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Improving Monte Carlo Pricing

Antithetic Sampling

Revision: Antithetic Sampling

Suppose we have a Monte Carlo pricer based on drawing n
normally distributed random numbers εi
It is often better to compute the price using a sample based on

εi and −εi rather than to use a sequence of 2n independent

random variables.

Theory: If X1 and X2 are random variables with

E (X1) = E (X2) then

E (X1) = E

(
X1 + X2

2

)
But

Var

(
X1 + X2

2

)
=

1

4
(Var(X1) + Var(X2) + 2Cov(X1,X2))

Let X1 be estimate based on the n variables εi . Let X2 be

estimate based on −εi . We will often have Cov(X1,X2) is

negative.

https://tinyurl.com/ycaloqk6
https://pollev.com/johnarmstron561


FMO6 � Web: https://tinyurl.com/ycaloqk6 Polls: https://pollev.com/johnarmstron561

Improving Monte Carlo Pricing

Antithetic Sampling

MATLAB implementation of Antithetic sampling

% Price a call option by antithetic sampling

function [price,errorEstimate] = callAntithetic( K,T, ...

                                 S0,r,sigma, ...

                                 nPaths )

logS0 = log(S0);

epsilon1 = randn( nPaths/2,1 );

epsilon2 = -epsilon1;

logST1 = logS0 + (r-0.5*sigma^2)*T + sigma*sqrt(T)*epsilon1;

logST2 = logS0 + (r-0.5*sigma^2)*T + sigma*sqrt(T)*epsilon2;

ST1 = exp( logST1 );

ST2 = exp( logST2 );

discountedPayoffs1 = exp(-r*T)*max(ST1-K,0);

discountedPayoffs2 = exp(-r*T)*max(ST2-K,0);

price = mean(0.5*(discountedPayoffs1+discountedPayoffs2));

errorEstimate = std(0.5*(discountedPayoffs1+discountedPayoffs2))/sqrt(nPaths/2);

end
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Improving Monte Carlo Pricing

Antithetic Sampling

Antithetic Sampling Results

Parameters: S0 = 100, K = 100, σ = 0.2, r = 0.14, T = 1,

N = 10000

Results:
Method Price Standard error estimate

Black�Scholes Formula 3.0679

Naive Monte Carlo 3.0794 0.197

Antithetic Sampling 3.0771 0.054

Conclusion: Antithetic sampling is easy to implement and

often rather e�ective.
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Improving Monte Carlo Pricing

Importance Sampling

Importance Sampling

Monte Carlo pricing is an integration method.

You can use substitution to change one integral to another

integral by re-parameterizing

Equivalently you can change the distribution from which you

draw your samples so long as apply appropriate weights to

correct for this.

Monte Carlo integration is exact when the price function is

constant

If we can re-parameterize so the price function is nearer to

being constant, we will have reduced the variance of the

Monte Carlo algorithm.
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Improving Monte Carlo Pricing

Importance Sampling

Importance Sampling Example

Suppose we want to price a far out of the money knock out

call option

Suppose that for 99% of price paths the option will end out of

the money

This means that 99% of price paths in the Monte Carlo

calculation will give us no information.

Instead: �nd a way to generate the 1% of price paths where

the option ends up in the money; compute the expectation for

these paths; re-weight by multiplying by 100.

For simplicity, let's do this for a vanilla call option to see how

it improves upon ordinary Monte Carlo.
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Improving Monte Carlo Pricing

Importance Sampling

Calculation

Generate stocks prices at time T using the formula:

log(ST ) = log(S0) +

(
r − 1

2
σ2
)
T + σ

√
TN−1(u)

where u is uniformly distributed on [0, 1].
Option is in the money only if log(ST ) ≥ log(K ). Equivalently
only if:

u ≥ umin := N

(
log(K )− log(S0)− (r − (1/2)σ2) ∗ T

σ
√
T

)
So only generate values u on the interval [umin, 1], then
multiply resulting expectation by 1− umin to account for the

fact that we have only generated 1− umin of the possible

samples.

We know the other samples would have given 0 for the option

payo�.
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Improving Monte Carlo Pricing

Importance Sampling

MATLAB implementation of Importance Sampling

function [price,error] = callImportance( K,T, ...

                         S0,r,sigma, ...

                         nPaths )

logS0 = log(S0);

% Generate random numbers u on the interval [lowestU,1]

lowestU = normcdf( (log(K)-logS0 - (r-0.5*sigma^2)*T)/(sigma*sqrt(T)) );

u = rand(nPaths,1)*(1-lowestU)+lowestU;

% Now generate stock paths using norminv( u ). lowestU was chosen

% so that the lowest possible stock price obtained is K. Note that

% we are only considering a certain proportion of possible stock prices

logST = logS0 + (r-0.5*sigma^2)*T + sigma*sqrt(T)*norminv(u);

ST = exp( logST );

discountedPayoff = exp(-r*T)*(ST-K);

% Since we only simulate a certain proportion of prices, the true

% epectation of the final option value must be weighted by proportion

proportion = 1-lowestU;

price = mean(discountedPayoff)*proportion;

error = std(discountedPayoff)*proportion/sqrt(nPaths);

end
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Improving Monte Carlo Pricing

Importance Sampling

Importance Sampling Results

Parameters: S0 = 100, K = 200, σ = 0.2, r = 0.14, T = 1,

n = 1000.

Note that this is far out of the money, so naive Monte Carlo

will perform badly.

Results:

Method Price Standard Error

Black�Scholes Formula 0.02241

Naive Monte Carlo 0.05960 0.03469

Importance Sampling 0.02122 0.00066

Conclusions: Importance Sampling is more di�cult to

implement than antithetic sampling, but can produce excellent

improvement for far out of the money options
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Improving Monte Carlo Pricing

Control Variate Method

The Control Variate Method - Idea

Suppose that we wish to price a Knock Out option

We have an analytic formula for the price of a Call Option

with the same strike.

Maybe, rather than pricing a Knock Out option directly, it

would be a better idea to estimate the di�erence between the

price of a Knock Out option and the price of the Call Option

using Monte Carlo instead.

Price of Knockout Option ≈ Price of Call Option

+ Estimate of di�erence (1)

Because the di�erence is probably smaller than the price we're

trying to estimate, the variability in a Monte Carlo estimate of

the di�erence is probably lower than the variablility in a Monte

Carlo estimate of the price.
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Improving Monte Carlo Pricing

Control Variate Method

Control Variate - Example that proves it can work

Consider the extreme case of pricing a knock out option where

the barrier is so high it will very rarely be hit.

In the control variate method, we will estimate that the

di�erence between the call price and the knock-out option price

is zero even if we use a tiny sample (e.g. a sample of one).

The control variate method will converge to the exact answer

immediately.

The naive method will be no more accurate than pricing a call

by Monte Carlo, so only converges slowly.
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Improving Monte Carlo Pricing

Control Variate Method

The Control Variate method

Suppose we have a random variable M with E (M) = µ and

wish to �nd µ.

Suppose we have another random variable T with E (T ) = τ
with τ known.

De�ne M∗ = M + c(T − τ). E (M∗) = µ too for any c ∈ R.
Our previous example was the special case when c = −1.
Var(M∗) = Var(M) + c2 Var(T ) + 2c Cov(M,T )

Choose c to minimize this

c =
−Cov(M,T )

Var(T ,T )

Var(M∗) = (1− ρ2) Var(M)

where ρ is the correlation between M and T .
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Improving Monte Carlo Pricing

Control Variate Method

Control Variate method, worked example

Let us price a Call Option by Monte Carlo

We expect the price of a Call Option to be correlated with the

price of the stock, so let's use the stock price as our control

variate.
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Improving Monte Carlo Pricing

Control Variate Method

function [price,errorEstimate, c] = callControlVariate( K,T, ...

                         S0,r,sigma, ...

                         nPaths, ...

                         c)

% Usual pricing code

logS0 = log(S0);

epsilon = randn( nPaths,1 );

logST = logS0 + (r-0.5*sigma^2)*T + sigma*sqrt(T)*epsilon;

ST = exp( logST );

discountedPayoffs = exp(-r*T)*max(ST-K,0);

% Standard formula for control variate method

m = discountedPayoffs;

t = exp(-r*T)*ST;

tau = S0;

covMatrix = cov(m,t);

if nargin<7

    c = -covMatrix(1,2)/covMatrix(2,2);

end

mStar = m + c*(t-tau);

% Result

price = mean(mStar);

errorEstimate = std(mStar)/sqrt(nPaths);

end
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Improving Monte Carlo Pricing

Control Variate Method

Control Variate Results

Parameters: S0 = 100, K = 100, σ = 0.2, r = 0.14, T = 1,

n = 1000.

Results:

Method Result Standard Error

Black�Scholes Formula 15.721

Naive Monte Carlo 16.263 0.564

Control variate 15.723 0.137

Note, to compute the error I �xed c and then re-ran to

compute the same error as I was concerned using the same

data to �nd c and estimate error may lead to bias.

Conclusions: The control variate technique is easy to

implement. It can produce signi�cant improvements in the

Monte Carlo price.
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Simulating more interesting stochastic processes
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Simulating more interesting stochastic processes

Summary so far

Simulating the Black�Scholes model has already given some

interesting results

Simulating in the -measure allows us to price derivatives

Simulating in the -measure allows us to test trading

strategies
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https://tinyurl.com/ycaloqk6
https://pollev.com/johnarmstron561


FMO6 � Web: https://tinyurl.com/ycaloqk6 Polls: https://pollev.com/johnarmstron561

Generating correlated random variables

Correlated normally distributed random variables
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Generating correlated random variables

Pseudo square root

De�nition

If Σ is a positive de�nite symmetric matrix, then a matrix satisfying

AAT = Σ

is called a pseudo square root of Σ.

Lemma

Given a pseudo square root A of Σ then if X is a vector of

independent normally distributed random variables with mean 0 and

standard deviation 1 then AX is a multivariate normal variable with

mean 0 and covariance Σ.
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Generating correlated random variables

Proof, part 1

Let Yi =
∑n

a=1 AiaXa. Then since E (XaXb) = 1 if a = b and 0

otherwise we compute:

E (YiYj) = E

(
(

n∑
a=1

AiaXa)(
n∑

b=1

AjbXb)

)

=
n∑

a=1

n∑
b=1

AiaAjbE (XaXb)

=
n∑

a=1

AiaAja

= (AAT )ij .

Which shows that the covariance matrix of the Yi is AA
T = Σ.

The mean of Yi is zero since the mean of Xa is zero for each a.
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Generating correlated random variables

Proof, part 2

The density of X̃i is
1√
2π

e−
1
2
x2 .

Since the Xi are independent, the joint density of the random

vector X is given by

(2π)−
n
2 e−

1
2
xT x .

for x ∈ Rn. Y = AX , so A−1Y = X . Hence by the transformation

rule for random vectors, Y has distribution

(2π)−
n
2 det(A−1)e−

1
2

(A−1y)T (A−1y) = (2π)−
n
2 det(Σ)−

1
2 e−

1
2

(yT Σ−1y)

which by de�nition is a multivariate normal distribution with mean

0 and covariance matrix Σ.
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Generating correlated random variables

Cholesky Decomposition

Theorem

If Σ is a symmetric positive de�nite matrix then there exists a

unique lower triangular matrix L with Σ = LLT and positive

diagonal.

De�nition

L is called the Cholesky decomposition of Σ.

Because L is lower triangular, we can write the equation LLT = Σ
out in detail as:

a11 0 0 . . . 0

a21 a22 0 . . . 0

a31 a32 a33 . . . 0
...

...
...

...

an1 an2 an3 . . . ann




a11 a21 a31 . . . an1
0 a22 a32 . . . an2
0 0 a33 . . . an3
...

...
...

...

0 0 0 . . . ann

 = Σ
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Generating correlated random variables

Proof continued

Take the lower triangular part of both sides. This gives n(n−1)
2

equations in the same number of unknowns. The �rst row gives:

a211 = Σ11

We can now solve for a unique positive a11. The next row gives:

a21a11 = Σ21

a221 + a222 = Σ22

We solve the �rst for a21. Now we can read o� the unique positive

a22. The third row gives:

a31a11 = Σ31

a31a21 + a32a22 = Σ32

a231 + a232 + a233 = Σ33
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Generating correlated random variables

Proof continued

We solve for a31 then a32 then a33.

Proceeding in this way gives an algorithm for computing the

Cholesky decomposition.

To compute all the aij will take O(i) computations for each i
(this is the number of coe�cients in the equations we write

down). There are n2 coe�cients to calculate. So the

algorithm will take O(n3) steps.

Note that a complete proof requires additionally showing that

that Σ being positive de�nite means the quadratics we solve

have real solutions, we'll skip this detail.
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Generating correlated random variables

Summary

If we can �nd a pseudo square root A of a covariance matrix Σ
we can generate normally distributed random numbers with

covariance matrix Σ by simulating a vector of independent

standard random normal variables X and then computing AX .

We can �nd a pseudo square root using Cholesky

decomposition.

A positive de�nite symmetric matrix has many pseudo square

roots. Another way to �nd one is by diagonalizing the matrix.
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Generating correlated random variables

Exercises

8 Use matlab's chol function to �nd the Cholseky decomposition

of (
3 1

1 2

)

8 Use matlab to plot a scatter plot of 10000 points (X ,Y ) where

X and Y are normally distributed with covariance matrix(
3 1

1 2

)
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Generating correlated random variables

Exercises continued

8 X is normally distributed with mean 5 and standard deviation 3

and Y is normally distributed with mean 7 and standard deviation 1

and if X and Y have correlation ρ = 0.5. Generate a sample of

points (X ,Y ) matching these properties. How have you tested your

answer?

8 What is the transformation matrix B that reverses the order of

the coordinates x1, x2, x3? What is BBT ? Use this to �nd a

pseudo square root of the matrix: 5 1 1

1 6 1

1 1 4


which is not upper triangular
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Generating correlated random variables

Exercises continued

8 Write a function randnMultivariate(omega,n) which

generates n samples from a multivariate normal distribution with

covariance matrix omega.

8 Compute the Cholesky decomposition of(
3 1

1 2

)
by hand.
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Solving SDEs numerically

Solving SDEs numerically
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Solving SDEs numerically

Reference

Kloeden and Platen �Numerical Solution of Stochastic Di�erential

Equations".

We won't give proofs.
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Solving SDEs numerically

Simulating Correlated Brownian Motion

d-dimensional Brownian motion with correlation matrix P is

de�ned to be a Markov process whose increments over time δt
are independent random vectors which are normally distributed

with covariance matrix Pδt and mean 0.

Take A to be a pseudo-square root of P , so P = AAT .

Generate Xt by the di�erence equation:

Xt+δt = Xt + A
√
δtε

Then Xt simulates Brownian motion with correlation matrix P .
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Solving SDEs numerically

Problem setting

1 dimensional stochastic di�erential equation

dXt = a(X , t)dt + b(X , t)dWt

n dimensional stochastic di�erential equation

dXt = a(X, t)dt + b(X, t)dWt

where

Xt ∈ Rn

a(X, t) ∈ Rn

b(X, t) is an n × d matrix

Wr is a d-dimensional vector of correlated Brownian motions,

with correlation matrix P .

In either case we also have an initial condition X0.
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Solving SDEs numerically

Notation

We will drop the bold face for vectors and matrices, the

formulae are essentially the same in one or more dimensions.

We will choose a time step δt and will �nd approximate

solutions by discretization.

We will write di�erence equations for our approximations.

Time point i corresponds to the time iδt.

If Wt is a Brownian motion that we have been given then we

de�ne

δWi = Wiδt −W(i−1)δt

so δWi is a random variable.
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Solving SDEs numerically

Euler scheme

The Euler scheme for solving the SDE is to de�ne

X̃i = X̃i−1 + a(Xi−1, t)δt + b(Xi−1, t)δWi

so each X̃i is a random variable determined by the δWj with j ≤ i .
We claim that (in a sense to be explained later) the X̃i are a good

approximation to Xiδt .
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Solving SDEs numerically

Application

To simulate the values Xi , at each time i independently generate a

d-dimensional vector of normally distributed εi with mean 0 and

standard deviation 1 and correlation matrix P .
We can do this using the Cholesky decomposition.

De�ne:

X̃i = X̃i−1 + a(Xi−1, t)δt + b(Xi−1, t)(
√
δt)εi

NOTE THE
√
δt!

Note the slight distinction between:

Solving the SDE when we are given values of Wt over time.

Simulating the stochastic process, where we run many

simulations and generate our own values of εi .
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Solving SDEs numerically

Theorem

Suppose that:

|a(x , t)− a(y , t)|+ |b(x , t)− b(y , t)| < K1|x − y |

and

|a(x , t)|+ |b(x , t)| < K2(1 + |x |)

and

|a(x , s)− a(x , t)|+ |b(x , s)− b(x , t)| < K3(1 + |x |)|s − t|−
1
2

for some constants K1, K2, K3 and all s, t, x , y . Then

E (|XT − X̃(T/δt) ≤ K4δt
1
2

for some constant K4.

i.e. we have convergence in expectation.
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Solving SDEs numerically

Application

Corollary

Under the same conditions, our simulation converges in distribution.

The rate of convergence δt
1
2 is very slow

The conditions are very stringent (e.g. linear growth)
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Solving SDEs numerically

Example

Example

For the process

dXt = adt + bdWt

with a and b constants then the solution is Euler scheme is exact.

Note this is elementary and does not use general result on

convergence.

In general if a and b are slowly varying we can expect that the

Euler scheme will be reasonably accurate.
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Solving SDEs numerically

Numerical test

We won't prove the theorem. But we can check it is true. We want

to see if:

E (|XT − X̃T |) ≤ K4δt
1
2

for an example process. Let's �nd an interesting process we can

solve. Take

Xt = sin(Wt)

so

dXt = −1

2
Xtdt +

√
1− X 2

t dWt
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Solving SDEs numerically

Solving the SDE by the Euler scheme

function [ X ] = simulateSinEuler( X0, dW, dt, nSteps )

% Simulate the following process

% dX = -1/2 X + sqrt(1-X^2) dW

% Note this is obtained by taking the sin of brownian motion

currX = X0;

nPaths = size( dW, 1);

X = zeros(nPaths, nSteps );

for i=1:nSteps

    currDW = dW(1:end,i);

    X(1:end,i) = currX - 0.5*currX*dt + sqrt(1-currX.^2).* currDW;

    currX = X(1:end,i);

end

end
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Computing the error

    dW = randn( nPaths, nSteps(j) )*sqrt(dt);

    exactPaths = sin(X0+cumsum(dW,2));

    eulerPaths = simulateSinEuler( X0, dW, dt, nSteps(j) );

    eulerErrors = abs(eulerPaths(1:end,end)-exactPaths(1:end,end));

    eulerError(j) = ninetyPercentConfidence(eulerErrors);

ninetyPercentConfidence is a helper function which �nds

the upper bound on a ninety percent con�dence interval for

the mean.

If we generate a log-log plot of the upper level of the

con�dence interval against the number of steps, what should

we expect to see?

(Shown in slide at end of lecture).
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Solving SDEs numerically

Application

By simulating stock price processes in the risk neutral measure we

can compute option prices.

Black Scholes model - no need, we have an exact simulation

method

Local volatility model - the parameters µ and σ vary with S
and t

Heston model - the volatility also follows a stochastic process.
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Heston model with r = 0

Suppose that in the Q measure the stock price and volatility obey:

dSt =
√
vtStdW

1
t

dvt = κ(θ − vt)dt + ξ
√
vtdW

2
t

where dW 1
t and dW 2

t are Brownian motions with correlation ρ

θ is the long run variance

κ is the mean reversion rate

ξ is the volatility of volatility

Require 2κθ > ξ2 to keep volatility positive.
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Solving SDEs numerically

r = 0 so we require that S is a martingale for this to be a valid

Q measure model. This is why there is no drift term.

In Black�Scholes model there is a unique compatible Q model

for a given P. This isn't true in general, so one usually takes Q
as given.
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Solving SDEs numerically

The volatility smile

If we simulate Q measure stock prices in the Heston model and use

this to compute risk neutral prices for options, will this �explain�

the volatility smile?

(Question: what is implied volatility? What is the volatility

smile?)
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Implied volatility

De�nition

Given the market price of a European put or call option, the implied

volatility is the value that you must put into the Black�Scholes

formula to get that market price.
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Monte carlo pricing code

Our pricing code looks like this:

function ret = priceByMonteCarlo (...)

paths = generatePricePaths (...);

payoffs = computeOptionPayoffs (...);

ret = mean(payoffs )*exp(-r*T);

end

All we need to do is to change this to use the Heston model to

generate price paths.

https://tinyurl.com/ycaloqk6
https://pollev.com/johnarmstron561


FMO6 � Web: https://tinyurl.com/ycaloqk6 Polls: https://pollev.com/johnarmstron561

Solving SDEs numerically

function [ prices, variances ] = generatePricePathsHeston( ...

    S0, v0, ...

    kappa, theta, xi, rho, ...

    T, nPaths, nSteps)

%GENERATEPRICEPATHSHESTON Generate price paths according to the

%    Heston model

prices = zeros( nPaths, nSteps );

variances = zeros( nPaths, nSteps );

currS = S0;

currv = v0;

dt = T/nSteps;

for i=1:nSteps

    epsilon = randnMultivariate( [1 rho; rho 1], nPaths  );

    dW1 = epsilon(1,:)*sqrt(dt);

    dW2 = epsilon(2,:)*sqrt(dt);

    currS = currS + sqrt( currv).* currS .* dW1';

    currv = currv + kappa*(theta - currv)*dt + xi*sqrt( currv).* dW2';

    currv = abs( currv ); % Forcibly prevent negative variances

    prices( :, i) = currS;

    variances( :, i) = currv;

end
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Solving SDEs numerically

I ran the simulation with the following parameters

nPaths=100000

nSteps=50

T = 1

S0 = 1

κ = 2

θ = 0.04

v0 = 0.04

ρ = 0

I then used three di�erent values of ξ.
I plotted the Black�Scholes implied volatility for a number of strikes
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Solving SDEs numerically

When ξ = 0 this becomes equivalent to the Black Scholes

model. So in theory the implied volatility should be a constant

equal to 0.2.

As well as computing monte carlo prices, I've plotted error

bounds for the computation when ξ = 0. The Black Scholes

prediction �ts within the error bounds as one would hope.

Other values of ξ do give rise to a smile.
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Other applications

Repeat the delta hedging simulation we did last week, but

generate stock prices using di�erent -measure models.

We can use this to see how well delta hedging performs with

e.g. fat tailed stock prices.

Repeat the VaR Monte Carlo simulations we'll carry out next

week with more interesting models

etc. etc.

https://tinyurl.com/ycaloqk6
https://pollev.com/johnarmstron561


FMO6 � Web: https://tinyurl.com/ycaloqk6 Polls: https://pollev.com/johnarmstron561

Solving SDEs numerically

The Milstein Scheme

The Euler scheme isn't the end of the story.

The Milstein scheme for:

dXt = a(Xt , t)dt + b(Xt , t)dWt

is to take

X̃i = X̃i−1 + aδt + bδWt +
1

2
b
∂b

∂x

(
(δWt)

2 − δt
)

This is Euler scheme plus one more term

Under certain bounds on the coe�cients, converges in

expectation at rate O(δt)

n-d versions exist but are more complex.
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Solving SDEs numerically

Plot of errors of Euler and Milstein for process sin(Wt)
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Exercises

8 Simulate the process

dSt = St(µdt + σdWt)

using the Euler scheme and �nd the exact solution too. Use this to

generate a log-log plot of errors for the Euler scheme.

8 Simulate the Vasicek interest rate model

drt = a(b − rt)dt + σdWt

using the Euler scheme. Generate plots of interest rate paths with

varying parameters so you get a feel for this kind of model. How

could you simulate the Vasicek model without using the Euler

scheme? (HINT: The increments of the Vasicek model over any

time period are known to be normally distributed and there are

formulae for their mean and variance)
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8 Modify the delta hedging code from last week so that one still

delta hedges as though one believed the Black�Scholes model was

true, but in fact the interest rates are stochastic and follow the

Vasicek model. How does the delta hedging strategy perform?
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