
- 1 - 7CCMFM06

1. (a) Write a Matlab function to compute∫ 1

0

1√
1 + sin2(t)

dt (1)

using the Monte Carlo method with N samples. Your function should com-

pute both the integral and an estimate of the error. [40%]

Answer:

function [answer, sd] = computeIntegral(N)

t = rand(1,N);

vals = sqrt(1 + (sin(t).^2));

sd = 1/sqrt(N)*std(vals);

answer = mean(vals);

end

The first return value answer gives an unbiased estimate for the integral. By

the central limit theorem, this value will be approximately normally distributed

with a standard deviation given by the second return value sd. This allows one

to construct confidence intervals for the answer. For example, answer± 1.96 sd

would give a 95% confidence interval.

Notes: I am looking for it being a function, to have two return values and

a parameter N . In the code, I am looking for the use of .^ or a for loop,

correct formulae and an explanation that the return value is the estimate and

the standard error.

(b) Describe a better numerical method to compute the integral given in equa-

tion (1). Justify your answer. [20%]

Answer: The rectangle rule would be better. Simply take evenly spaced points

instead of uniformly spaced points. The standard error of Monte Carlo converges

at rate O(N−1/2), the error of rectangle rule converges at rate O(N−2).

Notes: this was all I was looking for. You might want to remark that the

convergence of Monte Carlo follows from the Central Limit Theorem, while the

convergence of the rectangle rule can be proved using Taylor’s theorem so long

as one has a bound on the third derivative of the integrand.

(c) Name a technique you can use to improve the accuracy of the Monte Carlo

methods and describe briefly how you would apply it to this problem. [20%]

Answer: You could use the control variate technique. A good choice of control

variate would be
∫ 1

0
1√
1+t2

dt = sinh−1(1). This would be a good choice of

See Next Page

- 2 - 7CCMFM06

control variate since for small x sin(x) ≈ x, so one would expect the required

integrand and the integrand of the control variate to be highly correlated.

The paragraph above was all I was actually looking for as the challenge is

coming up with a good control variate. In other words the phrase ”how you

would apply it to this problem” is key to what I was looking for. Many students

described the control variate method in general rather than how to apply it to

this problem. I gave partial credit for doing this. Here is some extra detail on

how to actually implement the control variate method in this case.

Let U be uniformly distributed on [0, 1]. Let X be the random variable

1√
1 + sin(U)2

and let Y be the random variable

1√
1 + U2

.

We wish to estimate E(X) and we know that E(Y) = sinh−1(1). We generate

N samples of U and hence obtain N samples for X and Y .

For any λ, the expectation of X + λ(Y − sinh−1(1)) will give us an unbiased

estimate of E(X). The optimal choice of λ is given by the formula:

λ = −Cov(X, Y)

VarY
.

We use our samples of X and Y to estimate the covariance and variance in

this formula and hence approximate the optimal λ. The sample mean of X +

λ(Y − sinh−1(1)) then gives us our control-variate estimate of E(X).

(d) What one dimensional integral do you need to compute the price of a call

option in the Black–Scholes model? [20%]

Answer: The price of a call option is given by:∫ ∞
−∞

exp(−rT) max{exp(s)−K, 0}q(s) ds

where q(s) is the p.d.f. of the log of the stock price in the risk neutral measure.

In detail

q(s) =
1

σ
√

2πT
exp(−(s− (log(S0) + (r − 1

2
σ2)T))2/(2σ2T))

Note: I’ve written the answer in two pieces to make it easy to give me marks

for the central idea even if I haven’t quite got the formula for q correct. I’ve

See Next Page

- 3 - 7CCMFM06

written the integrand in terms of the log of the stock price rather than the stock

price because it is easier to compute the pdf of s than it is to compute the pdf

of S. In fact, since I know that s = logS follows the process

ds = (r − 1

2
σ2)dt+ σdWt

I know that sT is normally distributed with mean s0 + (r− 1
2
σ2)T and standard

deviation σ
√
T . So I can just write down q(s).

See Next Page

- 4 - 7CCMFM06

2. (a) A stock price St follows the stochastic process given by:

dSt = St(µdt+ σdWt)

where µ and σ are constants and Wt is a Wiener process. Find a function

f(S, t) such that f(St, t) follows a Brownian motion with drift 0 and volatil-

ity σ. [20%]

Answer: By Itô’s lemma, we know that s = log(S) obeys the SDE

ds = (µ− 1

2
σ2)dt+ σdWt

Hence if we let

f(S, t) = log(S)− (µ− 1

2
σ2)t

then f(S, t) will follow Brownian motion with drift 0 and volatility σ.

(b) The Black–Scholes PDE is:

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0.

What change of variables would you use to transform this to the heat equa-

tion. Justify your answer. [20%]

Answer: The change of variables to use is:

x = log(S)− (r − 1

2
σ2)t

W = exp−rt V

τ = −t

Given a payoff function f , by Feynman-Kac, the Black-Scholes PDE is the PDE

obeyed by

V (S, t) = E(e−r(t−T)f(S)|St = S)

where S obeys geometric Brownian motion with drift r and standard deviation

σ. By the first part, under our first two changes of variables we obtain:

W (x, t) = E(f(x)|xt = x)

where x obeys driftless Brownian motion with standard deviation σ. Hence

by Feynman-Kac, W obeys the backwards heat equation. The final change of

variables transforms the backwards heat equation to the heat equation.

See Next Page

- 5 - 7CCMFM06

(c) Suppose that you wish to price the following options using the explicit finite

difference method, which equation would you solve and what would be the

boundary conditions? Justify your answers.

(i) A European put option. [30%]

Answer: In this case, I would use the backwards heat equation as it has

better scaling properties than the Black-Scholes PDE. Writing xt for the

transformed variable, I’d put the top boundary at say x0 + 8σ
√
T and the

bottom boundary at x0−8σ
√
T to ensure that the probability of the stock

leaving the region is negligible. (A move of 8 standard deviations is very

unlikely). At the top boundary Vt = 0 because the put will be essentially

worthless. At the bottom boundary we ignore the unlikely event of the

stock ending up out of the money and so find that Vt = e−r(T−t)K − St.
At the final time Vt = max{K−St, 0}. The boundary conditions written

in terms of W then follow from the formula W = exp−rt V.

(ii) An up and out knockout call option. [20%]

Answer: In this case I would use the Black–Scholes PDE as this matches

the boundary conditions better than the heat equation. I’d put the top

boundary at St = B and the bottom boundary at 0. At the top and

bottom boundaries V = 0. At the final time Vt = max{St −K, 0}.

(d) What are the pros and cons of the implicit and explicit methods of solving

partial differential equations by finite differences? [10%]

Answer: The explicit method is easier to code and can be used to price

American options rather easily. The implicit method for the heat equation is

numerically stable whatever discretization one chooses.

See Next Page

- 6 - 7CCMFM06

3. (a) The stochastic differential equation (SDE) for geometric Brownian motion

is:

dSt = St(µdt+ σdWt)

(i) Write down the difference equation for the Euler scheme for this stochas-

tic differential equation. [10%]

Answer:

St+δt = St + St(µδt+ σ
√
δtεt)

where εt are i.i.d. normally distributed with mean 0 and standard deviation

1. δt denotes the chosen time step.

(ii) Describe a better method to simulate St. Explain your answer. [10%]

Answer: It is better to use the Euler method for the log of the stock

price. This is because the log of the stock price follows Brownian motion

with drift for which the Euler scheme yields the exact solution of the SDE.

(iii) Write the MATLAB code to simulate St. [20%]

Answer:

function S = simulateStock(S0, mu, sigma, T, nSteps, nPaths)

dt = T/nSteps;

epsilon = randn(nPaths, nSteps);

ds = (mu-0.5*sigma^2)*dt + sigma*sqrt(dt)*epsilon;

s = cumsum(ds,2) + log(S0);

S = exp(s);

end

(b) A trader believes that the Black–Scholes model holds. She writes a Euro-

pean call option at the Black–Scholes price with strike K and maturity T

and delta hedges her position at the times (0, δt, 2δt, 3δt, . . .).

(a) Derive difference equations for the value in her risk free account at

times iδt

Answer: Let ∆t denote the delta of the stock at time t. Write bt for

the bank balance at time t. Let C denote the amount she charges her

customer. At time 0, she receives C but purchases ∆0 units of stock at

price S0. Hence

b0 = C − (∆0)S0.

At intermediate times t she received interest on her bank account and

purchases ∆t+δt −∆t units of stock at price St. Hence

bt+δt = erδtbt − (∆t+δt −∆t)St+δt

See Next Page

- 7 - 7CCMFM06

At the final time, she receives interest, cashes in her ∆T−δt units of stock

and if necessary pays the customer the payoff of the option. Hence

bT = erδtbt + (∆T−δt)ST −max{ST −K, 0}

[30%]

(b) Sketch a graph showing how you would expect her profit and loss to

be distributed if she is correct. How will your graph change as δt is

reduced? [10%]

Answer: The graph should be a histogram of profit and loss. It should

be bell shaped around 0. δt is reduced, the histogram will become more

concentrated around 0.

(c) Suppose that in fact there is a 1% bid-ask spread at all times that she

has forgotten to take into account. How would the graphs change?

Explain your answer. [20%]

Answer: The histogram will move to the left since she is sure to lose

money on average due to transaction costs. For smaller δt, the further the

graph will be moved to the left due to the increasing effect of transaction

costs.

Note: many students blindly drew the wrong graph showing the rate of

convergence as δt tends to 0. This was not what was asked

See Next Page

- 8 - 7CCMFM06

4. (a) Define the term pseudo square root. [10%]

Answer: If M is square, symmetric matrix, a pseudo square root A of M is

a matrix which satisfies M = AAt.

(b) Define the term Cholesky decomposition. [10%]

Answer: If M is square, symmetric and positive definite, the Cholesky decom-

position is the unique lower triangular pseudo square root of M with positive

diagonal.

(c) Explain why Cholesky decomposition is useful for simulating stochastic pro-

cesses. Give a financial example of when you might use it. [30%]

Answer: Cholesky decomposition allows us to compute multivariate normal

distributions with desired covariance matrix Σ. If A is pseudo square root of Σ

and ε is a vector of i.i.d. standard normal variables, then Aε will be normally

distributed with mean 0 and have the desired covariance. Thus given SDEs with

noise terms given by correlated Brownian motions, we can use Cholesky decom-

position to simulate the correlated Brownian motions and then use a numerical

scheme such as the Euler scheme to simulate the SDE.

For example, in the Heston model one parameter is the correlation between the

noise driving the stochastic volatility term and the noise driving the stock price

process.

(d) Find the Cholesky decomposition of the following matrix(
1 ρ

ρ 1

)
where (−1 < ρ < 1). [20%]

Answer: Expand (
a 0

b c

)(
a b

0 c

)
=

(
1 ρ

ρ 1

)
with a > 0 and c > 0 to find:

a2 = 1

ab = ρ

b2 + c2 = 1

Hence a = 1, b = ρ, c =
√

1− ρ2.

See Next Page

- 9 - 7CCMFM06

(e) Find two more pseudo square roots of this matrix. [30%]

Answer: Two obvious answers are:(
−1 0

ρ
√

1− ρ2

)
(

1 0

ρ −
√

1− ρ2

)
Other less obvious answers include:(√

1− ρ2 ρ

0 1

)
or diagonalizing to give:

1√
2

(√
1 + ρ

√
1− ρ√

1 + ρ −
√

1− ρ

)
Remark: Despite actually being a very easy question, students struggled with

this, probably because it was unexpected.

See Next Page

- 10 - 7CCMFM06

5. (a) Write pseudo code to show how you would compute the price of an up and

out call option with strike K and barrier B by the Monte Carlo method in

the Black–Scholes model. [40%]

Answer:

function price = priceByMonteCarlo(S0, r, sigma, T, K, B, nSteps, nPaths)

stockPaths = generatePaths(S0, r, sigma, T, nSteps, nPaths);

% Note we use the Q-measure model

payoff = computeKnockoutPayoff(stockPaths, K, B);

price = exp(-r*T) * mean(payoff);

end

function payoff = computeKnockoutPayoff(stockPaths, K, B)

hitBarrier = max(stockPaths > B, [], 2); % max over time dimension

finalPrice = stockPaths(:,end);

payoff = ~hitBarrier .* max(finalPrice - K, 0);

end

function S = generatePaths(S0, mu, sigma, T, nSteps, nPaths)

dt = T/nSteps;

epsilon = randn(nPaths, nSteps);

ds = (mu-0.5*sigma^2)*dt + sigma*sqrt(dt)*epsilon;

s = cumsum(ds,2) + log(S0);

S = exp(s);

end

If you are asked to write pseudo code then that means I’m not going to be very

fussy about the language of the code you write, more the ideas. So most of

the marks here go for computing a discounted mean in a Q-measure model. I

am also hoping for an intelligent division of the code into 3 functions, as this

is important to making your code testable.

(b) Describe how you could compute the delta of the option by the Monte Carlo

method. [20%]

Answer: Use the central estimate:

price(S0 + h)− price(S0 − h)

2h

and compute each of the prices using Monte Carlo. It is important to use

the same numbers for each simulation when computing the prices by Monte

See Next Page

- 11 - 7CCMFM06

Carlo. You should choose h to be reasonably small, but not ridiculously so -

say h = S0 × 10−6.

(c) How would the accuracy of your computation of the delta be related to the

size of the Monte Carlo simulation? Give the mathematical reason for your

answer. [10%]

Answer: Let N be the number of samples in our Monte Carlo calculation.

The accuracy will be

O(h2) + random error

with the first error coming from the fact that we are only approximating the

derivative and the second being an approximately normally distributed random

error with mean 0 and a standard deviation proportional to 1√
N

. We expect this

random error to be the main source of error. The central limit theorem explains

the dependence on

(d) Describe how you would test your computation of the delta. [30%]

Answer: I would test computeKnockoutPayoff in isolation. I would gener-

atePaths in isolation (e.g. for example I would check that it produced stock

price paths with the expected mean and standard deviation). Test that priceBy-

MonteCarlo replicates European call prices when barrier is high and is 0 when

barrier is low. I would also repeat this test for the computation of the delta. I

would also seed the random number generator to ensure tests are reliable.

Final Page

