
Worksheet 2

All exercises are on material covered in Lecture 2.
There is a quiz for lecture 2 on Keats you can to test yourself on the basic

ideas.
I've written this material up in greater detail as the second part of Chapter

2 and the �rst part of Chapter 3
An alternative reference is to use MATLAB's own tutorial (https://uk.

mathworks.com/support/learn-with-matlab-tutorials.html). Note that
this covers the whole of the MATLAB language, but we only use a small part
of the language in this course.

Questions from Chapter 2

1) Use the function assertApproxEqual to simplify the function testCumula-
tiveNormal. You should be able to make three di�erent simpli�cations. Notice
how much more readable the code becomes.

(Solution: see the �le testCumulativeNormal.m in chapter2.zip)

2) [?] Write a test function for your Black Scholes formula. It should test
the �static bound� that the price of a call option is always greater than S −
exp(−rT)K. It should also check that very near to maturity the price is well
approximated by the immediate exercise value. Can you think of any other
tests?

(Solution: see the �le testBlackScholesCallPrice.m in chapter2.zip)

3) Use the function integrateNumerically to compute
∫ 1

0
sin(s) ds and also to

compute
∫ 3

1
(x2 − 2x+ 2) dx.

4) Write some automated tests for the function integrateNumerically.
(Solution: see the �le testIntegrateNumerically.m in chapter2.zip)

5) [?] Write a function integrateFromMinusInfinity(f, x, N) which makes
the substitution t = x+1− 1

s and uses this to evaluate the integral
∫ x

−∞ f(t) dt

1

https://nms.kcl.ac.uk/john.armstrong/courses/fm06/lecture2/matlab-lecture1.pdf
https://nms.kcl.ac.uk/john.armstrong/courses/fm06/book/matlab-chapter2.pdf
https://nms.kcl.ac.uk/john.armstrong/courses/fm06/book/matlab-chapter2.pdf
https://nms.kcl.ac.uk/john.armstrong/courses/fm06/book/matlab-chapter3.pdf
https://uk.mathworks.com/support/learn-with-matlab-tutorials.html
https://uk.mathworks.com/support/learn-with-matlab-tutorials.html

CHAPTER 1. WORKSHEET 2 2

using the rectangle method with N steps. This function should itself call
integrateNumerically. Test your function. Modify the cumulativeNormal
function so that it calls this function.

(Solution: see the �le testIntegrateFromMinusInfinity.m in chapter2.zip)

6) Write a function normalDensity which computes the probability density
function of the normal distribution. Modify the cumulativeNormal function so
that it calls this function.

(Solution: see the �le cumulativeNormalVersion3.m in chapter2.zip)

Questions from Chapter 3

7) Write a function myProd to compute the product of all the elements in a
vector.

(Solution: see the �le myProd.m in chapter3.zip)
(Solution: see the �le testMyProd.m in chapter3.zip)

8) [??] Write a function to �nd the maximum value in a vector. You are not
allowed to use the MATLAB max, min or sort functions!

If you are new to programming, you may �nd this question di�cult. If
you struggle, imagine you were given one thousand cards each with a di�erent
number printed on it. How would you �nd the maximum? Write down detailed
instructions for how you would do this in English and then try to convert them
into MATLAB code.

(Solution: see the �le findMax.m in chapter3.zip)
(Solution: see the �le testFindMax.m in chapter3.zip)

9) [??] Modify the integrateNumerically function from the last chapter so
that it uses a for loop rather than a sum statement. The bene�t of this is that
integrateNumerically will now work for functions like cumulativeNormal

that can only process a single argument rather than a vector of values.
(Solution: see the �le integrateNumericallyForLoop.m in chapter3.zip)

10) [?] In the game paper-scissors-stone, let the number 0 represent paper, the
number 1 represent scissors and the number 2 represent stone.

Write a function hasPlayerAWon(A, B) that uses if statements to decide
who has won given the numbers representing the selections of player A and
player B.

(Solution: see the �le hasPlayerAWon.m in chapter3.zip)

11) You can use the value inf to represent in�nity and the value -inf to rep-
resent negative in�nity in MATLAB.

CHAPTER 1. WORKSHEET 2 3

Given this, write a function integrateNumericallyVersion2(f, a, b, N)

that allows you to specify in�nite values for the integration range [a,b]. You
will need to perform appropriate substitutions before calling the old function
integrateNumerically with a �nite range.

(Solution: see the �le integrateNumericallyVersion2.m in chapter3.zip)

(Solution: see the �le testIntegrateNumericallyVersion2.m in chapter3.zip)

12) The Fibonnacci sequence is de�ned by x1 = 1, x2 = 1 and thereafter by
xn = xn−1 + xn−2. Write a function fibonnacci(n) that computes the n-th
Fibonnaci number xn.

13) Write your own function myisprime that tests if a number is a prime or not.
You can use the function rem which computes the remainder of two numbers
after a division.

(Solution: see the �le myIsPrime.m in chapter3.zip)

14) [?] Modify the function blackScholesCallPrice from the last chapter so
that it can take a vector for each parameter and so compute call option prices
for a variety of scenarios all with one function call.

(Solution: see the �le blackScholesCallPrice.m in chapter3.zip)

15) Write a function blackScholesPrice which behaves like blackScholes-

CallPrice except that it also takes an array of logical values indicating whether
the option is a put or a call and prices the option accordingly.

Can you write this code so that it operates on vectors of parameters without
using any for loops? To do so you will need to vectorize any if statements.

(Solution: see the �le blackScholesPrice.m in chapter3.zip)

16) Without using a for loop, �nd the sum of all the numbers sin(n) where n
is between 1 and 100 (inclusive) and sin(n) is greater than one half.

(Solution: see the �le answerFinalExercise.m in chapter3.zip)

	 Worksheet 2

