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Feedback

Generally very positive feedback. The most contentious issue

is the pace.

Two people said the room was unsatisfactory, but didn't say

why.
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Overview

What we've seen

We have learned how to program Matlab

We have learned the importance of testing

We have learned how to use numerical integration to perform

risk neutral pricing

What's to come

Simulating prices for

Monte Carlo pricing (today)
Risk management
Simulation

Pricing using PDE methods

Optimization
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Monte Carlo Pricing

Monte Carlo Pricing
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Monte Carlo Pricing

Simulating stock prices

We wish to simulate stock prices following the model

dSt = St(µ dt + σ dWt)

at the time T .

�Simulating stock prices� means writing a function which

generates stock prices that have exactly the same probability

distribution as ST .
One way to simulate stock prices is �rst to simulate the log of

the stock price zT instead, then exponentiate.

So we need to simulate zT following

dzt =

(
µ− 1

2
σ2
)
dt + σ dWt

By de�nition of Brownian motion this means generating zT
which are normally distributed with mean z0 + (µ− 1

2
σ2)T

and standard deviation σ
√
T .
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Monte Carlo Pricing

Algorithm (Simulating Black�Scholes prices at time T )

Generate a normally distributed random number ε with mean 0

and standard deviation 1.

Set

z̃T = z0 +

(
µ− 1

2
σ2
)
T + σ

√
T ε

Set

S̃T = exp(s̃T )

The probability density of

S̃T

is the same as that of

ST

So S̃T is a simulated stock price.
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Monte Carlo Pricing

Mnemonic

We have the process

dzt =

(
µ− 1

2
σ2
)
dt + σ dWt

Write:

dzt 7→ δzT = zT − z0

dt 7→ δT = T − 0

dWt 7→
√
δT ε

To get:

zT − z0 =

(
µ− 1

2
σ2
)
T + σ

√
T ε
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Monte Carlo Pricing

Note on the Mnemonic

The previous slide suggests approximating a continuous

stochastic process with a discrete process with time intervals

δT .

This idea does work and is called the Euler method. It

approximately simulates a continuous stochastic process. Such

methods improve as δT tends to zero.

Our algorithm for simulating stock prices exactly simulates

Black Scholes stock prices no matter how large δT is.

The point is that we can integrate Brownian motion exactly,

but not more general processes.
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Monte Carlo Pricing

Growth rate of noise

Why do we say that

dWt 7→
√
δT ε?

The change in the stock price over time Nh is composed of N
independent small changes over time periods of length h.

By the central limit theorem (assuming the small changes have

�nite variance), the change in the stock price over time Nh has

standard deviation proportional to
√
N.

Therefore, the cumulative e�ect of the noise grows at a rate

proportional to
√
δT . Sigma is de�ned to be the constant of

proportionality.

This is why sigma has units of years−1/2.
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Monte Carlo Pricing

Simulating at multiple time points

Simulating the stock price at times

0 = t0 < t1 < t2 < . . . < tn means generating values S̃t1 , S̃t2 ,
. . . S̃tn so that the joint distribution function of St1 , . . .Stn is

the same as that of S̃t1 , . . . S̃tn .

By the Markov property of the stock price, we simply need to

simulate the stock to time t1, then use this as the starting

point of a simulation up to time t2 and so on up to time tn.
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Monte Carlo Pricing

Simulating Black Scholes price paths

Algorithm

De�ne

δti = ti − ti−1

Choose independent normally distributed εi with mean 0 and

standard deviation 1.

De�ne

z̃ti = z̃ti−1
+

(
µ− 1

2
σ2
)
δti + σ

√
δtiεi

De�ne S̃ti = exp(zti ).

S̃ti simulate the stock price at the desired times.

These formulae all match our mnemonic exactly.
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Monte Carlo Pricing

Comment

The �rst algorithm is a special case of this.

I could have just written this algorithm initially, but I want to

emphasize that if you are only interested in stock prices at

time T there is no need to simulate intermediate times.
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Monte Carlo Pricing

Turning this into code

Example

A stock follows the Black�Scholes price process with drift µ = 0.05
and σ = 0.1. The initial stock price is S0 = 100.

Simulate the stock price every day for 1 year and plot the result.

We'll write a function that answers the question directly and then

try to generalize our code.

function  plotBSPath()

T = 1.0;

nSteps = 365;

S0 = 100;

mu = 0.05;

sigma = 0.1;
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Monte Carlo Pricing

The interesting bit

dt = T/nSteps;

logS0 = log( S0);

logS = zeros(nSteps,1);

for t=1:nSteps

    eps = randn();

    dlogS = (mu-0.5*sigma^2)*dt + sigma*sqrt(dt)*eps;

    if (t==1)

        lastLogS = logS0;

    else

        lastLogS = logS(t-1);

    end

    logS(t) = lastLogS + dlogS;

end
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Monte Carlo Pricing

Plotting the result

S = exp( logS );

times = (1:nSteps)*dt;

plot(times,S);

Using the last three slides, write a MATLAB function to solve

the problem.

Experiment with some di�erent values of µ and σ to see if you

think the results look correct.
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Monte Carlo Pricing

Generalizing the code

Let us generalize the code by writing a function that takes the
following parameters

S0, mu and sigma describing the model
Parameters T and nSteps describing the total time interval for
the simulation and the number of equally sized pieces to divide
the time interval into.
A parameter nPaths indicating the number of price paths to
be simulated.

We would like the function to return a matrix of simulated

stock prices. Each row should correspond to a scenario and

each column should correspond to a time step.

The function should also return a vector of time points

indicating the time corresponding to each column.
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Monte Carlo Pricing

Version 1 - idea

The most obvious idea is to take our existing code and repeat

it nPaths times using a for loop

This will give a solution containing two for loops, so I've

called the function generateBSPaths2Loops

In fact we will be able to eliminate these loops when we

optimize our code.
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Monte Carlo Pricing

Version 1 - code

function [ S, times ] = generateBSPaths2Loops( ...

    T, S0, mu, sigma, nPaths, nSteps  )

dt = T/nSteps;

logS0 = log( S0);

logS = zeros(nPaths,nSteps);

for p=1:nPaths

    for t=1:nSteps

        eps = randn();

        dlogS = (mu-0.5*sigma^2)*dt + sigma*sqrt(dt)*eps;

        if (t==1)

            lastLogS = logS0;

        else

            lastLogS = logS(p,t-1);

        end

        logS(p,t) = lastLogS + dlogS;

    end

end

S = exp(logS);

times = dt:dt:T;

end
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Monte Carlo Pricing

Version 2 - idea

In MATLAB you can often �vectorize� your code to eliminate
loops this:

Makes it easier to read
Often makes it considerably faster

When you repeat the same operation across independent

scenarios, you can always vectorize.

We've already seen that A(1:end,j) means the j-th column of

x . You can abbreviate this to A(:, j).
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Monte Carlo Pricing

Version 2 - code

function [ S, times ] = generateBSPaths1Loop( ...

    T, S0, mu, sigma, nPaths, nSteps )

dt = T/nSteps;

logS0 = log( S0);

eps = randn(nPaths, nSteps);

dlogS = (mu-0.5*sigma^2)*dt + sigma*sqrt(dt)*eps;

logS = zeros(nPaths,nSteps);

for t=1:nSteps

    if (t==1)

        lastLogS = logS0;

    else

        lastLogS = logS(:,t-1);

    end

    logS(:,t) = lastLogS + dlogS(:,t);

end

S = exp(logS);

times = dt:dt:T;

end
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Monte Carlo Pricing

Using cumsum

cumsum


x1
x2
x3
. . .
xn

 =


x1
x1 + x2
x1 + x2 + x3
. . .
x1 + x2 + x3 + . . .+ xn


cumsum(v) computes the cumulative sums of a vector v.

cumsum(A) computes the cumulative sums of the rows of a

matrix A.

cumsum(A,1) computes the cumulative sums of the rows of a

matrix A. Rows are the �rst dimension.

cumsum(A,2) computes the cumulative sums of the columns

of a matrix A. Columns are the second dimension.
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Monte Carlo Pricing

Version 3 - Code

function [ S, times ] = generateBSPaths( ...

    T, S0, mu, sigma,nPaths, nSteps  )

dt = T/nSteps;

logS0 = log( S0);

eps = randn( nPaths, nSteps );

dlogS = (mu-0.5*sigma^2)*dt + sigma*sqrt(dt)*eps;

logS = logS0 + cumsum( dlogS, 2);

S = exp(logS);

times = dt:dt:T;

end

You can think of cumsum as meaning �integrate� in the code

above.

Notice that this code is quite a bit simpler than the �rst

version
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Monte Carlo Pricing

Plot of percentiles
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Using the prctile function, we can create a plot that shows a

random price path for our problem and also the percentiles for the

price at each time
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Monte Carlo Pricing

Monte Carlo Pricing

Algorithm (Monte Carlo Pricing)

To compute the Black�Scholes price of an option whose payo� is

given in terms of the prices at times t1, t2, . . . , tn

Simulate stock price paths in the risk neutral measure. i.e. use

the algorithm above with µ = r .

Compute the payo� for each price path

Compute the discounted mean value

This gives an unbiased estimate of the true risk neutral price
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Monte Carlo Pricing

Knockout options

Example

A discrete up and out call option with strike K and barrier B and

maturity T is an option that pays 0 if the stock price is ever above

B at the end of the business day. If it reaches time T without

hitting the barrier, its payo� is given by max(ST − K , 0)

The payo� is determined entirely by the prices at the end of each

business day.

Example

An Asian call option with maturity T has its payo� determined by

the average price S at the close of the last n days of trading up to

and including maturity. The payo� is given by max(S − K , 0)

https://tinyurl.com/ycaloqk6
https://pollev.com/johnarmstron561


FMO6 � Web: https://tinyurl.com/ycaloqk6 Polls: https://pollev.com/johnarmstron561

Monte Carlo Pricing

Variations on a theme

An option that becomes worthless if the price goes below a

barrier is called a down and out option.

Up-and-out and down-and-out options are termed �knockout

options�.

A knock in option is one where the option is worthless unless

the stock price crosses a barrier

One has �up-and-in� and �down-and-in� options.

You can create knockout puts, digital Asians etc..

One can also mathematically model continuous barrier and

Asian options. We can approximate these by using a large

number of time points.
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Monte Carlo Pricing

Trivial example

European put and call options can be priced by this Monte

Carlo method.

This method is equivalent to one of the Monte Carlo

integration techniques covered last week (exercise: convince

yourself)

Monte Carlo pricing is always a numerical integration

technique (we are computing expectations and expectations

are de�ned as integrals)

If we use n points on the price path then we are computing an

n-dimensional integral

So Monte Carlo integration will be better than variants on the

rectangle rule etc. if n is greater than roughly 3 or 4.
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Monte Carlo Pricing

American options

You cannot use our algorithm to price American options.

This is because the payo� of an American option is not

speci�ed in the contract as a function of the price at �xed

times.

There is a more sophisticated technique called American

Monte Carlo, but we will not discuss that in this course.
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Monte Carlo Pricing

Estimating the error

By the central limit theorem, we expect that the sample mean

of the discounted payo� is approximately normally distributed

with standard deviation
σ̃P√
N

where σ̃P is the population standard deviation of the

discounted payo�.

The sample standard deviation σ̃S is an estimator for the

population standard deviation (although it is slightly biased,

the bias can be ignored for large N)

So we estimate that the standard error of our price is

σ̃S√
N

We can then use this to construct approximate con�dence

intervals.

https://tinyurl.com/ycaloqk6
https://pollev.com/johnarmstron561


FMO6 � Web: https://tinyurl.com/ycaloqk6 Polls: https://pollev.com/johnarmstron561

Monte Carlo Pricing

Pricing an up-and-out call option

Example

We wish to price a discrete up-and-out call option with barrier B ,
strike K and maturity T where one tests to see if the option has hit

the barrier at nSteps evenly spaced times over the lifetime of the

option.

The stock price follows the Black Scholes model with parameters

S0, µ, r , σ as usual.

We wish to write a function to price the option using Monte Carlo

simulations with nPaths paths.

The function should also return an estimate of the error.
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Monte Carlo Pricing

Strategy

We already have a function that computes a matrix of prices

with rows corresponding to scenarios and columns

corresponding to times.

We would like to write a function that computes the payo� of

our option as a vector given the matrix of prices

We will then be able to price the option by taking the mean of

this vector and discounting.
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Monte Carlo Pricing

Step 1 - Implement the payo� function

function [ payoff ] = computeKnockoutPayoff2Loops(...

    strike, barrier, priceHistory )

nPaths = size( priceHistory, 1 );

nSteps = size( priceHistory, 2 );

payoff = zeros( nPaths, 1 );

for p=1:nPaths;

    knockedOut = 0;

    for t=1:nSteps

        if priceHistory(p,t)>barrier

            knockedOut = 1;

        end

    end

    if (~knockedOut)

        finalPrice = priceHistory( p, nSteps );

        if (finalPrice>strike)

            payoff(p)=finalPrice-strike;

        end

    end

end

end
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Monte Carlo Pricing

Comments

We don't need to pass the number of paths and the number of

steps to this function, we've used the size function to deduce

that from the priceHistory

Since this code is completely repetitive across scenarios we

know that we can vectorize it to improve e�ciency. We'll do

this shortly.

Lets test our code �rst.
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Monte Carlo Pricing

Step 2 - Test the payo� function

function testComputeKnockoutPayoff2Loops()

stockPrices = [100,101,102; 100,120,107; 100,103,108 ];

payoffs = computeKnockoutPayoff2Loops(105,110,stockPrices);

assertApproxEqual( payoffs(1), 0, 0.001);

assertApproxEqual( payoffs(2), 0, 0.001);

assertApproxEqual( payoffs(3), 3, 0.001);

end
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Monte Carlo Pricing

Step 3 - Write the pricing function

function [price, errorEstimate]=priceKnockoutByMonteCarlo(...

    strike, barrier, T,...

    S0, r, sigma, ...

    nPaths, nSteps )

% Generate paths in risk neutral measure (mu=r)

priceHistory = generateBSPaths(T,S0,r,sigma,nPaths,nSteps);

payoffs = computeKnockoutPayoff(strike,barrier,priceHistory);

discountedPayoff = exp(-r*T)*payoffs;

price = mean( discountedPayoff );

errorEstimate = std( discountedPayoff )/sqrt(nPaths);

end
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Monte Carlo Pricing

Step 4 - Test the pricing function

Exercise
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Monte Carlo Pricing

Remarks

The main pricing function is remarkably simple

The main pricing function does little more than explain in

English what the Monte Carlo pricing algorithm actually is.

The real work is done in generateBSPaths and

computeKnockoutPayoff.

In the exam I may ask you to write pseudo-code for certain

algorithms. I strongly recommend splitting your pseudo code

into functions that explain the algortihm. Given how simple

well written code is, you might well prefer to write actual code.

We'll now see how to vectorize the computeKnockoutPayoff

function.
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Monte Carlo Pricing

Removing the loop across paths

function [ payoff ] = computeKnockoutPayoff1Loop( ...

    strike, barrier, priceHistory )

nPaths = size( priceHistory, 1 );

nSteps = size( priceHistory, 2 );

knockedOut = zeros( nPaths, 1);

for t=1:nSteps

    knockedOutThisTime = (priceHistory(:,t) > barrier);

    knockedOut = knockedOut | knockedOutThisTime;

end

finalPrice = priceHistory( :, nSteps );

inMoney = finalPrice>strike;

payoff=(~knockedOut).*inMoney.*(finalPrice-strike);

end
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Monte Carlo Pricing

Understanding the vectorized code

We have used the vectorization trick of using the fact that

knockedOut and inMoney take the values 1 and 0 since 1

represents true and 0 represents false.

This means

(~ knockedOut ).* inMoney .*( finalPrice -strike)

Will only be non zero when we haven't knocked out and aren't

in the money.

We have used | which means element-by-element 'OR' just as

.* means element-by-element multiplication.
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Monte Carlo Pricing

Vectorizing again

We are currently looping to �nd out if the price was ever

above the barrier.

Suppose we compute priceHistory > barrier. This will

consist of 1's when the price is above the barrier and 0's when

the price is below the barrier.

This means that the maximum of priceHistory>barrier in

each row will be 1 if the barrier knocked out and 0 otherwise.

You can use max(A,[],2) to compute a vector of the

maximum across the columns. max(A,[],1) computes the

maximum across the rows.
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Monte Carlo Pricing

No loops

function [ payoff ] = computeKnockoutPayoff( ...

    strike, barrier, priceHistory )

knockedOut = max( priceHistory>barrier, [], 2);

notKnockedOut = 1-knockedOut;

finalPrice = priceHistory(:,end);

inMoney = finalPrice>strike;

payoff = inMoney .* notKnockedOut .* (finalPrice-strike);

end
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Monte Carlo Pricing

Which version to learn?

I've shown how to price the code using three short functions

computeKnockoutPayoff, priceKnockoutCallOption and

generateBSPaths.

We have three equivalent versions of generateBSPaths and

computeKnockoutPayoff

I would focus on understanding the �nal versions of the code.

I introduced the other versions to help you understand the

�nal version.
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Should you vectorize your own code?

Good things about vectorization

Vectorization makes the code more readable once you know

the standard tricks.

Vectorization may make the code faster

Bad things about vectorization

Vectorization makes the code less readable if you don't know

the standard tricks.

Vectorization may make the code take longer for you to write

(until you've mastered it)

I recommend writing what you �nd comes most naturally and

optimizing only if there is a problem (or the question tells you to)
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Unit testing and random numbers

Algorithms that use random numbers will sometimes give poor

answers by chance.

If you're not careful this means that your tests will sometimes

fail by chance.

To make your tests reliable you should seed the random
number generator.

Pseudo random number generators have a state which
determines what they will do next.
Each time you generate a number they change state. This
ensures they will generate a di�erent number the next time.
Manually �xing the state is called seeding the random number
generator.
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Seeding the random number generator

In MATLAB rng('default') sets the random number

generator back to its default state.

Therefore you should start unit tests of functions that use the

random generator with a call of rng('default').
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Computing Greeks by Monte Carlo

A trader will not thank you if you can compute the price but

not the Greeks. Why is this?
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Computing Greeks by Monte Carlo

A trader is likely to be using some variant of the delta hedging

strategy so they will want to make sure their portfolio is delta

neutral

If they can't ensure their portfolio is delta neutral, they won't

trade because they can't hedge the risk of their position.

In general, a price is useless without a trading strategy to

achieve the price.
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Numerical di�erentiation

Let f be a smooth function.

We can approximate the derivative at x as

f ′(x) =
f (x + h)− f (x)

h
or f ′(x) =

f (x)− f (x − h)

h

for small h. These are called the forward and backward

estimates. Error O(h) by Taylor's theorem.

A better approximation is

f ′(x) =
f (x + h)− f (x − h)

2h
.

This is called the central estimate. Error O(h2).
In the latter case, the �rst order error terms cancel and the

error is bounded by

sup
c∈[x−h,x+h]

|f (3)(c)|
6

h2
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What h should you choose?

We want to choose h that is small enough to give a reasonably

accurate value value.

We want to choose h so it isn't so small that rounding errors

dominate the calculation.

Choosing h >
√
εx where ε denotes the accuracy of the

computer will ensure that h isn't too small. For our purposes

ε = 2.2× 10−16

For ultimate accuracy one worries about whether h + x can be

represented accurately on the computer and tweaks the value

accordingly.

Since we will apply this to a Monte Carlo method, we needn't

worry about choosing the optimal h.
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How not to compute Monte Carlo delta

Do not:

Compute the Monte Carlo price with an initial stock price of S0

Compute the Monte Carlo price with an initial stock price of

S0 + h

Take the di�erence and divide by h

This is because the Monte Carlo prices are randomly generated.

The random error will overwhelm the systematic di�erence we are

trying to measure.
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How to compute Monte Carlo delta

Algorithm (Monte Carlo Delta)

Compute the Monte Carlo price with an initial stock price of

S0 − h

Compute the Monte Carlo price with an initial stock price of

S0 + h using exactly the same random numbers in the

simulation

Take the di�erence and divide by 2h
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Why this works

Monte Carlo pricing is really just numerical integration

Under reasonable conditions, the partial derivative of an

integral is the integral of the partial derivative.

Our Monte Carlo Delta algorithm is equivalent to computing

the derivative of the pricing kernel numerically and then

integrating by Monte Carlo integration.
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MATLAB implementation

function [ delta ] = computeDeltaByMonteCarlo( ...

    strike, barrier, T,...

    S0, r, sigma, ...

    nPaths, nSteps )

h = 10^(-6)*S0; % Won't cause rounding problems

                % but a minute change financially

rng('default');

p1 = priceKnockoutByMonteCarlo(strike,barrier,T,...

    S0-h, r, sigma, ...

    nPaths, nSteps );

rng('default');

p2 = priceKnockoutByMonteCarlo(strike,barrier,T,...

    S0+h, r, sigma, ...

    nPaths, nSteps );

delta = (p2-p1)/(2*h);

end
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Explanation

We have seeded the random number generator to ensure that

the same random numbers are used at S0 − h and at S0 + h.

It would be better in practice to avoid generating the same

random numbers twice as this inevitably be faster and would

get rid of the bias of always using the same random numbers

in calculations.
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Second derivatives

f ′(x − h) ≈ f (x)− f (x − h)

h

f ′(x) ≈ f (x + h)− f (x)

h

f ′′(x) ≈ f ′′(x − h) ≈ f ′(x)− f ′(x − h)

h

≈ f (x + h)− 2f (x) + f (x − h)

h2

Somewhat more rigorously, one can remark that this formula for f ′′

is accurate for quadratics and so, using Taylor's theorem one can

give bounds on the error of the approximation.
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Antithetic sampling

Let P1 and P2 be random variables with E(P1) = E(P2). We wish

to calculate this expectation.

De�ne

Z =
P1 + P2

2
.

Then

E(Z ) = E(P1) = E(P2)

Var(Z ) =
Var(P1) + Var(P2) + 2Cov(P1,P2)

4

So, all other things being equal, if P1 and P2 are negatively

correlated, the estimate E(Z ) will be improved over the case when

P1 and P2 are independent.
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Monte Carlo with antithetic sampling

Suppose that in our Monte Carlo pricing algorithm, we

generate a random normally distributed vector ε and use this

to compute a payo� P1 = P(S(ε)). We can use the vector −ε
to compute another payo� P2 = P(S(−ε)). Here S is the

stock price given ε, P then computes the payo�.

Cov(P1,P2) will be negative for many payo� functions (if ε
leads to a good payo�, −ε will often be bad)

So the estimate E(Z ) may be a better estimate than we would

have obtained by taking independent samples P1.

So by computing the Monte Carlo price using a sample of

random numbers εi and the antithetic sample −εi we will get

a better estimate than we would obtain by simply doubling the

sample size.
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Exercises (p1)

8 What tests could you write for the generateBSPaths

function? Write them and check that they pass. Make sure that

the tests always pass whatever numbers are generated.

8 Use the generateBSPaths function to create a plot of the

percentiles of the stock price over time as shown in the slides.

8 Sketch a graph of the how the price of a knockout option varies

as the barrier changes. What is the minimum value and when is it

obtained? What is the maximum value and when is it obtained?

Explain your answer. Check that your sketch matches the results of

the Monte Carlo simulation.
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Exercises cont...

8 Price a knock in option and an Asian option. How can you use

function passing to improve your code?

8 For our Monte Carlo pricing algorithm we need to generate

normally distributed random numbers. Suppose that we do this by

generating a uniformly distributed random number and then

applying N−1. Show that the Monte Carlo pricing algorithm then

becomes equivalent to one of the Monte Carlo integration

techniques from the last lecture.

8 Prove the convergence rates for the forward, backward and

central estimates for the derivative using Taylor's theorem assuming

that f is continuously di�erentiable to all orders.

8 Refactor the code so that the random numbers used to

compute the delta are not generated twice.
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Exercises cont...

8 We have stated an approximation formula for the second

derivative in terms of the value of f at the points {x − h, x , x + h}.
Assuming f is smooth, compute a bound on the error of this

formula.

8 Use the approximation formula for the second derivative to

write a function that computes the gamma of a European option

using a Monte Carlo method. Check your answer.

8 Numerically compute the derivative of sin(x) in two di�erent

ways and plot a log-log plot of the error in the estimates.

8 Implement Monte Carlo pricing with antithetic sampling for a

knockout option.
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