
Chapter 5

Monte Carlo Pricing

5.1 Simulating stock prices

5.1.1 The mathematics

We have already seen that we can price options by simulating in the risk-neutral
measure, then computing expectations and discounting.

At the moment we can only simulate stock prices at a single time T , how
can we simulate an entire history of stock prices? We will need to be able to
do this to apply Monte Carlo pricing to path dependent options. Note that we
should say what we mean by �simulating�: we simply mean generating random
variables which are identically distributed to the desired random variables.

We will suppose that we are working on the Black�Scholes model, so the
stock price follows geometric Brownian motion.

dSt = St(µdt+ σ dWt)

As we saw in the last chapter, it is much easier to understand the process
for the log of the stock price zt.

dzt =

(
µ− 1

2
σ2

)
dt+ σ dWt

Integrating this we obtain

zt = z0 +

(
µ− 1

2
σ2

)
t+ σ(Wt −W0).

So to simulate zT , we just need to generate variables which are normally dis-
tributed with mean z0 + (µ− 1

2σ
2)T and standard deviation σ

√
T . This is easy

to do. We can then simulate ST by exponentiating this. Let us summarize our
�ndings.

1

CHAPTER 5. MONTE CARLO PRICING 2

Algorithm (Simulating Black�Scholes prices at time T). To simulate ST at
time T where

dSt = St(µdt+ σ dWt)

(i) Generate a normally distributed random number ε with mean 0 and stan-
dard deviation 1.

(ii) Set

s̃T = z0 +

(
µ− 1

2
σ2

)
T + σ

√
Tε

(iii) Set
S̃T = exp(s̃T)

(iv) The probability density of
S̃T

is the same as that of
ST

(v) So S̃T is a simulated stock price.

One useful way to remember this method of simulating zt is that it is a special
case of the so-called Euler scheme for simulating stochastic di�erential equations
(SDEs). The Euler scheme is a way of approximating stochastic di�erential
equations with di�erence equations and we will discuss it in more detail in a
later chapter. To obtain the Euler scheme from an SDE, one replaces all the d
symbols with δ symbols that represent the change in a variable from one time
to the next. One also replaces dWt with a random variable

√
δtε, where ε is

normally distributed with mean 0 and standard deviation 1.
For our example, we start with the process:

dzt =

(
µ− 1

2
σ2

)
dt+ σ dWt

We make the substitutions:

dzt 7→ δzT = zT − z0

dt 7→ δT = T − 0

dWt 7→
√
δT ε.

To get:

zT − z0 =

(
µ− 1

2
σ2

)
T + σ

√
Tε.

As we will see the Euler scheme allows you to approximately simulate many
di�erent stochastic di�erential equations. However, our algorithm allows us
to exactly simulate geometric Brownian motion. Our simulated stock price will

CHAPTER 5. MONTE CARLO PRICING 3

have exactly the same distribution as a stock price coming from geometric Brow-
nian motion.

It is worth pausing to ask why we make the substitution

dWt 7→
√
δT ε?

The reason is that the change in the log of the stock price over time Nh is
composed of N independent small changes over time periods of length h. By
the central limit theorem (assuming the small changes have �nite variance),
the change in the stock price over time Nh has variance proportional to

√
Nh.

Therefore, the cumulative e�ect of the noise grows at a rate proportional to√
δT . Sigma is de�ned to be the constant of proportionality. This is why sigma

has units of years−1/2.
Simulating the stock price at times 0 = t0 < t1 < t2 < . . . < tn means gener-

ating values S̃t1 , S̃t2 , . . . S̃tn so that the joint distribution function of St1 , . . . Stn

is the same as that of S̃t1 , . . . S̃tn . By the Markov property of the stock price,
we simply need to simulate the stock to time t1, then use this as the starting
point of a simulation up to time t2 and so on up to time tn. This allows us to
write down an algorithm for simulating the stock price at multiple time points.

Algorithm. To simulate a stock price following geometric Brownian motion at
time points ti

(i) De�ne
δti = ti − ti−1

(ii) De�ne z0 to be the log of the stock price at time 0.

(iii) Choose independent normally distributed εi with mean 0 and standard de-
viation 1.

(iv) De�ne

z̃ti = z̃ti−1 +

(
µ− 1

2
σ2

)
δti + σ

√
δtiεi

(v) De�ne S̃ti = exp(zti).

S̃ti simulates the stock price St at the desired times.

Of course, our �rst algorithm is a special case of this, but it is worth noticing
that if you are only interested in stock prices at time T there is no need to
simulate intermediate times.

5.1.2 MATLAB implementation

Let us start with a simple example problem.

Example 1: A stock follows the Black�Scholes price process with drift µ = 0.05
and σ = 0.1. The initial stock price is S0 = 100.

CHAPTER 5. MONTE CARLO PRICING 4

Simulate the stock price every day for 1 year and plot the result.
We begin by showing how to write a function that answers just this question

directly and then try to generalize our code. The code below pretty much
directly implements the algorithm from the previous section.

Note that we have used di�erent notation when writing the code: we've
written dt instead of δt and we've written logS instead of s. The reason for
these changes is that I think they make the code easier to read. Also notice
that the code stores every single simulated price in a vector logS, so this vector
represents the entire history of the stock price.

% This is a very inefficient version of generateBSPaths

% which uses two for loops.

function plotBSPath()

T = 1.0;

nSteps = 365;

S0 = 100;

mu = 0.05;

sigma = 0.1;

dt = T/nSteps;

logS0 = log(S0);

logS = zeros(nSteps,1);

for t=1:nSteps

 eps = randn();

 dlogS = (mu-0.5*sigma^2)*dt + sigma*sqrt(dt)*eps;

 if (t==1)

 lastLogS = logS0;

 else

 lastLogS = logS(t-1);

 end

 logS(t) = lastLogS + dlogS;

end

S = exp(logS);

times = (1:nSteps)*dt;

plot(times,S);

end

Don't worry about the comment about the ine�ciency of the code, we will
deal with this later on.

You should try running this code and experiment with di�erent values of µ
and σ.

Learning from our experience in previous chapters, we will try to improve
this code by using MATLAB functions. We will write a function that takes the
following parameters

CHAPTER 5. MONTE CARLO PRICING 5

� S0, mu and sigma describing the model

� Parameters T and nSteps describing the total time interval for the simu-
lation and the number of equally sized pieces to divide the time interval
into.

� A parameter nPaths indicating the number of price paths to be simulated.

We would like the function to return a matrix of simulated stock prices.
Each row should correspond to a scenario and each column should correspond
to a time step. For convenience, the function should also return a vector of time
points indicating the time corresponding to each column.

Since we want to run multiple simulations, our code is essentially the same
as that on previous slides but with an extra for loop to run through multiple
scenarios. Here is our code.

% This is a very inefficient version of generateBSPaths

% which uses two for loops.

function [S, times] = generateBSPaths2Loops(...

 T, S0, mu, sigma, nPaths, nSteps)

dt = T/nSteps;

logS0 = log(S0);

logS = zeros(nPaths,nSteps);

for p=1:nPaths

 for t=1:nSteps

 eps = randn();

 dlogS = (mu-0.5*sigma^2)*dt + sigma*sqrt(dt)*eps;

 if (t==1)

 lastLogS = logS0;

 else

 lastLogS = logS(p,t-1);

 end

 logS(p,t) = lastLogS + dlogS;

 end

end

S = exp(logS);

times = dt:dt:T;

end

Note that the name of our function comes from the fact that our imple-
mentation contains two for loops. We will show now how to vectorize the code
to remove the loops. This is the only reason we've given the function such a
peculiar name.

As we have discussed in earlier chapters, in MATLAB you can often �vec-
torize� your code to eliminate loops. This makes your code easier to read and
often makes it considerably faster. Whenever you repeat the same operation
across independent scenarios, you can vectorize your code.

CHAPTER 5. MONTE CARLO PRICING 6

Here is a vectorized version of path generation code that eliminates the loop
over scenarios.

% This is a reasonably efficient version

% of generateBSPaths that uses vectorization across

% scenarios

function [S, times] = generateBSPaths1Loop(...

 T, S0, mu, sigma, nPaths, nSteps)

dt = T/nSteps;

logS0 = log(S0);

eps = randn(nPaths, nSteps);

dlogS = (mu-0.5*sigma^2)*dt + sigma*sqrt(dt)*eps;

logS = zeros(nPaths,nSteps);

for t=1:nSteps

 if (t==1)

 lastLogS = logS0;

 else

 lastLogS = logS(:,t-1);

 end

 logS(:,t) = lastLogS + dlogS(:,t);

end

S = exp(logS);

times = dt:dt:T;

end

Note that we are using some new MATLAB syntax in this code. We've
already seen that A(1:end,j) means the j-th column of x. We are using the
fact that you can abbreviate this to just A(:, j).

In fact it is possible to further vectorize the code and eliminate the loop
over time steps. This is only possible because MATLAB has a built in function
cumsum which allows you to compute the cumulative e�ect of adding a number
of increments. cumsum stands for cumulative sum.

If we suppose that we have a vector consisting of a number of row vectors
x1, x2, x3 and so on, the cumsum allows us to compute the cumulative sum as
we add together rows.

cumsum


x1
x2
x3
. . .
xn

 =


x1
x1 + x2
x1 + x2 + x3
. . .
x1 + x2 + x3 + . . .+ xn


Although cumsum by default computes the cumulative sum of the rows, it has

an optional second parameter which can be used to ask it to sum the columns
instead. Here is a summary of how cumsum will respond to di�erent kinds of
parameter:

CHAPTER 5. MONTE CARLO PRICING 7

� cumsum(v) computes the cumulative sums of a vector v.

� cumsum(A) computes the cumulative sums of the rows of a matrix A.

� cumsum(A,1) computes the cumulative sums of the rows of a matrix A.
Rows are the �rst dimension.

� cumsum(A,2) computes the cumulative sums of the rows of a matrix A.
Columns are the second dimension.

This �nal option is just what we need to eliminate all the loops from our
code. Here is the �nal version of our stock price simulator.

% Generate random price paths according to the black scholes model

% from time 0 to time T. There should be nSteps in the path and

% nPaths different paths

function [S, times] = generateBSPaths(...

 T, S0, mu, sigma,nPaths, nSteps)

dt = T/nSteps;

logS0 = log(S0);

eps = randn(nPaths, nSteps);

dlogS = (mu-0.5*sigma^2)*dt + sigma*sqrt(dt)*eps;

logS = logS0 + cumsum(dlogS, 2);

S = exp(logS);

times = dt:dt:T;

end

You can think of cumsum as meaning �integrate� in the code above. You will
notice that this code is quite a bit shorter than the �rst version. It also runs
quite a bit faster. Against that you may �nd it a little harder to understand.

A nice application of our simulation code is simply to draw a plot of a
simulated stock price (Figure 5.1.2. Let us go slightly further and create a so-
called fan diagram which shows the 5th, 50th and 95th percentiles of the stock
price at each moment in time together with a single example stock price.

To generate this plot we use the plot function together with the prctile

function. We leave it as an exercise for you to generate this plot yourself.

5.2 Monte Carlo Pricing

Algorithm (Monte Carlo Pricing). To compute the Black�Scholes price of an
option whose payo� is given in terms of the prices at times t1, t2, . . . , tn

(i) Simulate stock price paths in the risk neutral measure. i.e. use the algo-
rithm above with µ = r.

(ii) Compute the payo� for each price path

(iii) Compute the discounted mean value

CHAPTER 5. MONTE CARLO PRICING 8

0 0.2 0.4 0.6 0.8 1
85

90

95

100

105

110

115

120

125
Percentiles of price paths

Time

S
to

ck
 p

ric
e

5% percentile
Median
95% percentile
A price path

Figure 5.1: A fan diagram of a stock price over time for a stock obeying geo-
metric Brownian motion

(iv) This gives an unbiased estimate of the true risk neutral price

We can use this algorithm to price path independent options. Here are some
examples of path independent options.

Example 1: A discrete up and out call option with strike K and barrier B and
maturity T is an option that pays 0 if the stock price is ever above B at the end
of the business day. If it reaches time T without hitting the barrier, its payo�
is given by max(ST −K, 0) The payo� is determined entirely by the prices at
the end of each business day.

Example 2: An Asian call option with maturity T has its payo� determined by
the average price S at the close of the last n days of trading up to and including
maturity. The payo� is given by max(S −K, 0)

You should familiarize yourself with the names of various kinds of exotic
derivative which you can price by Monte Carlo methods.

� An option that becomes worthless if the price goes below a barrier is called
a down and out option.

� Up-and-out and down-and-out options are termed �knockout options�.

� A knock in option is one where the option is worthless unless the stock
price crosses a barrier

CHAPTER 5. MONTE CARLO PRICING 9

� One has �up-and-in� and �down-and-in� options.

� You can create knockout puts, digital Asians etc..

� One can also mathematically model continuous barrier and Asian options.
We can approximate these by using a large number of time points.

We note that European put and call options can be priced by this Monte
Carlo method too, and then the method is equivalent to one of the Monte Carlo
integration techniques covered last week (exercise: convince yourself). This
means that there are more e�cient ways of computing the price in this case
than using Monte Carlo.

Monte Carlo pricing is always a numerical integration technique (we are
computing expectations and expectations are de�ned as integrals). If we use
n points on the price path then we are computing an n-dimensional integral.
This means that Monte Carlo integration will be better than variants on the
rectangle rule etc. if n is greater than roughly 3 or 4. In practice this means
that we will use Monte Carlo methods for path-dependent options.

Note that you cannot use our algorithm to price American options. This is
because the payo� of an American option is not speci�ed in the contract as a
function of the price at �xed times. There is a more sophisticated technique
called American Monte Carlo, but we will not discuss that in this course.

We should be aware that if we use Monte Carlo pricing, we are only estimat-
ing the price. How accurate is our answer? By the central limit theorem, we
expect that the sample mean of the discounted payo� is approximately normally
distributed with standard deviation

σ̃P√
N

where σ̃P is the population standard deviation of the discounted payo�. If we
use the sample standard deviation σ̃S as an estimate for the population standard
deviation, we can estimate that the standard error of our price is

σ̃S√
N
.

We can then use this to compute approximate con�dence intervals. (The sample
standard deviation gives a slightly biased estimator, but this bias can be ignored
for large N).

5.2.1 MATLAB implementation

As a concrete example, we wish to price a discrete up-and-out call option with
barrier B, strike K and maturity T where one tests to see if the option has hit
the barrier at nSteps evenly spaced times over the lifetime of the option.

The stock price follows the Black Scholes model with parameters S0, µ, r,
σ as usual. We wish to write a function to price the option using Monte Carlo

CHAPTER 5. MONTE CARLO PRICING 10

simulations with nPaths paths. The function should also return an estimate of
the error.

We already have a function that computes a matrix of prices with rows
corresponding to scenarios and columns corresponding to times. We would like
to write a function that computes the payo� of our option as a vector given the
matrix of prices. We will then be able to price the option by taking the mean
of this vector and discounting.

Here is a �rst attempt at this code, but notice that it contains two loops.

% A very inefficient version of computeKnockoutPayoff

% which uses 2 loops

function [payoff] = computeKnockoutPayoff2Loops(...

 strike, barrier, priceHistory)

nPaths = size(priceHistory, 1);

nSteps = size(priceHistory, 2);

payoff = zeros(nPaths, 1);

for p=1:nPaths;

 knockedOut = 0;

 for t=1:nSteps

 if priceHistory(p,t)>barrier

 knockedOut = 1;

 end

 end

 if (~knockedOut)

 finalPrice = priceHistory(p, nSteps);

 if (finalPrice>strike)

 payoff(p)=finalPrice-strike;

 end

 end

end

end

You might notice that we don't need to pass the number of paths and the
number of steps to this function, we've used the size function to deduce that
from the matrix priceHistory.

Since this code is completely repetitive across scenarios we know that we can
vectorize it to improve e�ciency. We'll do this shortly, but it is more important
to have code that works than code that is fast. So let us begin by testing our
code.

function testComputeKnockoutPayoff2Loops()

stockPrices = [100,101,102; 100,120,107; 100,103,108];

payoffs = computeKnockoutPayoff2Loops(105,110,stockPrices);

assertApproxEqual(payoffs(1), 0, 0.001);

assertApproxEqual(payoffs(2), 0, 0.001);

CHAPTER 5. MONTE CARLO PRICING 11

assertApproxEqual(payoffs(3), 3, 0.001);

end

We can now combine our code with our stock price simulator to price a
knockout option by Monte Carlo.

function [price, errorEstimate]=priceKnockoutByMonteCarlo(...

 strike, barrier, T,...

 S0, r, sigma, ...

 nPaths, nSteps)

% Generate paths in risk neutral measure (mu=r)

priceHistory = generateBSPaths(T,S0,r,sigma,nPaths,nSteps);

payoffs = computeKnockoutPayoff(strike,barrier,priceHistory);

discountedPayoff = exp(-r*T)*payoffs;

price = mean(discountedPayoff);

errorEstimate = std(discountedPayoff)/sqrt(nPaths);

end

The main pricing function is remarkably simple. It does little more than
explain in English what the Monte Carlo pricing algorithm actually is. The
real work is done in generateBSPaths and computeKnockoutPayoff. This is
an example of well-written code. We have divided our code into small pieces
each of which is reasonably easy to understand and easy to test.

Since we don't have an exact formula for the price of discrete time knock
out option, it is hard to test our pricing code directly. However the code that
computes the payo� of a knock-out option is very easy to test.

If we assume that the barrier is in�nite, a knock-out option becomes equiv-
alent to a vanilla option. This means it is easy to test our pricing code in this
extreme case. On the other hand we have tested our payo� code with a variety
of barriers. So when we put everything together we can be pretty con�dent of
our option pricing code even when the barrier is not in�nite. This again shows
the value of writing lots of small functions each with individual tests.

5.2.2 Vectorizing our code

Our code works so we could stop here. However, it is useful practice in writing
MATLAB to see how we can eliminate unnecessary for loops. Our code treats
all scenarios identically and independently. This means that we know the code
can be vectorized over the scenarios relatively easily. We also know how to use
vectorization to get rid of unwanted if statements. Here is the result of a �rst
attempt at vectorizing our code.

% A slightly inefficient version of computeKnockoutPayoff

% which uses a loop

CHAPTER 5. MONTE CARLO PRICING 12

function [payoff] = computeKnockoutPayoff1Loop(...

 strike, barrier, priceHistory)

nPaths = size(priceHistory, 1);

nSteps = size(priceHistory, 2);

knockedOut = zeros(nPaths, 1);

for t=1:nSteps

 knockedOutThisTime = (priceHistory(:,t) > barrier);

 knockedOut = knockedOut | knockedOutThisTime;

end

finalPrice = priceHistory(:, nSteps);

inMoney = finalPrice>strike;

payoff=(~knockedOut).*inMoney.*(finalPrice-strike);

end

The variable knockedOutThisTime tells us whether the option has knocked
out at a particular time step. On the next line we use |, which means element-
by-element 'OR', to compute whether the option has knocked out at any time
up to the current time step.

Also in the last line of the code we have used the vectorization trick of using
the fact that knockedOut and inMoney take the values 1 and 0 since 1 represents
true and 0 represents false.

This means that the quantity

(~ knockedOut).* inMoney .*(finalPrice -strike)

will only be non zero when we haven't knocked out and aren't in the money.
We can actually get rid of the remaining for loop using the max function.

We are currently looping to �nd out if the price was ever above the barrier.
Suppose we compute priceHistory > barrier. This will consist of 1's when
the price is above the barrier and 0's when the price is below the barrier. This
means that the maximum of priceHistory>barrier in each row will be 1 if
the barrier knocked out and 0 otherwise.

We now use MATLABs documentation to learn that you can use max(-

A,[],2) to compute a vector of the maximum across the columns. max(A,[],1)
computes the maximum across the rows.

This means that the following code will compute the payo� of a knockout
option and it manages to do so without any loops.

%COMPUTEKNOCKOUTPAYOFF

% Computes the payoff of a knockout

% option given the priceHistory. priceHistory

% should have rows corresponding to scenarios

% and columns corresponding to times

function [payoff] = computeKnockoutPayoff(...

CHAPTER 5. MONTE CARLO PRICING 13

 strike, barrier, priceHistory)

knockedOut = max(priceHistory>barrier, [], 2);

notKnockedOut = 1-knockedOut;

finalPrice = priceHistory(:,end);

inMoney = finalPrice>strike;

payoff = inMoney .* notKnockedOut .* (finalPrice-strike);

end

We have now seen how to price the code using three short functions compute-
KnockoutPayoff, priceKnockoutCallOption and generateBSPaths. We have
three equivalent versions of generateBSPaths and computeKnockoutPayoff

each using di�erent amounts of vectorization. I recommend that you focus on
understanding the �nal versions of the code. The other versions were introduced
to help you understand the �nal version.

When you write your own code, should you vectorize it? The answer to this
is that it is up to you.

The good things about vectorization are: Vectorization makes the code more
readable once you know the standard tricks; Vectorization may make the code
faster.

But it isn't all good. Vectorization makes the code less readable if you don't
know the standard tricks. Vectorization may make the code take longer for you
to write (until you've mastered it)

I recommend writing what you �nd comes most naturally and optimizing
only if there is a problem (or the question tells you to)

5.2.3 Testing Monte Carlo code

We discussed that our pricing code is now fairly easy to test, but we haven't
explicitly described how to write the tests.

Algorithms that use random numbers will sometimes give poor answers by
chance. If you're not careful this means that your tests will sometimes fail by
chance. This is a serious problem if you have millions of tests to run to check
all of your bank's code. It is therefore essential that all tests reliably pass or
fail, even if they use random numbers.

To make your tests reliable you should seed the random number generator. To
explain the terminology, you need to undertand that the pseudo random number
generator used by the computer has a state which determines what they will
do next. Each time you generate a number the generator changes state. This
ensures they will generate a di�erent number the next time. Manually �xing
the state is called seeding the random number generator. This is because the
current state is the �seed� out of which all subsequent random numbers �grow�.

In MATLAB rng('default') sets the random number generator back to
its default state. Therefore you should start unit tests of functions that use the
random generator with a call of rng('default').

CHAPTER 5. MONTE CARLO PRICING 14

5.3 Monte Carlo Greeks

A trader will not thank you if you can compute the price but not the Greeks.
This is because the �price� is in fact the risk-neutral price and so is heavily
associated with the delta hedging trading strategy. You can only guarantee to
break even if you delta hedge, and that requires computing the delta. In general,
a price is useless without a trading strategy to achieve the price.

5.3.1 Numerical di�erentiation

Before discussing how to compute the delta, we need to discuss how to numeri-
cally compute partial derivatives of functions in general.

Let f be a smooth function. We can approximate the derivative at x as

f ′(x) =
f(x+ h)− f(x)

h

for small h. This is called the forward estimate. It has an error of O(h). There
is also the backward estimate

f ′(x) =
f(x)− f(x− h)

h

which also has an error of O(h). You can use Taylor's theorem to prove these
error estimates. But a better approximation is

f ′(x) =
f(x+ h)− f(x− h)

2h

In the latter case, the �rst order error terms in the Taylor expansion for the
error cancel. This means that we can use Taylor's theorem to prove that the
error is bounded by

sup
c∈[x−h,x+h]

|f (3)(c)|
6

h2.

The proof is left as an exercise.
What value should one choose for h? If you want the best computation

possible, we want to choose h that is small enough to give a reasonably accurate
value value but on the other hand we want to choose h so it isn't so small that
rounding errors dominate the calculation. Choosing h >

√
εx where ε denotes

the accuracy of the computer will ensure that h isn't too small. For our purposes
ε = 2.2 × 10−16. To be more precise, one should really worries about whether
h + x can be represented accurately on the computer and should modify the
value accordingly. However, since we will apply this to a Monte Carlo method,
we needn't worry about choosing the optimal h. What is important however, is
not to choose too small an h because we will then hit problems.

One can compute higher order derivatives numerically too.

CHAPTER 5. MONTE CARLO PRICING 15

f ′(x− h) ≈ f(x)− f(x− h)
h

f ′(x) ≈ f(x+ h)− f(x)
h

f ′′(x) ≈ f ′′(x− h) ≈ f ′(x)− f ′(x− h)
h

≈ f(x+ h)− 2f(x) + f(x− h)
h2

This gives a formula that can be used to numerically approximate second deriva-
tives. Somewhat more rigorously, one can remark that this formula for f ′′ is
accurate for quadratics and so, using Taylor's theorem one can give bounds on
the error of the approximation.

As with approximating �rst derivatives it is important not to use too small
an h when applying this formula.

5.3.2 Monte Carlo Greeks

So how should we compute the Delta by Monte Carlo? Your �rst thought might
be the following (and if so it is incorrect!)

� Compute the Monte Carlo price with an initial stock price of S0

� Compute the Monte Carlo price with an initial stock price of S0 + h

� Take the di�erence and divide by h

This is because the Monte Carlo prices are randomly generated. The random
error will overwhelm the systematic di�erence we are trying to measure.

Here is an algorithm that does not su�er from the problem.

Algorithm (Monte Carlo Delta). � Compute the Monte Carlo price with
an initial stock price of S0 − h

� Compute the Monte Carlo price with an initial stock price of S0 +h using
exactly the same random numbers in the simulation

� Take the di�erence and divide by 2h

To see mathematically why this algorithm will work, recall that Monte Carlo
pricing is really just numerical integration. Under reasonable conditions, the
partial derivative of an integral is the integral of the partial derivative. Our
Monte Carlo Delta algorithm is equivalent to computing the derivative of the
pricing kernel numerically and then integrating by Monte Carlo integration.

Here is the MATLAB code to compute the delta by Monte Carlo.

CHAPTER 5. MONTE CARLO PRICING 16

function [delta] = computeDeltaByMonteCarlo(...

 strike, barrier, T,...

 S0, r, sigma, ...

 nPaths, nSteps)

h = 10^(-6)*S0; % Won't cause rounding problems

 % but a minute change financially

rng('default');

p1 = priceKnockoutByMonteCarlo(strike,barrier,T,...

 S0-h, r, sigma, ...

 nPaths, nSteps);

rng('default');

p2 = priceKnockoutByMonteCarlo(strike,barrier,T,...

 S0+h, r, sigma, ...

 nPaths, nSteps);

delta = (p2-p1)/(2*h);

end

To keep our code simple, we have seeded the random number generator to
ensure that the same random numbers are used at S0 − h and at S0 + h.

It would be better in practice to avoid generating the same random numbers
twice as this inevitably be faster and would get rid of the bias of always using the
same random numbers in calculations. Implementing this is left as an exercise.

Finally we note that our Monte Carlo delta algorithm can easily be general-
ized to other Greeks.

5.4 Antithetic Sampling

This chapter is simply an introduction to Monte Carlo pricing. There are entire
books written on the subject. We will also return to Monte Carlo pricing later
in the course and see some ways in which it can be improved.

As a taster, we will describe the technique of antithetic sampling which can
often be used to improve Monte Carlo estimates with very little e�ort.

The idea of antithetic sampling is to simulate N stock prices using the al-
gorithm above and using a matrix of normally distributed random numbers ε.
One then computes another simulation of stock prices but this time using the
random numbers −ε. This gives us two far from independent stock price sim-
ulations. The surprising idea is that taking the average price obtained in this
way will often a better estimate than generating 2N independent samples.

To see why, let P1 and P2 be random variables with E(P1) = E(P2). We
wish to calculate this expectation.

BIBLIOGRAPHY 17

De�ne

Z =
P1 + P2

2
.

Then

E(Z) = E(P1) = E(P2)

Var(Z) =
Var(P1) + Var(P2) + 2Cov(P1, P2)

4

So, all other things being equal, if P1 and P2 are negatively correlated, the
estimate E(Z) will be improved over the case when P1 and P2 are independent.

Suppose that in our Monte Carlo pricing algorithm, we generate a random
normally distributed vector ε and use this to compute a payo� P1 = P (S(ε)).
We can use the vector −ε to compute another payo� P2 = P (S(−ε)). Here S is
the stock price given ε, P then computes the payo�.

Cov(P1, P2) will be negative for many payo� functions (if ε leads to a good
payo�, −ε will often be bad). So the estimate E(Z) may be a better estimate
than we would have obtained by taking independent samples P1 as claimed.

Implementing antithetic sampling is left as an exercise.

5.5 Further Reading

For a review of the basic Mathematical Finance used in this chapter see the
Appendix of [1].

A good book that includes a lot on Monte Carlo methods is [2].

Bibliography

[1] John Armstrong. C++ for Financial Mathematics. CRC Press, 2017.

[2] M. S. Joshi. The concepts and practice of mathematical �nance, volume 1.
Cambridge University Press, 2003.

	 Monte Carlo Pricing
	Simulating stock prices
	The mathematics
	MATLAB implementation

	Monte Carlo Pricing
	MATLAB implementation
	Vectorizing our code
	Testing Monte Carlo code

	Monte Carlo Greeks
	Numerical differentiation
	Monte Carlo Greeks

	Antithetic Sampling
	Further Reading

