## FMO6 - Web:

# https://tinyurl.com/ycaloqk6 Polls: https://pollev.com/johnarmstron561 <br> Lecture 11 - Improvements and Revision 

Dr John Armstrong<br>King's College London

August 22, 2020

## What's coming up

Last Week:
■ Instructions + video on submitting coursework.
■ I have posted solutions to the May 2016 exam.
Today:

- Improving numerical methods
- Time to complete survey
- Revision


## Improving numerical methods

We'll discuss

- Richardson Extrapolation which can be used to improve many numerical methods
- Four methods of improving Monte Carlo methods:
- Antithetic sampling (which we've seen already)
- Importance sampling
- Control variate method.
- Quasi Monte Carlo


## Richardson Extrapolation

- Suppose we have a numerical method to compute $y^{*}$ using some function $y$ depending on a parameter $\epsilon$.

$$
y^{*}=\lim _{\epsilon \rightarrow 0} y(\epsilon)
$$

- Suppose moreover we know that

$$
y(\epsilon)=y^{*}+C \epsilon^{n}+O\left(\epsilon^{n+1}\right)
$$

for some constant $C$.

- By comparing two estimates for $y^{*}$ and taking a linear combination we can get the $\epsilon^{n}$ term to cancel giving us a new method with faster convergence:

$$
\begin{aligned}
y^{k}(\epsilon) & :=\frac{k^{n} y(\epsilon)-y(k \epsilon)}{k^{n}-1} \\
& =y^{*}+O\left(\epsilon^{n+1}\right)
\end{aligned}
$$

## Proof.

$$
\begin{gathered}
y(\epsilon)=y^{*}+C\left(\epsilon^{n}\right)+O\left(\epsilon^{n+1}\right) \\
y(k \epsilon)=y^{*}+C\left((k \epsilon)^{n}\right)+O\left(\epsilon^{n+1}\right)
\end{gathered}
$$

Subtracting $k^{n}$ copies of the first equation to one copy of the second

$$
\begin{aligned}
& k^{n} y(\epsilon)-y(k \epsilon)=\left(k^{n}-1\right) y^{*}+O\left(\epsilon^{n+1}\right) \\
& \frac{k^{n} y(\epsilon)-y(k \epsilon)}{k^{n}-1}=y^{*}+O\left(\epsilon^{n+1}\right)
\end{aligned}
$$

## Example

■ We wish to compute an integral by the trapezium rule. $f:[a, b] \longrightarrow \mathbb{R}$.

- Define $\epsilon=(b-a) / N$ where $N$ is the number of steps.
- Compute estimate for the integral $I_{1}$ using $N$ steps, $\epsilon_{1}=(b-a) / N$.
- Compute estimate for the integral $I_{2}$ using $2 N$ steps, $\epsilon_{2}=\frac{1}{2} \epsilon_{1}$.

■ So take $k=\epsilon_{2} / \epsilon_{1}=\frac{1}{2}$ in Richardson method.

- Trapezium rule converges at rate $n=2$.

■ New estimate is:

$$
I_{R}=\frac{\left(\frac{1^{2}}{2} I_{1}-I_{2}\right)}{\frac{1}{2}^{2}-1}=-\frac{1}{3} I_{1}+\frac{4}{3} I_{2}
$$

## MATLAB implementation of Richardson Extrapolation

```
% Perform intergration by the trapezium rule then apply richardson
% extrapolation to obtain estimates with improved convergence
function richardsonEstimate = integrateRichardson( f, a, b, N )
h1 = (b-a)/N;
h2 = (b-a)/(2*N);
estimate1 = integrateTrapezium( f,a,b,N);
estimate2 = integrateTrapezium( f,a,b,2*N);
k = h2/h1;
n = 2;
richardsonEstimate = (k^n*estimate1 - estimate2)/(k^n-1);
end
```


## Interpretation

$$
I_{R}=-\frac{1}{3} I_{1}+\frac{4}{3} I_{2}
$$

$I_{2}$ is computed using trapezium rule with 2 N steps
$I_{2}=\frac{h}{2}\left(f\left(x_{0}\right)+2 f\left(x_{1}\right)+2 f\left(x_{2}\right)+\ldots+2 f\left(x_{N-2}\right)+2 f\left(x_{N-1}\right)+f\left(x_{N}\right)\right)$
$I_{1}$ is computed using $N$ steps
$I_{1}=\frac{h}{2}\left(f\left(x_{0}\right) \quad+2 f\left(x_{2}\right)+\ldots+2 f\left(x_{N-2}\right) \quad+f\left(x_{N}\right)\right)$
So $I_{R}$ is given by:
$I_{R}=\frac{h}{3}\left(f\left(x_{0}\right)+4 f\left(x_{1}\right)+2 f\left(x_{2}\right)+\ldots+2 f\left(x_{N-2}\right)+4 f\left(x_{N-1}\right)+f\left(x_{N}\right)\right)$
So Richardson extrapolation in this example is equivalent to Simpson's rule.

## Importance of Richardson's rule

- Richardson's rule can be applied to many numerical methods e.g. integration methods and finite difference methods.
- You can generalize it to cancel higher orders, or simply apply it more than once.
- Unfortunately it cannot be used for Monte Carlo pricing as the error term is not a constant multiple of $\epsilon^{\frac{1}{2}}$


## L Improvements

- Antithetic Sampling


## Revision: Antithetic Sampling

- Suppose we have a Monte Carlo pricer based on drawing $n$ normally distributed random numbers $\epsilon_{i}$
- It is often better to compute the price using a sample based on $\epsilon_{i}$ and $-\epsilon_{i}$ rather than to use a sequence of $2 n$ independent random variables.
- Theory: If $X_{1}$ and $X_{2}$ are random variables with $E\left(X_{1}\right)=E\left(X_{2}\right)$ then

$$
E\left(X_{1}\right)=E\left(\frac{X_{1}+X_{2}}{2}\right)
$$

But

$$
\operatorname{Var}\left(\frac{X_{1}+X_{2}}{2}\right)=\frac{1}{4}\left(\operatorname{Var}\left(X_{1}\right)+\operatorname{Var}\left(X_{2}\right)+2 \operatorname{Cov}\left(X_{1}, X_{2}\right)\right)
$$

Let $X_{1}$ be estimate based on the $n$ variables $\epsilon_{i}$. Let $X_{2}$ be estimate based on $-\epsilon_{i}$. We will often have $\operatorname{Cov}\left(X_{1}, X_{2}\right)$ is

## -Improvements

- Antithetic Sampling


## MATLAB implementation of Antithetic sampling

```
% Price a call option by antithetic sampling
function [price,errorEstimate] = callAntithetic( K,T, ...
    S0,r,sigma, ...
    nPaths )
logSO = log(SO);
epsilon1 = randn( nPaths/2,1 );
epsilon2 = -epsilon1;
logST1 = logS0 + (r-0.5*sigma ~ 2)*T + sigma*sqrt(T)*epsilon1;
logST2 = logSO + (r-0.5*sigma^2)*T + sigma*sqrt(T)*epsilon2;
ST1 = exp( logST1 );
ST2 = exp( logST2 );
discountedPayoffs1 = exp(-r*T)*max(ST1-K,0);
discountedPayoffs2 = exp(-r*T)*max (ST2-K,0);
price = mean(0.5*(discountedPayoffs1+discountedPayoffs2));
errorEstimate = std(0.5*(discountedPayoffs1+discountedPayoffs2))/sqrt(nPaths/2)
end
```


## L Improvements

- Antithetic Sampling


## Antithetic Sampling Results

■ Parameters: $S 0=100, K=100, \sigma=0.2, r=0.14, T=1$, $N=10000$

- Results:

Method Price Standard error estimate
Black-Scholes Formula 3.0679
$\begin{array}{lll}\text { Naive Monte Carlo } 3.0794 & 0.197\end{array}$
Antithetic Sampling $3.0771 \quad 0.054$

- Conclusion: Antithetic sampling is easy to implement and often rather effective.


## -Improvements

-Importance Sampling

## Importance Sampling

- Monte Carlo pricing is an integration method.
- You can use substitution to change one integral to another integral by re-parameterizing
■ Equivalently you can change the distribution from which you draw your samples so long as apply appropriate weights to correct for this.
- Monte Carlo integration is exact when the price function is constant
- If we can re-parameterize so the price function is nearer to being constant, we will have reduced the variance of the Monte Carlo algorithm.


## -Improvements

LImportance Sampling

## Importance Sampling Example

- Suppose we want to price a far out of the money knock out call option
- Suppose that for $99 \%$ of price paths the option will end out of the money
- This means that $99 \%$ of price paths in the Monte Carlo calculation will give us no information.
- Instead: find a way to generate the $1 \%$ of price paths where the option ends up in the money; compute the expectation for these paths; re-weight by multiplying by 100 .
- For simplicity, let's do this for a vanilla call option to see how it improves upon ordinary Monte Carlo.


## L Improvements

LImportance Sampling

## Calculation

- Generate stocks prices at time $T$ using the formula:

$$
\log \left(S_{T}\right)=\log \left(S_{0}\right)+\left(r-\frac{1}{2} \sigma^{2}\right) T+\sigma \sqrt{T} N^{-1}(u)
$$

where $u$ is uniformly distributed on $[0,1]$.

- Option is in the money only if $\log \left(S_{T}\right) \geq \log (K)$. Equivalently only if:

$$
u \geq u_{\min }:=N\left(\frac{\log (K)-\log \left(S_{0}\right)-\left(r-(1 / 2) \sigma^{2}\right) * T}{\sigma \sqrt{T}}\right)
$$

■ So only generate values $u$ on the interval $\left[u_{\text {min }}, 1\right]$, then multiply resulting expectation by $1-u_{\min }$ to account for the fact that we have only generated $1-u_{\text {min }}$ of the possible samples.

- We know the other samples would have given 0 for the option payoff.


## LImprovements

LImportance Sampling

## MATLAB implementation of Importance Sampling

```
function [price,error] = callImportance( K,T, ...
    S0,r,sigma, ...
    nPaths )
logSO = log(SO);
% Generate random numbers u on the interval [lowestU,1]
lowestU = normcdf( (log(K)-logS0 - (r-0.5*sigma^2)*T)/(sigma*sqrt(T)) );
u = rand(nPaths,1)*(1-lowestU)+lowestU;
% Now generate stock paths using norminv( u ). lowestU was chosen
% so that the lowest possible stock price obtained is K. Note that
% we are only considering a certain proportion of possible stock prices
logST = logS0 + (r-0.5*sigma^2)*T + sigma*sqrt(T)*norminv(u);
ST = exp( logST );
discountedPayoff = exp(-r*T)*(ST-K);
% Since we only simulate a certain proportion of prices, the true
% epectation of the final option value must be weighted by proportion
proportion = 1-lowestU;
price = mean(discountedPayoff)*proportion;
error = std(discountedPayoff)*proportion/sqrt(nPaths);
```


## L Improvements

LImportance Sampling

## Importance Sampling Results

- Parameters: $S_{0}=100, K=200, \sigma=0.2, r=0.14, T=1$, $n=1000$.
- Note that this is far out of the money, so naive Monte Carlo will perform badly.
- Results:
Method Price Standard Error

| Black-Scholes Formula | 0.02241 |  |
| :---: | :--- | :--- |
| Naive Monte Carlo | 0.05960 | 0.03469 |
| Importance Sampling | 0.02122 | 0.00066 |

- Conclusions: Importance Sampling is more difficult to implement than antithetic sampling, but can produce excellent improvement for far out of the money options


## L Improvements

LControl Variate Method

## The Control Variate Method - Idea

- Suppose that we wish to price a Knock Out option

■ We have an analytic formula for the price of a Call Option with the same strike.
■ Maybe, rather than pricing a Knock Out option directly, it would be a better idea to estimate the difference between the price of a Knock Out option and the price of the Call Option using Monte Carlo instead.

Price of Knockout Option $\approx$ Price of Call Option + Estimate of difference

- Because the difference is probably smaller than the price we're trying to estimate, the variability in a Monte Carlo estimate of the difference is probably lower than the variablility in a Monte Carlo estimate of the price.


## -Improvements

Control Variate Method

## Control Variate - Example that proves it can work

- Consider the extreme case of pricing a knock out option where the barrier is so high it will very rarely be hit.
■ In the control variate method, we will estimate that the difference between the call price and the knock-out option price is zero even if we use a tiny sample (e.g. a sample of one).
- The control variate method will converge to the exact answer immediately.
- The naive method will be no more accurate than pricing a call by Monte Carlo, so only converges slowly.


## L Improvements

Control Variate Method

## The Control Variate method

- Suppose we have a random variable $M$ with $E(M)=\mu$ and wish to find $\mu$.
■ Suppose we have another random variable $T$ with $E(T)=\tau$ with $\tau$ known.
$■$ Define $M^{*}=M+c(T-\tau) . E\left(M^{*}\right)=\mu$ too for any $c \in \mathbb{R}$. Our previous example was the special case when $c=-1$.
- $\operatorname{Var}\left(M^{*}\right)=\operatorname{Var}(M)+c^{2} \operatorname{Var}(T)+2 c \operatorname{Cov}(M, T)$
- Choose $c$ to minimize this

$$
c=\frac{-\operatorname{Cov}(M, T)}{\operatorname{Var}(T, T)}
$$

$$
\operatorname{Var}\left(M^{*}\right)=\left(1-\rho^{2}\right) \operatorname{Var}(M)
$$

where $\rho$ is the correlation between $M$ and $T$.

## Control Variate method, worked example

■ Let us price a Call Option by Monte Carlo

- We expect the price of a Call Option to be correlated with the price of the stock, so let's use the stock price as our control variate.

FMO6 — Web: https://tinyurl.com/ycaloqk6 Polls: https://pollev.com/johnarmstron561
L Improvements
LControl Variate Method

```
function [price,errorEstimate, c] = callControlVariate( K,T, ...
    SO,r,sigma, ...
    nPaths, ...
    c)
% Usual pricing code
logSO = log(SO);
epsilon = randn( nPaths,1 );
logST = logSO + (r-0.5*sigma^2)*T + sigma*sqrt(T)*epsilon;
ST = exp( logST );
discountedPayoffs = exp (-r*T)*max (ST-K,0);
% Standard formula for control variate method
m = discountedPayoffs;
t = exp(-r*T)*ST;
tau = S0;
covMatrix = cov(m,t);
if nargin<7
    c = -covMatrix(1,2)/covMatrix(2,2);
end
mStar = m + c*(t-tau);
% Result
price = mean(mStar);
errorEstimate = std(mStar)/sqrt(nPaths);
```


## L Improvements

LControl Variate Method

## Control Variate Results

■ Parameters: $S 0=100, K=100, \sigma=0.2, r=0.14, T=1$, $n=1000$.
Method Result Standard Error

■ Results:
Black-Scholes Formula 15.721

| Naive Monte Carlo | 16.263 | 0.564 |
| :---: | :--- | :--- |
| Control variate | 15.723 | 0.137 |

- Note, to compute the error I fixed $c$ and then re-ran to compute the same error as I was concerned using the same data to find $c$ and estimate error may lead to bias.
- Conclusions: The control variate technique is easy to implement. It can produce significant improvements in the Monte Carlo price.


## L Improvements

Low Discrepancy Sequences

## Low Discrepancy Sequences

- In one dimension, evenly distributed sample points give better performance than Monte Carlo sampling (i.e. the rectangle rule is faster than Monte Carlo).
- In high dimensions there are better sets of sample points available.
- Given an $N$ and a dimension $d$, you can generate a "low discrepancy sequence" of $N$ points in $[0,1]^{d}$ so that if you wish to estimate a function $f:[0,1]^{d} \longrightarrow \mathbb{R}$ you will get a better estimate by sampling at the points in the low discrepancy sequence than you would be Monte Carlo.

■ Using a low discrepancy sequence rather than pseudo-random numbers is called quasi-Monte Carlo. Low discrepancy sequences are also called quasi-random numbers.

- Quasi Monte Carlo converges faster than Monte Carlo - but you have to be careful: you can only guarantee better results as $N$ tends to infinity and you want good results for low $N$.
- See Joshi "More Mathematical Finance" (or many other sources) for details on how to use low discrepancy sequences in practice.


## Generating Low discrepancy sequencey in MATLAB

```
d = 2;
s = sobolset(d);
points = net(s,1000);
```

- You can replace sobolset with haltonset for another low discrepancy sequence.
- Try plotting a scatter plot of the results and comparing with the halton version and genuine random numbers.
- Aside: this is an example of object oriented MATLAB code. We are creating a complex data object and then calling special functions to work with that kind of data object


## Summary of improvements to numerical methods

- With little effort you can use techniques such as Richardson extrapolation to improve the convergence of a numerical method.
- There are various "variance reduction" techniques available for Monte Carlo. If you need to speed up your Monte Carlo pricer why not try all of them at once?


## Feedback

- Please fill in the online feedback for the module. There are separate paper forms to rate your classes.


## Question: Numerical intergration

■ How many integration rules can you name?

- What are their formulae and rate of convergence?
- Can you draw a log-log plot indicating their convergence?


## Revision: Numerical integration

- $\mathrm{h}=(\mathrm{b}-\mathrm{a}) / \mathrm{n}$;
- Rectangle rule:

$$
\begin{gathered}
x_{i}=a+\left(i-\frac{1}{2}\right) h \\
\int_{a}^{b} f=h\left(f\left(x_{1}\right)+f\left(x_{2}\right)+\ldots+f\left(x_{n}\right)\right)
\end{gathered}
$$

Error $O\left(h^{2}\right)$.

- Trapezium rule:

$$
x_{i}=a+i h
$$

$$
\int_{a}^{b} f=\frac{h}{2}\left(f\left(x_{0}\right)+2 f\left(x_{1}\right)+2 f\left(x_{2}\right)+\ldots 2 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right)
$$

Error $O\left(h^{2}\right)$.

- Simpson's rule. $n$ is even:

$$
\begin{gathered}
x_{i}=a+i h \\
\int_{a}^{b} f=\frac{h}{3}\left(f\left(x_{0}\right)+4 f\left(x_{1}\right)+2 f\left(x_{2}\right)+4 f\left(x_{3}\right)+2 f\left(x_{4}\right)+\ldots 4 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right)
\end{gathered}
$$

Error $O\left(h^{4}\right)$.

## Plot of errors for integration rules

## Errors in numerical integration



## Question: Numerical intergration

- What has numerical integration got to do with pricing derivatives?
- What has numerical integration got to do with Monte Carlo pricing?


## Revision: Relevance of numerical integration

■ Risk neutral prices are just expectations in the risk neutral measure

- If we $q_{T}(S)$ is the probability density of $S_{T}$ in the $\mathbb{Q}$ measure,

$$
\text { price }=e^{-r T} \int_{\mathbb{R}} q_{T}(S) \text { payoff }(S) \mathrm{d} S
$$

for options whose payoff only depends on $S_{T} . q_{T}(S)$ is the pricing kernel.

- You can perform 1 dimensional integrals by Monte Carlo.
- Chose random points $x$ on the interval $[a, b]$
- Compute the average of $f(x)$ and multiply by $(b-a)$. Convergence $O\left(N^{-\frac{1}{2}}\right)$.
- For high dimensional integrals, Monte Carlo is the only practical choice because minimum number of sample points required for other integration rules grows exponentially with dimension.


## Question: Simulating random variables

- What is the recipe for converting a stochastic differential equation into its Euler approximation?


## Revision: Simulating random variables

- To simulate a stochastic differential equation, first write down its Euler approximation:
- Replace $\mathrm{d} t$ with $\delta t$.

■ Replace $\mathrm{d} X_{t}$ with $\delta X$.
■ Replace $\mathrm{d} W_{t}^{(i)}$ with $\delta W_{t}^{(i)}$.

- Example:

$$
\mathrm{d} s=\left(\mu-\frac{1}{2} \sigma^{2}\right) \mathrm{d} t+\sigma \mathrm{d} W_{t}
$$

becomes:

$$
s_{i+1}=s_{i}+\left(\mu-\frac{1}{2} \sigma^{2}\right) \delta t+\sigma \delta W_{t}
$$

- Now replace $\delta W_{t}$ with $\sqrt{t} \epsilon_{t}^{(i)}$ with standard normally distributed $\epsilon$.

$$
\mathrm{d} s=\left(\mu-\frac{1}{2} \sigma^{2}\right) \mathrm{d} t+\sigma \sqrt{\delta t} \epsilon_{t}
$$

- The Euler scheme is exact for Brownian motion. When simulating the log of the stock price, you can use just one time step if desired.

LEuler Method

## Revision: generateBSPaths

```
% Generate random price paths according to the black scholes model
% from time O to time T. There should be nSteps in the path and
% nPaths different paths
function [ S, times ] = generateBSPaths( ...
    T, S0, mu, sigma,nPaths, nSteps )
dt = T/nSteps;
logSO = log( SO);
eps = randn( nPaths, nSteps );
dlogS = (mu-0.5*sigma^2)*dt + sigma*sqrt(dt)*eps;
logS = logSO + cumsum( dlogS, 2);
S = exp(logS);
times = dt:dt:T;
end
```


## -Simulation

-Cholesky Decomposition

## Revision: Correlated random variables

- A pseudo square root of a positive definite symmetric matrix $A$ is a matrix $B$ with $B B^{T}$.
- The Cholesky decomposition of $A$ is the unique lower triangular pseudo-square root, $L$, with positive diagonal. $A=L L^{T}$.
- If $x$ is a vector of independent $N(0,1)$ variables, then $L x$ is multivariate normal with mean 0 and covariance matrix $A$.


## Question: Simulations

■ What can we usefully do with our simulations?

## Revision: Using simulations

We can use our simulations for:

- Pricing
- Testing strategies
- Optimization

■ Risk management

## Question: Monte Carlo Pricing

■ How do you use Monte Carlo methods to price an option?

- Give one way of computing the delta by Monte Carlo?
- What kinds of option can you / can't you price by Monte Carlo?
■ How fast is Monte Carlo?


## Revision: Monte Carlo Pricing

- Generate paths in the risk neutral measure
- The discounted sample mean is an estimate for the price
- The sample standard deviation divided by the square root of the number of paths is an estimate for the error
- Use the same random numbers if estimating the delta by comparing two nearby Monte Carlo prices.
- Seeding the random number generator is one way to do this.
- You can price (discrete time) Knock Out, Knock In and Asian options.
- You can price European path-independent options, though 1-d integration is faster.
- You can't price American options.
- Convergence is of order $O\left(N^{-\frac{1}{2}}\right)$


## ᄂ Using simulations

ᄂ Testing strategies

## Question: Testing strategies

- If a trader decides to write a call option and then delta hedge to ensure they can fulfil their obligation what is their bank balance at each time?


## ᄂ Using simulations

- Testing strategies


## Revision: Delta hedging

- $b_{t}$ is bank balance at time $t$.
- $P$ is amount charged.

$$
\begin{gathered}
b_{0}=P-\Delta_{0} S_{0} \\
b_{t}=e^{r \delta t} b_{t-1}-\left(\Delta_{t}-\Delta_{t-1}\right) S_{t} \\
b_{n}=e^{r \delta t} b_{n-1}+\left(\Delta_{n-1}\right) S_{n}-\max \left\{S_{n}-K, 0\right\}
\end{gathered}
$$

- Standard deviation of final bank balance is of order $(\delta t)^{\frac{1}{2}}$.

■ To simulate delta hedging simulate $\mathbb{P}$-measure stock prices and then use the above equations to simulate the bank balance of a delta hedger.

## LUsing simulations

- Testing strategies


## Delta hedging results

Distribution of profits when delta hedging daily and charging BS Price


## Question: Optimization

■ What is meant by a utility function? Give an example.
■ How can you find good strategies by combining other strategies?

- What is the indifference price?


## ᄂ Using simulations

-Optimization

## Revision: Optimization

■ A utility function is a mapping from $\mathbb{R}$ to $\mathbb{R}$ that ascribes a subjective value to any particular payoff. Utility is usually increasing and concave.

- We wish to maximize expected utility.
- Given $n$ strategies $S_{1}, S_{2}, \ldots S_{n}$ we can form a linear combination $\sum_{i} \alpha_{i} S_{i}$.
- Generate $M$ scenarios. Let $p_{i}^{m}$ be the payoff of strategy $i$ in scenario $m$
- Use fmincon to minimize the expected disutility:

$$
-\frac{1}{M} \sum_{m} u\left(\sum_{i} \alpha_{i} p_{i}^{m}\right)
$$

- The indifference price for a financial product $P$ and strategy $S$ is the amount you could pay $P$ so that your expected utility when following strategy $S$ remains the same whether or not you buy $P$.
- The indifference price for $P$ is the infimum of the indifference prices over all strategies.

FMO6 — Web: https://tinyurl.com/ycaloqk6 Polls: https://pollev.com/johnarmstron561

## ᄂ Using simulations

-Optimization

## Revision: $u(x)=1-e^{-\lambda x}$

How much of each strategy is optimal?


## Question: Risk Management

■ Name three methods of computing/approximating V@R
■ What's good/bad about each?

## Revision: V@R

- Monte Carlo VaR
- Good Points: Accurate answers assuming model is correct
- Bad Points: Slow, choice of model is subjective
- Parametric VaR
- Good Points: Fast
- Bad Points: Innaccurate for nonlinear products. Choice of model is subjective.
- Historic VaR
- Good Points: Not subjective
- Bad Points: Limited by availability of data and claim that future is same as past.


## Revision: VaR implementation details

- For Monte Carlo V@R and parameteric V@R you need to estimate model parameters
- Choice of drift is not so important e.g. choose so that $\log S$ is driftless.
- Take EWMA for volatility:

$$
\bar{\sigma}^{2}=365 \times \frac{1-\lambda}{1-\lambda^{m+1}} \sum_{j=0}^{m} \lambda^{j} r_{i-j}^{2}
$$

$r$ contains daily log returns.

- Use smaller $\lambda$ for shorter time horizons.
- For historic V@R use historic data to find series of historic daily log returns. Scale by $\sqrt{n}$ to generate $n$-day returns. Otherwise same as Monte Carlo.


## Revision: Parametric V@R

■ If $P^{a}$ are the risk factors

- $p^{(a)}=\log \left(P^{(a)}\right)$

■ $\Sigma=\operatorname{cov}(\mathrm{p})$ is the covariance matrix

- $d$ is number of days

■ $V$ is the security we're trying to calculate VaR for. Define

$$
\delta^{(a)}=P^{(a)} \frac{\partial V}{\partial P^{(a)}}
$$

- Parametric V@R is

$$
\mathrm{VaR} \approx N^{-1}\left(\frac{p}{100}\right) \sqrt{\frac{d \delta^{T} \Sigma \delta}{365}}
$$

## VaR versus CVaR etc.

■ Good: VaR is easy to understand, VaR estimates are easy to back test. Banks have already implemented VaR systems.
■ Bad: VaR is not sub-additive, hence not a coherent risk measure.

- Good: CVar is a coherent risk measure. It is convex so good for optimizations.
- Bad: CVar is hared to calculate than VaR. It is harder to test.
- Bad for both: may lead to herd behaviour, false sense of security.


## Question: Finite difference methods

■ What can you price with finite difference methods?

- What can't you price with finite difference methods? (as taught in this course)


## Revision: finite difference methods

- Approximate PDE with finite difference method and work backwards in time from final payoff to current price.
- Precise method depends on choice of PDE and choice of stencil.
- Black Scholes PDE

$$
V_{t}+\frac{1}{2} \sigma^{2} S^{2} V_{S S}+r S V_{S}-r V=
$$

■ Negative time heat equation

$$
\begin{gathered}
W_{t}=-\frac{1}{2} \sigma^{2} W_{x x} \\
W=e^{-r t} V \\
x=-\left(r-\frac{1}{2} \sigma^{2}\right) t+\log (S)
\end{gathered}
$$

## Revision: stencils

- Forward difference

$$
f^{\prime}(x) \approx \frac{f(x+h)-f(x)}{h}
$$

- Backward difference

$$
f^{\prime}(x) \approx \frac{f(x)-f(x-h)}{h}
$$

- Central difference

$$
f^{\prime}(x) \approx \frac{f(x+h)-f(x-h)}{2 h}
$$

- Second derivative

$$
f^{\prime \prime}(x) \approx \frac{f(x+h)-2 f(x)+f(x-h)}{h^{2}}
$$



## Revision: Simplest case of finite difference

- Take the heat equation and use the explicit scheme.

$$
\begin{gathered}
W_{i-1, j}=\lambda W_{i, j+1}+(1-2 \lambda) W_{i, j}+\lambda W_{i, j-1} \\
\lambda=\frac{1}{2} \sigma^{2} \frac{\delta t}{\delta x^{2}}
\end{gathered}
$$

- Only stable if $(1-2 \lambda)>0$. Unstable means that small changes in $W$ due to rounding errors result in wildly changing values in $W$ in earlier time steps.
- Interpretation: only stable if we can see this as a trinomial tree with $\lambda,(1-2 \lambda)$ and $\lambda$ being probability of moving up, staying same or moving down.


## Revision: Boundary conditions

- For a call option, on top boundary call option is well approximated by a portfolio of:
- one stock (value at time $t$ is $S_{t}$ )
- obligation to pay strike at (value at time $t$ is $e^{-r(T-t)} K$ ) Hence $V \approx S_{t}-e^{-r(T-t)} K$ on top boundary.
- On bottom boundary, call option is well approximated by 0 .
- What are boundary conditions for put? What about when using the heat equation?


## Models other than Black Scholes

- Heston model and jump diffusion are two models we have seen

■ Use Euler method to simulate Heston

- Calibrate $\mathbb{Q}$ measure model to smile by using fmincon to minimize mean square distance.
- You can hedge exotics by hedging using underlying and options.


## Summary

- That's not the whole course, but it's a lot of it on only a few slides.
- This is how you should revise: write super-condensed summary notes, then learn them.


## School's Out!

- Don't forget PTES and module feedback!

■ Good luck!

School's Out!

