$

Once again this is a tridiagonal system.

FMO6 — Web: https://tinyurl.com/ycalogk6 Polls: https://pollev.com/johnarmstron561

Benefits of Crank-Nicolson scheme

- \blacksquare It is always stable irrespective of choice of λ
- Convergence is $O(\delta t^2)$.
- It is an exercise for you to implement this method.

Pricing American options by the implicit method

- One of the main selling points of the explicit finite difference method is that we can use it to price American options.
- We have just seen how the implicit and Crank-Nicolson methods can be used to improve the stability and convergence of finite difference methods.
- Can these techniques be applied to improve the pricing of American options?

Recap

- To price an American option A by the explicit method, one assumes we can compute the price at time i + 1.
- We can then use the explicit method to compute the expected value of a new option \tilde{A}_i at time *i* that is not-exercisable at time *i* but can be exercises at any time from i + 1 onwards.
- The price of the American option is then estimated as the maximum of the immediate exercise price and the price of option A_i.
- We can now proceed to time i 1.
- Notice that this argument uses expectations and financial logic: we haven't actually derived it from the Black Scholes PDE. It is really a "tree pricing" algorithm rather than a PDE algorithm.

What PDE does an American put option satisfy

 An American option does not obey the Black Scholes PDE at times when early exercise is optimal. At these points it satisfies:

$$V = K - S$$
$$\frac{\partial V}{\partial t} + \frac{\sigma^2}{2} S^2 \frac{\partial^2 V}{\partial S^2} + rS \frac{\partial V}{\partial S} - rV < 0$$

At times when early exercise is not optimal, it obeys the Black Scholes PDE and also the condition

$$V > K - S$$

$$\frac{\partial V}{\partial t} + \frac{\sigma^2}{2}S^2\frac{\partial^2 V}{\partial S^2} + rS\frac{\partial V}{\partial S} - rV = 0$$

Boundary conditions

At the boundary between the two regions, V and the delta are both continuous

$$V = \max{K - S, 0}$$

 $rac{\partial V}{\partial S} = -1$

- This is called a free boundary problem.
- We haven't proved that these differential inequalities hold, but you can convince yourself using a no-arbitrage argument. Since they are differential inequalities you will need to use continuous time stochastic calculus to prove things rigorously.

Complimentarity problem

The following inequalities hold everywhere

$$V-K+S \ge 0$$

$$-\frac{\partial V}{\partial t} - \frac{\sigma^2}{2}S^2\frac{\partial^2 V}{\partial S^2} - rS\frac{\partial V}{\partial S} + rV \ge 0$$

Moreover we must have equality for at least one condition.

■ The condition that x ≥ 0 and y ≥ 0 and one of x and y vanishes can be written as x ≥ 0, y ≥ 0 and xy = 0.

FMO6 — Web: https://tinyurl.com/ycaloqk6 Polls: https://pollev.com/johnarmstron561

Differential inequalities for American options

So we have that at all times

$$V - K + S \ge 0$$

$$-\frac{\partial V}{\partial t} - \frac{\sigma^2}{2} S^2 \frac{\partial^2 V}{\partial S^2} - rS \frac{\partial V}{\partial S} + rV \ge 0$$

and

$$(V - K + S)\left(\frac{\partial V}{\partial t} + \frac{\sigma^2}{2}S^2\frac{\partial^2 V}{\partial S^2} + rS\frac{\partial V}{\partial S} - rV\right) = 0$$

- We can now find discrete approximations to these inequalities using our choice of stencil and attempt to solve associated discrete problems.
- It then seems reasonable to hope that this will lead to a finite difference scheme for pricing American options with convergence properties similar to those seen for European options.

Moving to the heat equation

- Define $W = e^{-rt}V$ is the discounted price. $x = -(r - \frac{\sigma^2}{2})t + \log(S)$ as usual.
- Boundary conditions are exactly the same as for a pricing a European put by the heat equation:
 - Top boundary condition: $W(t, x_{max}) = 0$
 - Bottom boundary condition: $W(t, x_{\min}) = e^{-rt}(K S(x_{\min}))$
 - Final boundary condition: $W(t, x_{max}) = E(t, x)$.

FMO6 — Web: https://tinyurl.com/ycaloqk6 Polls: https://pollev.com/johnarmstron561

Transformed differential inequalities

The equations transform to:

$$\left(\frac{\partial W}{\partial t} + \frac{\sigma^2}{2}\frac{\partial^2 W}{\partial x^2}\right)(W - E(t, x)) = 0$$
$$-\frac{\partial W}{\partial t} - \frac{\sigma^2}{2}\frac{\partial^2 W}{\partial x^2} \ge 0$$
$$W - E(t, x) \ge 0$$

Here $E(t,x) = e^{-rt} \max{K - S(x), 0}$ is the discounted early exercise price.

Discretize

Let's discretize using the implicit scheme, but you could use Crank Nicolson too.

$$\left(-\left(\frac{W_{i+1,j}-W_{i,j}}{\delta t}\right)-\frac{\sigma^2}{2}\left(\frac{W_{i,j+1}-2W_{i,j}+W_{i,j-1}}{\delta x^2}\right)\right)\left(W_{i,j}-E_{i,j}\right)=0$$
$$\left(-\left(\frac{W_{i+1,j}-W_{i,j}}{\delta t}\right)-\frac{\sigma^2}{2}\left(\frac{W_{i,j+1}-2W_{i,j}+W_{i,j-1}}{\delta x^2}\right)\right)\geq 0$$
$$W_{i,j}-E_{i,j}\geq 0$$

How on earth do you solve such a system of inequalities?

Linear complimentarity problem

The linear complementarity problem is the problem of solving

$$x \cdot y = 0$$
$$x \ge 0$$
$$y \ge 0$$
$$Ax = b + y$$

For vectors x and y given a vector b and a matrix A. We'll assume that A is symmetric and positive definite.

- It is called "linear" because the last condition is linear
- It is called "complementarity" because x and y are complimentary vectors: for each index j either x_i or y_i is zero.

Rewriting

At time i take x to be the vector with components

$$x_j = W_{i,j} - E_{i,j}$$

x to be the vector

$$y_j = \left(-\left(\frac{W_{i+1,j} - W_{i,j}}{\delta t}\right) - \frac{\sigma^2}{2}\left(\frac{W_{i,j+1} - 2W_{i,j} + W_{i,j-1}}{\delta x^2}\right)\right)$$

So the equations earlier imply xy = 0 and $x \ge 0$, $y \ge 0$. But these expressions for x and y are not independent as they both involve the same unknowns $W_{i,j}$. This establishes a linear relation between x and y of the form y = Ax + b

Identifying A and b

- Write W_i for the vector with components $W_{i,j}$. Similarly E_i .
- The definition of x tells us that $W_i = x + E_i$.
- The definition of y tells us that $y = -W_{i+1} + AW_i$ for an appropriate A (which will in fact be the tri-diagonal matrix found in the European case).
- Hence $y = -W_{i+1} + A(x + E_i) = Ax + (AE_i W_{i+1})$
- Define $b = AE_i W_{i+1}$ and we have shown Ax = b.
- Therefore x and y are solutions of a linear complimentarity problem.

Remarks

- The matrix A is the same tridiagonal matrix that occurred in the implicit method for European options.
- The formulae I've explicitly written only apply for j away from the boundary — as for European options, we have a 1 in the top left and the bottom right of A to account for the boundary conditions.

Initialization

```
x0 = log(S0);
xMin = x0 - nSds*sqrt(T)*sigma;
xMax = x0 + nSds*sqrt(T)*sigma;
dt = T/N:
dx = (xMax - xMin)/M:
iMin = 1;
iMax = N+1:
jMin = 1;
jMax = M+1;
x = (xMin:dx:xMax)';
t = (0:dt:T);
lambda = 0.5 * \text{sigma}^2 * dt/(dx)^2;
```

Boundary conditions

```
% Use boundary condition to create vector currW
currW=max(exp(-r*T)*K-exp(-0.5 *sigma^2 * T + x),0);
A = createTridiagonal( [0 ; -lambda*ones(M-1,1) ; 0], ...
[1 ; (1+2*lambda)*ones(M-1,1) ; 1], ...
[0 ; -lambda*ones(M-1,1) ; 0] );
bottom = exp(-r*T)*K- exp(-0.5*sigma^2 * t + x(jMin));
top=zeros(1,N+1);
```

└─ The implicit method

Iteration

```
exercised = zeros(N+1,M+1):
W = zeros(N+1, M+1);
W(iMax,:)=currW:
for i=iMax_1._1.iMin
    wIPlus1 = [ bottom(i); currW((jMin+1):(jMax-1)); top(i) ];
    if (american)
        % e = immediate exercise value
        e = max(exp(-r*t(i))*K-exp(-0.5 *sigma^2 * t(i) + x),0);
        b = A * e - wIPlus1;
        omega = 1.5;
        [xSol,ySol] = solveLCP(A, b, wIPlus1, omega, 10);
        currW = xSol + e:
        exercised(i,:)=currW<=(e);</pre>
    else
        currW = A \setminus wIPlus1;
    end
    W(i,:) = currW;
end
```

FMO6 — Web: https://tinyurl.com/ycaloqk6 Polls: https://pollev.com/johnarmstron561

Results

Red region is where early exercise has taken place. (Note graph is given in terms of x not S.)

How to solve the linear complimentarity problem

- The short answer is lookup in the literature how this can be solved numerically
- We'll give a run-through of the ideas that lead to the standard numerical solution used to price American options:
 - Solving the equation Ax = b iteratively.
 - Jacobi method
 - Gauss-Seidel method
 - Successive over relaxation (SOR))
 - Solving the linear complimentarity problem by SOR.

Jacobi method

• The Jacobi method is a numerical method for solving the equation Ax = b.

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} = \begin{pmatrix} a_{11} & 0 & \dots & 0 \\ 0 & a_{22} & \dots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & a_{nn} \end{pmatrix} + \begin{pmatrix} 0 & a_{12} & \dots & a_{1n} \\ a_{21} & 0 & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \dots & 0 \end{pmatrix}$$

- D diagonal part
- R remainder

└─ The implicit method

Idea

- D is easy to invert because it is diagonal.
- (D+R)x = b implies Dx = b Rx which implies $x = D^{-1}(b Rx)$.
- Pick an initial guess x₀.
- Define sequence $x_n = D^{-1}(b Rx_{n-1})$.
- If this converges to a limit it will satisfy the equation Ax = b.

Recursion

Consider the sequence

- So long as the spectral radius of $D^{-1}R$ is less than 1, this will converge.
- If the matrix is strictly diagonally dominant i.e.

$$|a_{ii}| > \sum_{i \neq j} |a_{ij}| \quad \forall i$$

the sequence will converge

Applications

- For sparse matrices we can perform the multiplication by D⁻¹(R) reasonably quickly due to sparseness.
- The convergence of contractions is rapid, so we will only need a few iterations to get a good estimate.
- If we have a good guess for the initial value it will be more rapid still.
- Thus for diagonally dominant sparse matrices where we have a good idea of the initial value the Jacobi method will perform well.
- Example: for appropriate choices of λ the matrix in the implicit method for European options is diagonally dominant. We have a good first guess for the price vector at time *i*, it is presumably close to the price vector at time *i* + 1.

Gauss-Seidel method

• The Jacobi method is a numerical method for solving the equation Ax = b.

• Let us write
$$A = L_* + U$$

 $\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} = \begin{pmatrix} a_{11} & 0 & \dots & 0 \\ a_{21} & a_{22} & \dots & 0 \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} + \begin{pmatrix} 0 & a_{12} & \dots & a_{1n} \\ 0 & 0 & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & 0 \end{pmatrix}$

- L_{*} lower triangular part
- U strictly upper triangular part

Algorithm

- Again, *L*_{*} is easy to invert because it is lower triangular.
- A solution to Ax = b satisfies $x = L_*^{-1}(b Ux)$.
- Pick initial guess $x^{(0)}$ and define $x^{(n)} = L_*^{-1}(b Ux^{(n-1)})$
- Use the fact that L is lower triangular to write down the following relationship:

$$x_{i}^{(n+1)} = \frac{1}{a_{ii}} \left(b_{i} - \sum_{j < i} a_{ij} x_{j}^{(n+1)} - \sum_{j > i} a_{ij} x_{j}^{(n)} \right)$$

This formula contains x_j⁽ⁿ⁺¹⁾ terms on both sides, but only terms for j < i on the right. So long as we proceed by calculating in the order i = 1, 2, ..., n this will give an explicit formula for x_i.

FMO6 — Web: https://tinyurl.com/ycalogk6 Polls: https://pollev.com/johnarmstron561

└─The implicit method

When does this converge

Gauss-Seidel converges:

- If A is symmetric and positive definite
- If A is strictly diagonally dominant

(It may converge under other circumstances too)

Successive over relaxation

- Write A = L + D + U where L is strictly lower triangular, D is diagonal and U is upper triangular.
- *Ax* = *b* can be rewritten:

$$(D + \omega L)\mathbf{x} = \omega \mathbf{b} - [\omega U + (\omega - 1)D]\mathbf{x}$$

- $\blacksquare \ \omega$ is some choice of parameter called the "relaxation" factor.
- It is a mash-up of Jacobi method and Gauss-Seidel method.
- It converges if A is positive definite and $0 < \omega < 2$.
- Hope is that for some $\omega > 1$ convergence should speed up, we won't discuss how to choose a good value of ω .

└─The implicit method

Motivation

- If we have a recursive system $x_{n+1} = f(x_n)$
- System $x'_{n+1} = (1 \omega)x'_n + \omega f(x'_n)$ gives another process which, if they both converge will have the same limit.
- Low values of ω slow rate of change of x_n (in limiting case $\omega = 0$, the sequence remains constant).
- High values of ω increase rate of change, so may speed convergence (or may cause oscillations or convergence to breakdown if ω is too high).

Explicit formulae for SOR

 Because (D + ωL) is lower triangular we can use forward substitution to write down explicit formulae as for Guass-Seidel

$$x_{i}^{(n+1)} = (1-\omega)x_{i}^{(n)} + \frac{\omega}{a_{ii}}\left(b_{i} - \sum_{j < i} a_{ij}x_{j}^{(n+1)} - \sum_{j > i} a_{ij}x_{j}^{(n)}\right)$$

- Note this formula fits the general pattern given on the previous slide.
- You can use this to solve the linear equations that occur when pricing European options using the implicit or Crank-Nicolson schemes.

Solving the linear complimentarity problem

The linear complimentarity problem is to solve

$$y = Ax + b$$
, $x \ge 0$, $y \ge 0$, $x \cdot y = 0$

for vectors x, and y.

- Note that in the special case when we have a solution with y = 0 this reduces to Ax = -b and y = 0 everywhere.
- For example when applied to pricing American options y = 0 is saying that the Black-Scholes PDE is satisfied everywhere. The equations Ax = -b are then just the equations that occur in pricing a European option.
- Idea: perhaps if we take an iterative method for solving Ax = -b but at each stage we insist that x ≥ 0 we will get a solution to the linear complimentarity problem?

Solving linear complimentarity by successive over-relaxation

- To solve $x \ge 0, y \ge 0, xy = 0, y = Ax + b$
- Take an initial guess x^0
- Define $x^{(n)}$ by: $x^{(n+1)}_i = \max\left\{(1-\omega)x^{(n+1)}_i + \frac{\omega}{a_{ii}}\left(-b_i - \sum_{j < i} a_{ij}x^{(n+1)}_j - \sum_{j > i} a_{ij}x^{(n)}_j\right), 0\right\}$
- So long as A is positive semi-definite and 0 < ω < 2 this converges. "The Solution of a Quadratic Programming Problem Using Systematic Overelaxation", C Cryer, 1971
- I note that he calls it "Systematic Overrelaxation" while everyone else calls it "Successive Overrelaxation" so presumably everyone finds the terminology a little odd!

└─The implicit method

Summary

- We have shown how to write American option pricing using differential inequalities
- This gives rise to a finite difference problem where each time step is a linear complimentarity problem.
- The linear complimentarity problem can be solved in practice using a successive over-relaxation technique.
- (Claim) this converges to the true American option price.
- Thus the finite difference method does give a good approach to American option pricing, but it does involve quite a few new ideas.
- Pricing American options using the implicit and Crank-Nicolson finite difference methods is therefore non-examinable. The explicit method IS examinable.