
Chapter 8

Risk Management

8.1 VaR and Expected Shortfall

8.1.1 Value at Risk

To compute value at risk you must specify a time horizon, d, and a percentage
level p%. The value at risk is the (100− p)-th percentile of the loss distribution
at time d.

As there isn't universal agreement on how percentiles should be de�ned, this
de�nition isn't completely clear. Also what some people call the 5% VaR, others
call 95% VaR. So let us give a very precise de�nition.

De�nition (Formal). Let (Ω,F ,P) be a probability space. Let X be a real valued
random variable representing the pro�t and loss of our portfolio. We de�ne

VaRα(X) = inf{x ∈ R : P(X < −x) ≤ 1− α}

Note that what we call VaR0.05 is often (but not always) called the 95% value
at risk by practitioners. For example the PORT function on the Bloomberg
terminals uses the second convention.

In somewhat informal business language we have:

De�nition (Informal). The p%, d-day Value at Risk of a position is the max-
imum amount of money you lose over an d day period in the p% best case
scenarios.

The word "maximum" hints that this is informal since a mathematician
would talk about a supremum.

Statistically this will be indistinguishable from the minimum amount of
money you lose over an d day period in the (100− p)% worst case scenarios.

For the purposes of the FM06 exam, an informal de�nition is �ne.
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8.1.2 Expected Shortfall

The Basel II accord required banks to measure their risk using Value at Risk. As
we will discuss later, there are some problems with value at risk. A combination
of the criticism from the mathematical community and need to respond to the
2008 �nancial crisis lead to the Basel III accord requiring banks to measure their
risk using Expected Shortfall.

Let us give an intuitive, informal de�nition �rst.

De�nition (Informal). The p% d-day Expected Shortfall is the expected loss in
the worst p% of cases.

It isn't immediately obvious how this can be related to the o�cial mathe-
matical de�nition which we now give. Again ES0.05 corresponds to the business
notion of 95% Expected Shortfall.

De�nition (Formal). ESα(X) = 1
α

∫ α
0
VaRγ(X)dγ

In the exam, I am happy for you to use the informal de�nition. But, out of
interest let us see how the two de�nitions are related.

To relate the two, let us write FX for the cumulative distribution function
of X and let us assume that X has is a continuous distribution so has a density
function px. These are, of course related by:

FX(x) =

∫ x

−∞
p(t) dt.

By de�nition:
Varα = inf{x ∈ R : P(X < −x) ≤ 1− α}

Since the distribution of X is continuous, we have that P(X < −x) = P (X ≤
−x) = FX(−x). So we have:

Varα = inf{x ∈ R : FX(−x) ≤ 1− α}.

We now use the continuity of FX to deduce that

Varα = −F−1X (1− α).

Returning the the formal de�nition of ES we have

ESα(X) =
1

α

∫ α

0

VaRγ(X)dγ

=
1

α

∫ α

0

−F−1X (1− γ)dγ

Let us now integrate this by substitution. We make the substitution:

FX(s) = 1− γ.



CHAPTER 8. RISK MANAGEMENT 3

So
px(s)ds = −dγ.

Hence

ESα(X) =
1

α

∫ F−1
X (1−α)

−∞
s px(s) ds

=
1

α

∫ VaRα(X)

−∞
s px(s) ds

=

∫VaRα(X)

−∞ s px(s) ds∫VaRα(X)

−∞ px(s) ds

= E(X|X ≤ VaRα(X))

The relationship to the informal de�nition is now clear.
Note that the informal de�nition is simple to compute, whereas the formal

de�nition requires performing an expensive integral of VaR calculations. In
computations we work with continuous distributions where we can safely use
this �nal formula.

The reason mathematicians prefer the more obscure mathematical de�ni-
tion is simply that this de�nition makes equally good sense for discontinuous
distributions while maintaining important properties of ES such as convexity.

8.2 Calculating VaR

There are two main ways of producing VaR �gures.

� In Monte Carlo VaR, you use a probability model of your choice and use
this to simulate asset returns and hence compute VaR �gures.

� In Historic VaR, you use a probability model de�ned by historic returns
and use this to compute VaR �gures.

Thus historic VaR and Monte Carlo Var calculate value at risk using entirely
di�erent probability models.

In this section, we will describe these techniques and an approximation tech-
nique called parameteric VaR. Although we only discuss the computation of
VaR, the same ideas can be applied to ES.

8.3 Monte Carlo VaR

Algorithm. Simulate a large number of price paths of the underlyings in the P
measure over an d-day horizon. For each price path, compute the loss of your
position on day d. Read o� the (100 − p)% percentile of the distribution. This
gives you an approximation to the p%, d-day VaR.
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You can compute the Value at Risk of any portfolio. We will illustrate the
idea of value at risk by showing how to compute the risk for a portfolio consisting
of a single call option with a known strike and maturity.

To compute Value at Risk need to be able to compute the price of the portfo-
lio at the start time and in each scenario. We will use the Black-Scholes formula
to compute the price, so will need to assume that there is a known volatility σ
we can use to compute the prices at the start and end of our simulation.

An implementation of the code to compute the VaR by Monte Carlo for a
call option with strike K and maturity T is given below. percent contains the
desired con�dence level for the VaR calculation. days contains the number of
days in the calculation.

function [ var ] = monteCarloVar( ...

    percent,days, ...

    strike, maturity, ...

    spot, drift, volatility, ...

    riskFreeRate, ...

    nPaths)

t = days/365;

startPrice = blackScholesCallPrice( ...

    strike, maturity, ...

    spot,riskFreeRate, volatility ); % price portfolio at start

stockPrices = generateBSPaths( ...

    t, spot, drift, volatility,...

    nPaths, 1);

endPrices = blackScholesCallPrice( strike, maturity-t, ...

    stockPrices,riskFreeRate,volatility ); % price portfolio

profits = endPrices - startPrice;

var = prctile( -profits, 100-percent );

end

As can be seen, all of the real work is done by the generateBSPaths function
which simulates the stock price. Note that to price more general portfolios, you
should just replace the code marked with the comment �price portfolio�.

8.3.1 A con�dence interval for VaR

Suppose we have computed the p% d-day VaR using m samples. We would like
to compute a q% con�dence interval on this �gure.

To do this we let α = p/100, so 0 ≤ α < 1. Similarly we let β = q/100. We
now de�ne percentage values r and s by the formulae:

r

100
= α+

√
α(1− α)

m
N−1

(
1− β

2

)
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s

100
= α−

√
α(1− α)

m
N−1

(
1− β

2

)
With q% con�dence, the p% VaR �gure lies between the r% Var estimate

and the s% VaR estimate.
This result is simply the standard con�dence interval for a percentile and

can be found in all good statistic textbooks.

8.3.2 Monte Carlo Var Summary

One calculates value at risk by simulating price changes and reading o� the
desired percentile.

On the plus side, this is highly �exible. You can use any pricing model and
compute VaR for any security that you know how to price. It is intuitive and
easy to program assuming you can already simulate your stochastic model and
price your securities.

On the down side, it is slow. We may have to run tens of thousands of
scenarios and then price the security in each scenario. This may require an
additional Monte Carlo simulation if the security is exotic. Thus we can easily
need to generate hundreds of millions of scenarios in total.

Another criticism is that Monte Carlo VaR is subjective. It depends heavily
upon the choice of model used to generate prices. As a result, VaR estimates
are only as good as the model used. If your model doesn't have fat tails, you
will underestimate risk.

The RiskMetrics approach of using a standardized model helps somewhat
with this subjectivity, although their approach of using a log normal model and
an exponentially weighted moving average cannot account for fat tails. For this
reason Basel III recommends more complicated models and �tting approaches
such as GARCH models.

8.4 Historic VaR

As we have discussed, Monte Carlo VaR relies on having a good model of the
distribution of risk factors. Unfortunately there is no general agreement on what
the right model is.

The idea of historic VaR is to use historic log-returns and assume that a
similar pattern will be repeated. This approach is called historic VaR.

De�nition. The log-return of an asset from time t1 to time t2 is

rt1,t2 = log

(
Pt2
Pt1

)
where Pt is the price of the asset at time t.

De�nition. The relative-return of an asset from time t1 to time t2 is

Pt2 − Pt1
Pt1

.
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Warning: the log-return of an asset is NOT the log of the relative-return
of an asset.

Algorithm. Suppose that we have m + 1 days of historical log-returns for N

risk factors. r
(a)
i is the log-return of risk factor a on day i. For each day i in

our sample, generate a simulated d-day log-return by the formula:

r
(a)
i

√
d

Use these simulated log-returns to simulate the values of our risk factor on day
d. Compute the historic VaR by reading o� the desired percentile.

The interesting feature of this algorithm is that it uses the familiar scaling
properties of volatility to scale up 1-day changes to d-day changes. We are
assuming the volatilty of all our risk factors scales in the same way as is familiar
for stock prices.

The reason we need to scale up one day changes to d-day changes is that
we are unlikely to have much historic data. If we want to compute 30-day VaR
�gures, then we wouldn't have much data available if we insisted on looking
only at the historic changes in a stock price every 30 days.

If you can compute Monte Carlo VaR and have access to historic data,
computing historic VaR is easy, as illustrated in the code example below.

function [ var ] = historicVar( ...

    percent,days, ...

    strike, maturity, ...

    spot, historicPrices, ...

    riskFreeRate, volatility)

dailyLogReturns = diff( log( historicPrices ));

dDayLogReturns = dailyLogReturns .* sqrt( days );

stockPrices = exp(dDayLogReturns) * spot;

t = days/365;

startPrice = blackScholesCallPrice( ...

    strike, maturity, ...

    spot,riskFreeRate, volatility ); % price portfolio at start

endPrices = blackScholesCallPrice( strike, maturity-t, ...

    stockPrices,riskFreeRate,volatility ); % price portfolio

profits = endPrices - startPrice;

var = prctile( -profits, 100-percent );

end

We have simply replaced the code that simulated the stock price with code
that simulated stock prices by assuming that the historic changes will recur with
suitable scaling. We highlight the key lines below:
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dailyLogReturns = diff( log( historicPrices ));

dDayLogReturns = dailyLogReturns .* sqrt( days );

stockPrices = exp(dDayLogReturns) * spot;

Thus the vector stockPrices will contain a vector of simulated stock prices
which exhibit the same log-return distribution as was found historically.

8.4.1 Historic Var Summary

Historic VaR has many good points. It is less subjective than Monte Carlo
VaR. It may show fat tails behaviour if the historic data does. It is as simple
to calculate as Monte Carlo Var. It is quick to calculate because the number of
available scenarios will always be small.

Against this, historic VaR relies on the assumption that the past will predict
the future. Also only quite crude calculations possible due to lack of historic
data.

8.5 Parametric VaR

Monte Carlo VaR is time consuming to calculate. However, risk managers are
keen to know how much risk they are taking on an intra-day basis so that they
can quickly take advantage of any opportunities that arise in the market without
inadvertently breaking their risk limits. Thus there is real commercial advan-
tage in being able to calculate risk �gures rapidly. For this reason, numerous
techniques have been developed for approximating risk �gures. We will discuss
one simple approach called parametric VaR by RiskMetrics and which is also
often called �delta normal VaR�.

We let V be the price of a security that depends upon risk factors

P (1), P (2), . . . , P (n)

We de�ne p(a) = logP (a) and de�ne

δ(a) =
∂V

∂p(a)
= P (a) ∂V

∂P (a)
.

The value δ(a) should be thought of as the sensitivity of the security price to
the log-return of P (a).

If we assume that V depends smoothly upon the price of the risk factors, we
will have the following Taylor series for V .

V (t, p(1), . . . , p(n)) = V0 +
∂V

∂t
t+

n∑
i=1

∂V

∂p(i)
r(i) + . . .

= V0 +
∂V

∂t
t+

n∑
i=1

δ(i)r(i) + . . .
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Here r(i) is the log return of risk factor i.
We expect the risk factors to scale in a manner that is proportional to

√
t

so, the ∂V
∂t will be negligible compared to the terms involving r(i).

Neglecting higher order terms we have

V (t, p(1), . . . , p(n)) ≈ V0 +

n∑
i=1

δ(i)r(i)

Hence if we assume that the log-returns are normally distributed with mean
0 and covariance matrix Σ, we can read o� the mean and standard deviation of
V in terms of Σ the covariance matrix of the r(i).

We deduce that, to order
√
d, the distribution for the change in V over a

d-day period is normally distributed with mean 0 and standard deviation:√
dδTΣδ

365

Here δ is the vector with components δ(a).
Therefore the p% d-day VaR can be approximated by

N−1
(

100− p
100

)√
dδTΣδ

365

Algorithm (Parametric VaR). Compute the sensitivities of V

δ(a) = P (a) ∂V

∂P (a)

Note that in the case where P is a stock, S this is S∆. Use the formula

VaR ≈ N−1
(

100− p
100

)√
dδTΣδ

365

8.6 Axiomatic Theory

We will call any ρ : L∞(Ω;R) → R a risk �gure although this terminology is
non-standard. A risk �gure may satisfy some of the following properties

1. Montonicity: if portfolio A can never out perform portfolio B, then port-
folio A is riskier than portfolio B, ρ(A) ≥ ρ(B).

2. Translation invariance: If you add c units of cash to your portfolio, the
risk decrease by the same amount. ρ(A+ c) = ρ(A)− c.

3. Convexity: ρ(λA+ (1− λ)B) ≤ λρ(A) + (1− λ)ρ(B) if λ ∈ [0, 1].

4. Positive Homogeneity: ρ(λA) = λρ(A) if λ ∈ R+.

5. Sub-Additivity: ρ(λA+B) ≤ ρ(A) + ρ(B).
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De�nition. A convex monetary risk measure is a risk �gure which satis�es
Monotonicity, Translation Invariance and Convexity. [3]

De�nition. A coherent risk measure is a risk �gure which satis�es Monotonic-
ity, Translation Invariance, Convexity and Positive Homogeneity. [2] (This
implies convexity)

It is argued that a risk measure should certainly be convex because most
people agree diversi�cation reduces risk and convex combinations of assets are
a form of diversi�cation. It is harder (in my view) to argue that a risk measure
should be coherent, though Artzner et al. do attempt to justify their axioms in
their paper. I �nd the positive homogeneity axiom hard to accept.

Example 1: Value at Risk is not a convex monetary risk measure or a coherent
risk measure.

Proof. Let X and Y be independent stocks. We sell digital put options on X
and Y with maturity in d days and strikes chosen such that the probability of
them ending in the money is only 4%. We sell them for their current market
prices cX and cY . The 5% d-day value at risk of being short a put on X is −cX
since we only pay out 4% of the time and make cX pro�t otherwise. The 5%
d-day value at risk of being short a put on Y is −cY since we only pay out 4%
of the time. The probability of one or other of the options ending up in the
money is 1− (0.96)(0.96) = 0.0784 > 0.05. Therefore the 5% d-day value at risk
of the portfolio is −cX − cY + 1 which is greater than −cX − cY . Therefore VaR
is not sub-additive.

Example 2: Conditional Value at Risk is a coherent risk measure. The proof
of sub-additivity is a little challenging, all the other properties are obvious. You
can �nd a proof in Follmer and Schied [4].

Example 3: If u is a concave increasing function then the expected disutility
E(−u(X)) is monotone and convex but not translation invariant (unless u(x) =
x). So expected utilities are not convex monetary risk measures.

Example 4: If u is as above, with u(0) = 0 then the cash needed to make a
position acceptable is given by

ρu(X) = inf{c : E(u(X + c)) = 0}.

ρu is a convex monetary risk measure.

Example 5: If u is the exponential utility function with parameter λ > 0

u(x) =
1− e−λx

λ
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then the associated risk measure is called the entropic risk measure

ρ(X) =
1

λ
log(E(e−λ(X))).

This is a convex, but not coherent, risk measure.
The axiomatic theory suggests that VaR is not a good way of measuring risk

because it does not always encourage diversi�cation. CVaR and the entropic risk
measures both might be good measures according to axiomatic theory, although
if you believe positive homogeneity is essential you should rule out the entropic
risk measure.

In my own work [1], I have considered an alternative perspective to the
axiomatic theory which is whether risk constraints are e�ective on rogue traders.
One way to model a rogue trader is as an individual who is trying to maximize

E(u(X+))

where X is the pro�t (or loss) of their position. Because they are only in-
terested in the pro�t X+ and not any potential loss, these traders may take
very risky strategies unless they are constrained. We showed that in the Black-
Scholes model, whatever value at risk, expected shortfall and cost constraints
are imposed

sup(E(u(X+))) = supu

where X ranges over the possible portfolio pro�t distributions. In other words,
the trader is just as happy as they would be without the value at risk and
expected shortfall constraints. We interpret this as saying that Value at Risk
and Expected Shortfall do not curb the behaviour of rogue traders.

For this reason my personal view is that Expected Shortfall is not a good
way of measuring risk. Note that this is a controversial viewpoint. The study
of risk measurement is a complex, unresolved issue where there is still scope for
good research.

8.7 Summary

VaR and ES are popular risk �gures in the industry. VaR was required by Basel
II, ES by Basel III.

We have seen how to calculate Monte Carlo VaR �gures, Historic VaR �gures
and Parametric VaR �gures. Parametric Var and Monte Carlo VaR provide
estimates for the VaR in a Pmeasure model chosen by the risk modeller. Historic
VaR calculates VaR using a model based on historic data.

There is a mathematical theory of convex monetary risk measures. According
to this theory, VaR can be criticized because it is not convex. This implies that
VaR may discourage diversi�cation. Expected Shortfall, however, is convex.
Nevertheless Expected Shortfall is not always e�ective in constraining rogue
traders.

Many other risk �gures exist, for example the entropic risk measure, but
they have not been widely taken up by the industry.
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