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1. An investor models 10 different stocks as each having a price (Si)t (with 1 ≤
i ≤ 10) which follows geometric Brownian motion

d(Si)t = µi dt+ σi d(Wi)t

for some constants µi and σi. The (Wi)t are correlated Brownian motions with

correlation matrix P .

(i) Write down the stochastic differential equations for the logarithm of each

stock price and hence express (Si)t in terms of (Wi)t. [20%]

(ii) Define the Cholesky decomposition and explain how you could use this to

simulate (Wi)T at a fixed time T and hence (Si)T . [30%]

(iii) The investor has an amount A which they will invest in the different stocks

at time 0. They will then hold the stocks till time T at which point they

will calculate the value v of the portfolio. The investor associates the utility

1 − exp(−v) to this value. The investor must invest all of this amount

in stocks and short selling is prohibited. Write down a mathematical

formulation of the optimization problem of choosing the portfolio which

gives the investor the optimum expected utility. [20%]

(iv) How could you use a simulation of the (Si)t to estimate the expected

utility? [10%]

(v) Explain briefly how you could use such a simulation to estimate the optimal

portfolio. [20%]
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2. (i) In the market given by the Black–Scholes model, suppose that trader sells

a call option and hedges the risk by following a discrete-time delta-hedging

strategy at N evenly-spaced time intervals up to maturity. Explain what

cashflows occur at each time point and hence write down difference equa-

tions for the trader’s bank balance at each time point. [40%]

(ii) Describe mathematically how you could simulate the stock price at each

time point in order to test the effectiveness of this strategy. [20%]

(iii) The profit and loss for a trader pursuing this strategy will be a random

variable whose variance depends upon N , the number of time intervals.

Sketch a log-log plot of this variance against N , describing any important

features of your graph. [10%]

(iv) Suppose that the stock price does not follow the Black–Scholes model but

instead there is a bid-ask spread. The ask price is given by a process

St following geometric Brownian motion, but the bid price is given by

(1 − ε)St for some ε > 0. How would the difference equations for the

cashflows change? [20%]

(v) How would you expect the log-log plot to change? [10%]
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3. (i) You wish to compute the price of the following options using the explicit

finite difference method applied to the Black–Scholes PDE:

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0.

What boundary conditions would you use in each case?

(a) A European call option with strike K.

(b) An American put option with strike K.

(c) A down and out knock-out call option with strike K and barrier B <

K.

[60%]

(ii) How could you price a knock-in call option with the same strike and barrier

as the knock-out call option? [10%]

(iii) Derive the difference equations for the explicit finite difference scheme to

price a European call option when r = 0. [30%]
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4. In a local volatility model, all the assumptions of the Black–Scholes model hold

except that the stochastic differential equation followed by the stock price St is:

dSt = St(µ dt+ σ(S, t) dWt)

where σ(S, t) is a given function of S and t. µ is a constant. You may assume

that σ(S, t) is smooth and bounded both above and below.

(i) What is the Euler scheme for the stock price? [20%]

(ii) Describe how you could price a European call option in this model using

the Monte Carlo method. [20%]

(iii) How would you estimate the error in this price? [10%]

(iv) How could you use the control variate method to improve your estimate.

[30%]

(v) When using the Euler scheme to simulate stock prices in this way, the sim-

ulated prices may sometimes be negative. For some purposes this will be

undesirable as stock prices are never negative. Suggest a way to simulate

the stock prices which does not suffer from this problem. [20%]
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5. (i) What is meant by the implied volatility of a European call option? [10%]

(ii) Suppose that you have written a MATLAB function

bsPrice(K,T,r,S,sigma)

which computes the Black–Scholes price of a call option given its strike,

K, maturity, T , and the market data of the risk-free interest rate r, the

current stock price S and the stock volatility σ. Write a MATLAB function

to compute the implied volatility of an option. [30%]

(iii) What is meant by the volatility smile? What does the existence of a

volatility smile tell us about the Black–Scholes model? [20%]

(iv) What does it mean to calibrate a stock price model to option prices? [10%]

(v) Suppose you are given a function HP(K,T, r, S, σ0, ξ, κ, θρ) which com-

putes the price of a European call option according to the Heston model.

The variables σ0, ξ, κ, θ and ρ are additional parameters required by the

Heston model and they must all lie in some given set X ⊆ R4. Suppose

that there are n European call options traded in the market with strikes

Ki, maturities Ti and prices Pi. Write down a mathematical formulation

of a minimization problem you could solve to calibrate the Heston model

to the market data. [20%]

(vi) What problems may occur if one attempts to solve this minimization prob-

lem using MATLAB’s fmincon function? [10%]

- 6 - Final Page


