Worksheet 6

There is a quiz to test basic understanding available on Keats.

1) $[\star]$ A stock follows the Black Scholes model with $S_{0}=1, \sigma=0.2$ and $\mu=0.08$. The risk free rate is 0.05 . An investor has 1 dollar to invest for a time period of 1 year and wishes to optimize their expected utility. Their utility function is

$$
u(x)= \begin{cases}\ln (x) & x>0 \\ -\infty & x \leq 0\end{cases}
$$

Compute their expected utility:
(a) By the Monte Carlo method
(b) By the Monte Carlo method with antithetic sampling
(c) By the Monte Carlo method with a control variate of your choice
(d) Use the rectangle rule.
(e) Compare the errors of these approaches
2) $[\star]$ You can compute the area of the unit circle using a Monte Carlo method. Simply generate uniformly distributed points in $[-1,1] \times[1,1]$ and count how many lie in the circle. Implement this in MATLAB.

Which is better using $2 N$ uniformly distributed points in $[-1,1] \times[-1,1]$ or using $2 N$ points generated using antithetic sampling? Explain your answer.
3) Use matlab's chol function to find the Cholseky decomposition of

$$
\left(\begin{array}{ll}
3 & 1 \\
1 & 2
\end{array}\right)
$$

(Solution: see the file testRandnMultivariate.m in lecture6.zip)
4) Use matlab to plot a scatter plot of 10000 points (X, Y) where X and Y are normally distributed with covariance matrix

$$
\left(\begin{array}{ll}
3 & 1 \\
1 & 2
\end{array}\right)
$$

(Solution: see the file testRandnMultivariate.m in lecture6.zip)
5) $[\star] X$ is normally distributed with mean 5 and standard deviation 3 and Y is normally distributed with mean 7 and standard deviation 1 and if X and Y have correlation $\rho=0.5$. Generate a sample of points (X, Y) matching these properties. How have you tested your answer?
(Solution: see the file testQuestion3.m in lecture6.zip)
6) What is the transformation matrix B that reverses the order of the coordinates x_{1}, x_{2}, x_{3} ? What is $B B^{T}$? Use this to find a pseudo square root of the matrix:

$$
\left(\begin{array}{lll}
5 & 1 & 1 \\
1 & 6 & 1 \\
1 & 1 & 4
\end{array}\right)
$$

which is not upper triangular
(Solution: see the file solutions.txt.m in lecture6.zip)
7) [*] Write a function randnMultivariate (omega,n) which generates n samples from a multivariate normal distribution with covariance matrix omega.
(Solution: see the file testRandnMultivariate.m in lecture6.zip)
8) Compute the Cholesky decomposition of

$$
\left(\begin{array}{ll}
3 & 1 \\
1 & 2
\end{array}\right)
$$

by hand.
9) $[\star]$ Simulate the process

$$
\mathrm{d} S_{t}=S_{t}\left(\mu \mathrm{~d} t+\sigma \mathrm{d} W_{t}\right)
$$

using the Euler scheme and find the exact solution too. Use this to generate a $\log -\log$ plot of errors for the Euler scheme.
(Solution: see the file plotStockPriceErrors.m in lecture6.zip)
10) [$\star]$ Simulate the Vasicek interest rate model

$$
\mathrm{d} r_{t}=a\left(b-r_{t}\right) \mathrm{d} t+\sigma \mathrm{d} W_{t}
$$

using the Euler scheme. Generate plots of interest rate paths with varying parameters so you get a feel for this kind of model. How could you simulate the Vasicek model without using the Euler scheme? (HINT: The increments of the Vasicek model over any time period are known to be normally distributed and there are formulae for their mean and variance)
(Solution: see the file testSimulateVasicek.m in lecture6.zip)
11) Modify the delta hedging code from last week so that one still delta hedges as though one believed the Black-Scholes model was true, but in fact the interest rates are stochastic and follow the Vasicek model. How does the delta hedging strategy perform?
12) $[\star \star]$ Mock exam Q4
13) $[\star \star]$ Bonus questions Q1
14) May 2015 Q3
15) May 2016 Q3
16) May 2016 Q4
17) Bonus questions Q4

