FMO6 - Web:

https://tinyurl.com/ycaloqk6 Polls: https://pollev.com/johnarmstron561 Numerical and Computational Methods in Finance

Dr John Armstrong
King's College London

August 22, 2020

Introduction

Course organization

- 2 hour lecture. This will define the course. (2 identical lectures per week)

■ Exercises each week.

- 1 hour class. This is optional.
- 80% exam there are lots of past questions and papers on Keats.
- 20% coursework. This will be set in detail in approximately week 6.
- There is a quiz each week on Keats, plus exercise sheets on the course web page.

Why study FM06?

■ Numbers are what matter.

- Required for most quant finance jobs.
- Required for the dissertation.
- Because numerical methods are actually fun.
- Charts
- Experiments
- Insight
- Bloomberg

What you will learn

■ MATLAB. But why MATLAB?
■ Easy

- Designed for science
- Expected by employers.
- Monte Carlo methods
- Simulate trading
- Calculate risks
- Price derivatives
- Other pricing methods
- Solving the Black Scholes PDE
- Pricing with trees
- Optimization
- Portfolio optimization
- Calibration

FM06 or FM13?

There is also a course FM13 on C++ programming. Which should you choose?

- FM06 is a pre-requisite for FM13
- Study FM13 if you want to learn C++ specifically.

Prerequisites

- Some knowledge of continuous time financial mathematics, i.e. one of: FM02,FM04 or 6CCM338a
- I will assume you are familiar with
- The Black-Scholes model
- Stochastic differential equations including Itô's Lemma
- The Feynman-Kac theorem

Performing calculations in MATLAB

The MATLAB user interface

Toolbar		
		Workspace
Current		
Folder		

Window\end{array} \quad $$
\begin{array}{c}\text { Command } \\
\text { History }\end{array}
$$\right\}\)

Figure: The layout of the MATLAB User Interface

Some simple commands

Enter the following in the Command Window

$$
\begin{aligned}
& a=3 \\
& b=2 \\
& a+b
\end{aligned}
$$

- Checkout the Workspace.
- Checkout the Command History.

$$
\begin{aligned}
& a=b+25 \\
& a=a+1 \\
& \sin (360)
\end{aligned}
$$

Using MATLAB for calculations

- Operators *, +, -, ^ and /.

■ Functions just like in maths.
■ Use brackets extensively.
■ Use variables to keep your working.

Exercises

\star What is the cube root of 2 ?

Does sin use degrees or radian's?

What base is used for logarithms using the log command?
What happens if you forget the brackets and type $\log 1$?
What happens if you type $a+1=a$ instead of $a=a+1$?

* Use the up arrow to run the command $\mathrm{a}=\mathrm{a}+1$ repeatedly. Check that it is doing what you expect.

Work out how to compute 10 factorial.

Matrices

MATLAB $=$ MATrix LABoratory.

$$
A=\left(\begin{array}{ccc}
2 & 4 & 5 \\
-3 & 1 & 7 \\
4 & 9 & 2
\end{array}\right)
$$

```
A = [llllllllllllllll
v1 = [lllll}112\mp@code{3}
v2 = [ llll}
W1 = [1; 2; 3]
w2 = [4; 5; 6 ]
A * w1
w1 + w2
```


Punctuation

Symbol Term

Full stop or just "dot".
Comma.
Colon.
Semi-colon.
, Apostrophe or single quote.
" Double quote

- Underscore.
() Brackets, also called round brackets or parentheses.
[] Square brackets.
\{\} Curly brackets.
<> Angle brackets.
~ Tilde or twiddle.
\& Ampersand or and sign.
I Pipe or vertical line

Dividing matrices

To solve

$$
A w^{\prime}=w
$$

think

$$
w^{\prime}=A^{-1} w
$$

so "divide on the left".
To solve

$$
v^{\prime} A=v
$$

think

$$
v^{\prime}=v A^{-1}
$$

so "divide on the right".
$\mathrm{A} \backslash \mathrm{w} 1$
$\mathrm{v} 1 / \mathrm{A}$

FMO6 — Web: https://tinyurl.com/ycaloqk6 Polls: https://pollev.com/johnarmstron561
Lerforming calculations in MATLAB

Inverse

inv (A)

Transpose

Use ' for the conjugate transpose.

```
w1 = [1 2 3 3]';
w2 = [4 5 6]';
```


Creating matrices

```
zeros(4,6)
rand (3,5)
randn(3,5)
zeros(4)
diag([2 4 7])
eye(5)
1:100
20:50
2:3:50
linspace(30,70,10)
```


Dot operators

```
dollarPrices = [ [ 100 105 103 102 103 ]
```



```
gbpPrices = dollarPrices .* gbpToUsdRates
```

- .* means elementwise multiplication

■ * means matrix multiplication

Tip: Use long variable names
Note that you type faster than you think.

Statistical functions

```
sum(dollarPrices)
mean(dollarPrices)
length(dollarPrices)
std(dollarPrices) % Sample s.d.
sum(A)
prctile( dollarPrices, 25 )
```


Histograms

```
sample = randn(10000, 1)
hist( sample )
```

```
sample = randn(10000, 1);
hist( sample, 100 )
```

Tip: Semi-colons
A semi-colon at the end of a line means supress output.

Example

Use MATLAB to compute the sum

$$
1+2+2^{2}+2^{3}+2^{4}+\ldots+2^{10}
$$

```
x = 0:10;
powers = 2.^x;
sum( powers )
```

You can do it in one line sum($2 .^{\wedge}(0: 10)$).

Example

A robot walks a distance X_{1} east, a distance X_{2} south and then climbs a distance X_{3} up. The X_{i} are independent and normally distributed with mean 0 and standard deviation 1. Negative distances should be interpreted in the obvious way. Using a MATLAB simulation, plot an approximate histogram of the total distance travelled.

```
X1 = randn (1000,1);
X2 = randn (1000,1);
X3 = randn (1000,1);
distance = sqrt( X1.^2 + X2.^2 + X3.^2 );
hist( distance, 20 );
```


Exercises

Use MATLAB to answer the following questions:
\star What is $\left(\frac{1}{\sqrt{2}}(1+i)\right)^{4}$?

How would you create a vector containing the first 50 odd integers in MATLAB? What is the sum of the first 50 odd integers?
\star What is the 95-th percentile of the normal distribution (with mean 0 and standard deviation 1).
\star Recall that $\pi=4\left(1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\ldots\right)$. Compute π to three decimal places. (I don't expect you to answer all of these in the time l'll give you.)

Summary

We can
■ Use MATLAB as a sophisticated calculator.
■ Use variables to store our data.
■ Use *, +, ^, / etc. with numbers and matrices.

- Understand the difference between $*$ and.$*$
- Create matrices with the zeros, eye, randn etc..

■ Compute statistics with std, mean, length, hist

Functions

Some functions we would like to write

（i）cumulativeNormal（x）．Computes $\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} \exp \left(-t^{2} / 2\right) \mathrm{d} t$ ．
［⿴囗才 blackScholesCallPrice（ K，T，S，vol，r）．
 approximation to $\int_{a}^{b} f(t) \mathrm{d} t$ computed using the rectangle method with N steps．
Key terms：parameter，return value．
MATLAB functions are a little different to maths functions because not only can they return a value，they can do something．E．g．hist．

- Functions allow us to solve a problem once and then reuse the solution. Here is a deliberately difficult problem we wouldn't want to solve repeatedly.
- How can we compute $N(x)$ the cumulative distribution function of the normal distribution? One answer is to use the built in function normcdf, but suppose that didn't exist? How could we write our own function?
■ IDEA: Make the substitution $t=x+1-\frac{1}{s}$ to transform the integral

$$
\int_{-\infty}^{x} \exp \left(-t^{2} / 2\right) \mathrm{d} t
$$

to an integral of a finite interval. Then use the rectangle rule.

- Writing the code to do this will be tricky, but functions will allow us to write our code so it can solve the problem for any value of x without us needing to think.

Substitution

Write

$$
t=x+1-\frac{1}{s}
$$

So

$$
\frac{\mathrm{d} t}{\mathrm{~d} s}=\frac{1}{s^{2}}
$$

and as $s \rightarrow 1, t \rightarrow x$ whereas as $s \rightarrow 0, t \rightarrow-\infty$. Putting this together we find:
$\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} \exp \left(-t^{2} / 2\right) \mathrm{d} t=\frac{1}{\sqrt{2 \pi}} \int_{0}^{1} \frac{1}{s^{2}} \exp \left(-\frac{1}{2}\left(x+1-\frac{1}{s}\right)^{2}\right) \mathrm{d} s$

The Rectangle Rule

$f:[a, b] \longrightarrow \mathbb{R}$. Approximate f with N rectangles to compute integral. Define

$$
\begin{aligned}
h & =\frac{b-a}{N} \\
s_{n} & =a+\left(n-\frac{1}{2}\right) h
\end{aligned}
$$

then

$$
\int_{a}^{b} f(s) \mathrm{d} s \approx h \sum_{1}^{N} f\left(s_{n}\right) .
$$

To solve the problem take

$$
f(s)=\frac{1}{s^{2}} \exp \left(-\left(x+1-\frac{1}{s}\right)^{2} / 2\right)
$$

and $a=0, b=1$ and $N=1000$ (say)

Complete mathematical solution

$$
\begin{aligned}
N(x) & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} \exp \left(-t^{2} / 2\right) \mathrm{d} t \\
& =\frac{1}{\sqrt{2 \pi}} \int_{0}^{1} \frac{1}{s^{2}} \exp \left(-\frac{1}{2}\left(x+1-\frac{1}{s}\right)^{2}\right) \mathrm{d} s \\
& \approx \frac{h}{\sqrt{2 \pi}} \sum_{n=1}^{N} \frac{1}{s_{n}^{2}} \exp \left(-\frac{1}{2}\left(x+1-\frac{1}{s_{n}}\right)^{2}\right)
\end{aligned}
$$

where

$$
a=0, \quad b=1, \quad N=1000, h=\frac{b-a}{N}
$$

and

$$
s_{n}=a+\left(n-\frac{1}{2}\right) h
$$

MATLAB solution

$$
\begin{aligned}
& \mathrm{x}=1.5 ; \\
& \mathrm{a}=0 ; \\
& \mathrm{b}=1 ; \\
& \mathrm{N}=1000 ; \\
& \mathrm{h}=(\mathrm{b}-\mathrm{a}) / \mathrm{N} ; \\
& \mathrm{s}=\mathrm{a}+((1: \mathrm{N})-0.5) * \mathrm{~h} ; \\
& \mathrm{fValues}=\mathrm{s.n}(-2) \cdot * \ldots \\
& \quad \quad \exp \left(-\left((\mathrm{x}+1-1 . / \mathrm{s}) .^{\wedge} 2\right) / 2\right) ; \\
& \text { integral }=\mathrm{h} * \operatorname{sum}(\mathrm{fValues}) ; \\
& \text { result }=1 / \operatorname{sqrt}(2 * \operatorname{pi}) * \operatorname{integral}
\end{aligned}
$$

Tip: Use ... for long lines

Why functions?

Problem:

- We had to use a lot of brain power
- The code is hard to follow

■ We don't want to have to type all this every time we need to calculate the cumulative normal distribution.

- We want to save our work to a file

The solution? Functions.

Creating a function

(i) Use Windows Explorer to create a folder FM06 in your home area.

囲 Create a sub folder called Lecture1
[团 In MATLAB set your current folder to FM06/Lecture1
(ii Right click in the Current Folder and select New File \rightarrow Function
(v) Type the name of the function. This should be cumulativeNormal.m PRECISELY.
(v You've now created a file.
(v Edit the file.

An example function

In the editor window replace all text with:

```
function [ result ] = cumulativeNormal( x )
%CUMULATIVENORMAL computes c.d.f of normal distribution
a = 0;
b = 1;
N = 1000;
h = (b-a)/N;
s = a + ((1:N) - 0.5) * h;
fValues = s.^(-2) .* exp( - (( x + 1 - 1./s).^2)/2 );
integral = h * sum( fValues );
result = 1 / sqrt( 2 * pi ) * integral;
end
```


Save it. Run it.

Save the file. Run the function with:

$$
\text { cumulativeNormal (} 1.5 \text {); }
$$

In general

The syntax is:

```
function [ <output values> ] = ...
    <function Name>( <input values> )
```


Tip: Check list

- Is the function name exactly the same as the file?
- Have you saved the file?

■ Have you selected the correct current folder.
■ Have you got rid of all red marks?

Another example

Example

Write a function to convert from polar coordinates to Cartesian coordinates.

```
function [ x, y ] = polarToCartesian( r, theta )
x = r * cos( theta );
y = r * sin( theta );
end
```


Using a function with multiple return values

```
r = 2.0;
theta = pi/2;
[ x, y ] = polarToCartesian( r, theta );
disp( x ); % Prints out the value of x
disp( y ); % Prints out the value of y
%If you don't need y
x = polarToCartesian( r, theta );
%If you don't need x
[~,y] = polarToCartesian( r, theta );
```


Homework

Complete the exercises on worksheet 1 .

