
Chapter 4

Integration

4.1 Integration and risk-neutral pricing

Sections A1-A4 (p363-p367) of the appendix of �C++ for Financial Mathemat-
ics" by John Armstrong describe the theory of risk-neutral pricing in elementary
terms. Don't worry you don't need to know any C++ to read this. I'll assume
that you have read this in what follows as I can't express things better than I
already have there.

If we have a European derivative whose payo� is determined by the price of
the option at a �nal time T we can compute the expected payo� by the formula:

EQ(payo�) =

∫
R
payo�(ST )×Q-probability-density(S) dS

Let's introduce some symbols so we can write this more compactly. We will
write q for the probability density function of S at time T . We will write P (S)
for the payo� given the �nal stock price.

price = e−rTEQ(payo�)

= e−rT
∫
R
P (S)q(S) dS

(4.1)

We conclude that we can price these kinds of simple derivative by integration
once we know the p.d.f. q.

It is up to the modeller to decide what p.d.f. to use for q. A real trader
would calibrate some model to market prices for puts and calls and use this to
compute the q-pdf. One obvious choice of model would be that the stock price
follows geometric Brownian motion.

Let us derive the probability density at time T from this assumption. We'll
try to do this quickly and painlessly as revision of what you have learned in
your stochastics courses.

We begin by assuming that the stock price satis�es:

dSt = St(µdt+ σdWt) (4.2)
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for some µ and σ. In general this will not be a valid Q-measure model because
the discounted stock price will not be a Martingale.

Given the model (4.2), what is the pdf of S at time T? Well by Itô's lemma,
the log of the stock price zt satis�es:

dzt = (µ− 1

2
σ2) dt+ σ dWt.

This is means that zt follows Brownian motion. By the very de�nition of a
stochastic di�erential equation we can immediately deduce that

zt = z0 + (µ− 1

2
σ2)t+ σ(Wt −W0).

Hence the distribution of zT is a normal distribution.

zT Ñ (z0 + (µ− 1

2
σ2)T, σ

√
T )

So by the very de�nition of the log normal distribution, ST is log normally
distributed.

ST
˜lnN (z0 + (µ− 1

2
σ2)T, σ

√
T ) (4.3)

We would like to compute the p.d.f of St.
We need to know the p.d.f. of the log normal distribution. Suppose that

x ∼ N (α, β). Then

P (x ≤ t) =

∫ t

−∞

1

β
√

2π
exp

(
− (x− α)2

2β2

)
dx

=

∫ et

0

1

Xβ
√

2π
exp

(
− (lnX − α)2

2β2

)
dX

Here we've made the substitution x = ln(X). We also have:

P (x ≤ t) = P (ln(X) ≤ t) = P (X ≤ et)

So the p.d.f. of the log normal distribution is:

1

Xβ
√

2π
exp

(
− (lnX − α)2

2β2

)
We conclude from (4.3) that the p.d.f. of ST is

1

Sσ
√

2πT
exp

(
−

(ln(S/S0)− (µ− 1
2σ

2)T )2

2Tσ2

)
.

Integrating this we �nd that the mean of ST is:

exp(z0 + µT ) = S0 exp(µT ).

We conclude that our model (4.2) can only possibly be a Q-measure model if
we take µ = r where r is the risk free rate.
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Theorem 1. Geometric Brownian motion gives a valid Q-measure model if and
only if µ = r. In this case the Q-p.d.f. of ST is:

qT (S) =
1

Sσ
√

2πT
exp

(
−

(ln(S/S0)− (r − 1
2σ

2)T )2

2Tσ2

)
(4.4)

Given a European derivative that pays o� P (S) if the stock price at time T is
S, the risk neutral price of this derivative is:

price = e−rT
∫ ∞

0

P (S)qT (S) dS. (4.5)

(Note that some derivatives are path dependent and so cannot be priced using
this formula. We will cover these derivatives later in the course.)

Note that the derivative is assumed to be European and not path dependent.
The function qT (S) is often called the pricing kernel.

Note that by Girsanov's theorem, we can prove (as will have been done
in one of your stochastics courses) that if we have a P measure model of the
form (4.2), then the Q measure model obtained by setting µ = r is the unique
equivalent Martingale measure. This means that if you have a P-measure model
of this form, you are forced to perform risk neutral pricing using the pricing
kernel (4.4).

This gives a recap of the theory of risk-neutral pricing and explains the link
between integration and mathematical �nance.

4.2 Integration Methods

How can we evaluate one dimensional integrals such as (??) in practice? You
probably already know three elementary methods of estimating integrals: the
rectangle rule, the trapezium rule and Simpson's rule.

In the rectangle rule (also known as the midpoint rule) we approximate a
function f that we wish to integrate over some interval [a, b] using a number
of strips of with h. Let the sequence of points si denote the midpoints of each
strip. We compute the value of f(si) at the midpoint of each strip and use this
to compute the area of each strip hf(si). We estimate the area under the graph,
and hence the integral of f as the sum of all these areas.
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Algorithm (Rectangle Rule). Let f : [a, b] −→ R be a function we wish to
integrate. Choose a number of points N and de�ne:

h =
b− a
N

sm = a+ (m− 1

2
)h

R = h

N∑
i=1

f(sm)

Then R is the rectangle rule estimate for
∫ b

a
f(t) dt.

One might feel that it would be better to approximate the area under the
graph by approximating the area with a series of trapeziums. In this case we
let the sequence si denote the edges of each trapezium and evaluate the integral
at these points. We calculate the area of the trapeziums to obtain.

Algorithm (Trapezium Rule). Let f : [a, b] −→ R be a function we wish to
integrate. Choose a number of panels n and de�ne:

h =
b− a
n

sm = a+mh

T =
h

2
(f(s0) + 2f(s1) + 2f(s2) + . . .+ 2f(sn−1) + f(sn))

Then T is the trapezium rule estimate for
∫ b

a
f(t) dt. The number of integration

points is N = n+ 1.
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We've tried approximating the function using constant segments (midpoint
rule), then linear segments (trapzium rule). What if we approximate using
quadratic segments? We arrive at Simpson's rule.

We already knew the formula for the area of a rectangle and the formula for
the area of a trapezium. To derive Simpson's rule we need to know the formula
for the area under a quadratic curve given the values at either end and in the
middle.

We state the result:

Lemma 1. content... Let f be a quadratic function then∫ h

−h
f(t)dt =

h

3
(f(−h) + 4f(0) + f(h)). (4.6)

Proof. We can prove this by noticing that:∫ h

−h
1dx = 2h =

h

3
(1 + 4 + 1).

If f is an odd function, in particular if f(x) = x then∫ h

−h
f(x)dx = 0 =

h

3
(f(−h) + 4f(0) + f(h))

Finally ∫ h

−h
x2dx =

2

3
h2 =

h

3
(1 + 0 + 1).

So the formula (4.6) is correct for the function f(x) = 1.f(x) = x and f(x) = x2.
Since both sides are linear in f , it is correct for all quadratic functions.

More surprisingly we have:

Lemma 2. content... Let f be a cubic function then∫ h

−h
f(t)dt =

h

3
(f(−h) + 4f(0) + f(h)). (4.7)

Proof. f(x) = x3 is odd, so (4.6) holds for f(x) = x3. So by the same argument
as the previous lemma it holds for all cubic functions.

We can add together these quadratic estimates over a number of strips to
obtain a version of Simpson's rule with multiple steps.
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Algorithm (Simpson's Rule). Let f : [a, b] −→ R be a function we wish to
integrate. Choose an even number of panels n and de�ne:

h =
b− a
n

sm = a+mh

S =
h

3

n
2∑

i=0

(f(s2i) + 4f(s2i+1) + f(s2i+2))

=
h

3
(f(s0) + 4f(s1) + 2f(s2) + 4f(s3) + 2f(s4) + . . .

+ 2f(sn−2) + 4f(sn−1) + f(sn))

Then S is the Simpson's rule estimate for
∫ b

a
f(t) dt. The number of integration

points is N = n+ 1.

Figure 4.1: Simpson's Rule. We integrate over n strips where n is even. This
gives n

2 parabolic panels such as the one shaded in green. There are n + 1
integration points si.

Theorem 2. If f is four times di�erentiable with |f (4)| < K for some K, then
the error in the Simpson's rule estimate can be bounded above by

c

N4

where c is a constant depending upon a, b and K.

Lemma 3. If f is four times di�erentiable with |f (4)| < K for some K, then
the error in the Simpson's rule estimate over an interval of length 2h with two
steps can be bounded above by c1h

5 for some constant c1 depending on K.
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Proof that theorem follows from lemma. The theorem follows from the lemma
because we're adding up n

2 copies of the 2-step Simpson's rule. So the cumulative
error is:

n

2
c1h

5 =
n

2
c1

(
b− a
n

)5

≤ c 1

N4

for some constant c

Proof of lemma. By Taylor's theorem:

f(x) = f(x0) + (x− x0)f ′(x0) +
1

2
(x− x0)2f (2)(x0) + . . .

+
1

3!
(x− x0)3f (3)(x0) +

1

4!
(x− x0)4f (4)(ξ)

for some ξ(x) ∈ [x0, x] (or [x, x0] if x ≤ x0).
We have already noticed that Simpson's rule is exact for cubic functions.

Therefore the error from Simpson's rule over an interval [x0, x0 + 2h] is equal
to the integral of the non-cubic term in the above expansion.

error =

∣∣∣∣∣
∫ x0+h

x0

1

4!
(x− x0)4f (4)(ξ(x))dx

∣∣∣∣∣
≤
∫ x0+h

x0

1

4!
(x− x0)4Kdx

= ch5

for some constant c.

It is nice to introduce a special notation for talking about the rate of con-
vergence of a numerical method called �Big-O notation�.

De�nition. Given a function f : N→ R we write that a sequence sn = O(f(n))
if sn ≤ C|f(n)| for some constant.

Theorem 3. If f is four times di�erentiable with |f (4)| < K for some K, then
the error in the Simpson's rule estimate is O(N−4).

Theorem 4. If f is twice di�erentiable with |f (2)| < K for some K, then the
error in the Trapezium rule estimate is O(N−2). The same is true for the error
in the Rectangle rule.

Proof is left as an exercise.
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4.2.1 More sophisticated integration methods

It would be misleading to give the impression that Simpson's rule is the last word
on numerical integration. For example, it is fairly obvious that we can develop
methods with arbitrarily rapid convergence by using higher order polynomial
approximations.

The state of the art of numerical integration is even more sophisticated.
One key observation is that all our integration rules are of the form:∫ b

a

f ≈
N∑
i=1

wif(xi)

for some weights wi ∈ R and evaluation points xi ∈ [a, b].
So far we have chosen to evenly distribute all the points xi where we evaluate

the function. If we use more integration points where the function is changing
rapidly and less where it is roughly constant, we may be able to �nd good esti-
mates with less function evaluations. By observing which parts of a numerical
estimate change the most as one adds in additional integration points it is pos-
sible to decide guess where it would be most e�ective to add further integration
points. Algorithms that use this idea are called adaptive methods.

Secondly we have noticed that our numerical schemes do better than ex-
pected. Simpson's rule is designed using quadratic approximations but works
perfectly for cubics too, rather to our surprise. It turns out that if we are willing
to move the integration points we use so that they are not evenly distributed
we can derive �surprisingly e�ective� schemes in higher orders two. Speci�cally
Gauss gave a recipe to �nd an integration rule which gives a perfect answer for
polynomials of degree 2d− 1 with only d points. It is called �Gaussian quadra-
ture�. Quadrature is just another word for integration. Gauss's result is math-
ematically very interesting. He found that if we choose the xi to be the roots
of the Legendre polynomials and the weights can be calculated in terms of the
derivatives of the Legendre polynomials. The details make Gaussian quadrature
a little �ddly to implement for a novice programmer (and novice mathemati-
cian) so Gaussian quadrature is not examinable. However, it is widely used in
practice.

4.2.2 Integration over in�nite intervals

As we have already seen, by performing a substitution one can transform an
in�nite integral to an integral over an open interval. Our integration rules (other
than the rectangle rule) use the end points of the integral. The value may not
be de�ned at these points. When performing the integral we just discard those
values (and any other singularities) and hope that this doesn't cause a problem.

Note that the choice of substitution makes a big di�erence to the performance
of the method. This doesn't just apply to in�nite integrals. If you can make
a change of variables so that your integral becomes constant, then you can
estimate it perfectly with just one function evaluation!
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4.2.3 Integration in practice

We will implement the rectangle rule and trapezium rule in Matlab as examples.
Simpson's rule is left for you to implement. However, in practice you would
never use your own integration function as Matlab has a function integral.
This function uses an adaptive Gaussian quadrature strategy, so it is pretty
sophisticated.

However, you do sometimes need to be careful when using it. Here are some
pointers.

Ensure your function is well centered and scaled. If you ask Matlab
to integrate the density

1√
2π

exp(− (x− µ)2

2
)

from 0 to∞ and set µ = 1000 it will, incorrectly, give the answer 0. The correct
answer is, of course, 1 as this is just the p.d.f. of the normal distribution with
mean µ. Here's some code for you to try to test this.

function ret = integrateNormal( mean )

function r = integrand( x)

r = exp(-(x-mean ).^2 / 2 );

end

ret = 1/sqrt (2*pi)* integral(@integrand ,-Inf ,Inf);

end

What's going on? If µ = 1000 then the p.d.f. of the normal distribution is nearly
zero except near 1000. When Matlab tries to evaluate the integral it picks a
few points and evaluates the integrand at these locations. Since it is unlikely to
pick the point 1000, it fails to notice the places where the p.d.f. is non-zero and
incorrectly deduces that the integral is zero. This is a failure of the adaptive
integration strategy to �nd the �interesting bits� of the distribution. If we make
sure the �interesting bit� is near zero and spread over a region of roughly unit
length, Matlab will start looking at evaluation points around zero and so will
correctly �nd the distribution. This is why performing the same integral with
µ = 0 works just �ne.

Tell Matlab where the interesting points are. You can optinally pass
a list of �Waypoints� to integral to tell it some points to include as evaluation
points. For example you might include any discontinuities in your integral as
waypoints.

Subtract o� singularities. If your integrand f is singular, you can often
rewrite f as f = f1 + f2 where f1 is non-singular and f2 is singular but can be
computed analytically. Asking Matlab to integrate f1 and then adding on your
own computation for the integral of f2 will help Matlab cope with your singular
integral.
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4.3 Higher dimensional integration

1-dimensional integration is easy. As we've seen an algorithm such as Simpson's
rule is simple to write and has very rapid convergence (O(N−4)).

At �rst glance the obvious way to evaluate higher dimensional integrals is to
inductively estimate d-dimensional integrals by applying one of the rules above
to an d− 1-dimensional integral∫ ∫

f(x1, x2, . . . xd) dx1 dx2, . . .dxd

=

∫ (∫
f(x2, . . . xd)dx2, . . .dxd

)
dx1

The problem with this approach is that if we use N grid points for each
one dimensional integration then we will need to use Nd points in total for a
d-dimensional integration.

To see this just note that if nd be the number of function evaluations required
to compute a d-dimensional integral, we have the di�erence equations n1 = N
and nd = N ∗ nd−1.

Since nd = Nd, we see that for a 100-dimensional problem with 10 grid points
for each dimension we will need 1 googol function evaluations (1 googol=10100)
to estimate the integral. This is an astronomically large number. Hence this
approach is completely impractical. This is called the curse of dimensionality.
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4.3.1 Estimating area using Monte Carlo

Suppose that we want to estimate the are of the blob in the picture below. It lies

in a rectangle of area 1m2.
Suppose that we throw 4 dots randomly (i.e. uniformly distributed over the rect-
angle) and one lies in the blob and three outside. We could then estimate the
area of the blob to be 0.25m2. This may seem a crazy way to estimate the area,
but it will work!

Algorithm. To �nd the area of a given shape Σ

� Bound it by a rectangle of known area A.

� Throw n darts randomly (i.e. uniformly distribution) into the rectangle

� Count the number of darts, nΣ, that land in the shape Σ.

� The area is approximately
nΣ

n
A
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The same idea can be applied to computing integrals. It is then called Monte
Carlo integration.

Algorithm (Monte Carlo Integration). Let f : [a, b] −→ R. Estimate the inte-
gral of f by generating N random numbers xm which are uniformly distributed
in the interval [a, b]. The Monte Carlo estimate for the integral is:

1

N
(b− a)

N∑
i=1

f(xm)

Theorem 5. If we assume that the integral of f(x)2 exists). By this we mean

that the standard deviation of the error is O(N−
1
2 .

Proof. This is an application of the central limit theorem. Each individual
estimate of the integral f(xi) is a random variable with mean f(xi). They
are independent and identically distributed. Our assumption on f ensures that
these random variabless have a variance. So by the central limit theorem, the
sample average is an unbiased estimator for the true average. The standard
deviation of the error is proportional to O(N−

1
2 .

Without any e�ort this can be generalized to higher dimensions. The im-
portant point is that it does not su�er from the curse of dimensionality (though
see our remarks later).

Algorithm (Monte Carlo Integration). Let f : [0, 1]d −→ R. Estimate the in-
tegral of f by generating N random numbers xm which are uniformly distributed
in the hypercube [0, 1]d. The Monte Carlo estimate for the integral is:

1

N

N∑
i=1

f(xm)

Experience suggests that dimension 3 or 4 is the approximate dimension
where Monte Carlo integration begins to out-perform methods based on 1 di-
mensional integration rules. In this course we will primarily be performing either
1 or very high dimensional integrals so this intermediate cases won't crop up.

We should also remark that you cannot generate true random numbers on a
computer you have to make do with pseudo-random numbers. One has to hope
that the pseudo-random numbers behave rather like real random numbers. In
practice you should check how many random numbers you will need and make
sure that you are using a generator that guarantees to provide high quality
pseudo-randomness for that many numbers. This won't be an issue on Matlab
as it uses a high quality random number generator that only repeats after an
enormous number of samples have been drawn.

We should remark that Monte Carlo doesn't completely get rid of curse of
dimensionality. The error in our estimate is less than cN−

1
2 but c can grow to

be enormous for high dimensions.
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The one obvious problem with the Monte Carlo method is that O(N
1
2 ) is

still very slow convergence. It means we will need of the order of 1 million
samples to have an accuracy of the order of 1 part in a thousand. For example
you can estimate π by using the Monte Carlo method to compute the area of a
circle, but it will take a very long time if you want to compute π to 10 decimal
places.

Fortunately in �nance we don't often need to be accurate to 10 decimal
places. Stock prices themselves have a bid-ask spread which is of the order of
one part in a thousand. This means that if you are using �the stock price� as
an input to your calculation, you are probably kidding yourself if you think it
is meaningful to calculate the answer to 10 decimal places. This means that
although Monte Carlo is slow, it is still often good enough to be useful.

4.4 Implementing Integration methods

We have seen the code to integrate by the rectangle rule before. We make a
slight change this time and include a for loop. The reason we have done this
is that you might want to integrate a non-vectorized function, so it is best to
iterate through the points one by one and apply f rather than assume that f
can be evaluated elementwise.

function ret = integrateByRectangleRule( f, a, b, N )

h = (b-a)/N;

s = a + h*((1:N) - 0.5);

total = 0;

for x=s

    total = total+f(x);

end

ret = h*total;

end

It is easy to adapt our code to perform the trapezium rule. It should then be
easy for you to adapt this to perform Simpson's rule. This is left as an exercise,
as is Monte Carlo integration.

function ret = integrateByTrapeziumRule( f, a, b, N )

n = N-1; % N = number of grid points, n=number of panels

h = (b-a)/n;

s = a + h*(1:n-1);

total = f(a)+f(b);

for x=s

    total = total+2*f(x);

end

ret = 0.5*h*total;

end
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We would also like to write general purpose functions to perform integrals
over in�nite intervals. By substitution we know that:∫ ∞

x

f(t)dt =

∫ 1

0

1

s2
f(x− 1 +

1

s
)ds.

Here is the corresponding code to integrate f from x to ∞.

function ret = integrateToInfinity( f, x, N, integrationRule)

% Performs a substitution to change

% the infinite integral to a finite integral.

if nargin<4

   integrationRule=@integrateByRectangleRule;

end

function r = transformedFunction( s )

    r = s^(-2) * f( x - 1 + 1/s );

    if (isnan(r))

        r = 0.0;

    end

end

ret=integrationRule( @transformedFunction, 0, 1, N );

end

This is quite sophisticated code. It allows you to pass in an optional argu-
ment to specify the integration rule to use after we have made the change of
variables. This is speci�ed by passing in the integration function to use when
estimating the integral. Our code provides a default value to use (it defaults
to using the rectangle rule). If you like you can write your own functions that
provide default values for arguments using nargin. This contains the number
of parameters the user has actually passed in. So if it is lower than you expect,
supply default values.

Another sophistication is that the integrand may be unde�ned at certain
points. In particular it may not be de�ned at the end points. So we use the
function isnan to see if a calculation has evaluated to �Not a number�. If this
happens, we just pretend the value was zero. Hopefully if just a couple of
integration points are missing, this won't a�ect the integral.

4.4.1 Analyzing our results

We have four integration methods: the rectangle, trapezium and Simpson's rule
and the Monte Carlo method. Let's plot a graph of their performance. To do
this we calculate ∫ 2

0

sin(x) dx

analytically (the answer is − cos(2) + cos(0)) and then compare this with the
numerical integrals.
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In ?? we plot a log-log plot of the number of evaluation points used in the
integral against the error.
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The gradients of the log-log plot show the rate of the convergence. Simpson's
rule has gradient −4, corresponding to its O(N−4) rate of convergence. The
trapezium rule has gradient −2, and the rectangle rule has gradient −2 as
expected.

The error of the Monte Carlo method is a random variable. We know its
standard deviation is O(N−

1
2 ), but any particular sample will sometimes do well

and sometimes do badly. We've only plotted one sample in ??. If you squint,
you may agree that the long term trend has a slope of roughly − 1

2 as one might
expect. We could perform repeated runs to �nd the average Monte Carlo error.

A surprising feature of our graph is that after a certain point the error of
Simpson's rule increases. This is due to accumulating rounding errors. These
grow with slope 1/2 consistent with the central limit theorem: we're adding
independent errors. If you look at the chart you will see that rounding errors
only start creeping in once we have an accuracy of about one part in 1015. So
Simpson's rule approaches machine precision accuracy rather quickly. After that
it is a bad idea to use more integration points.

Here is the code that was used to generate this plot.

function plotErrors()
% Plots the error of computing integral of sin from 0 to 1
points=1:18;
NValues = 2.^points + 1; % Exercise: explain this line
answer = -cos(2)+cos(0);

errorR = zeros( 1, length(NValues));
errorT = zeros( 1, length(NValues));
errorS = zeros( 1, length(NValues));
errorM = zeros( 1, length(NValues));
for i=1:length(NValues)
    N = NValues(i);
    fprintf('Running calculation with %d points\n', N);
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    errorR(i) = abs(integrateByRectangleRule(@sin,0,2,N) - answer);
    errorT(i) = abs(integrateByTrapeziumRule(@sin,0,2,N) - answer);
    errorS(i) = abs(integrateBySimpsonsRule(@sin,0,2,N) - answer);
    errorM(i) = abs(integrateByMonteCarlo(@sin,0,2,N) - answer);
end

figure();
loglog( NValues, errorR, NValues, errorT, NValues, errorS, NValues, errorM );
title('Errors in numerical integration');
xlabel('Number of points');
ylabel('Error');
legend('Rectangle rule', 'Trapezium rule', 'Simpsons rule', 'Monte Carlo' );

end

The code works by estimating the integral using ni = 2i+1 evaluation points
as i runs from 1 to 16. Given that we are producing a log-log plot, this means
that our plot points will be distributed evenly in the x-direction.

The variable points is a vector containing all the values of i from 1 to 16.
The variable NValues contains a vector of the di�erent values of ni.

We then compute a vector errorR containing the error in the rectangle rule
for each value of ni, a vector errorT for the error of Simpson's rule and so forth.
These values are computed inside the for loop where we run through all the
values of ni.

Having computed the vectors of errors, we can simply use the built-in loglog

function to draw a loglog plot. We then set the title with the title function.
We use similar functions to label the axes and provide a legend. Once you have
generated your plot you can easily save it to a �le to include in a LATEXdocument
as we have done.

In MATLAB you should use the figure command to open a new drawing
window. Then commands like plot, loglog, title, xlabel and so forth can
be called. They will all a�ect the current drawing window so you can gradually
add features to your plot.

4.5 Pricing using integration

Let us put everything together and price an option using integration.

Example 1: A dividend free stock follows the Black Scholes process with un-
known drift and 10% volatility. The current stock price is $100. You should
assume that the risk free rate is 5% APR. Use numerical integration to �nd the
risk neutral price of a 3 month European call option on the stock with strike
$105?

The �rst thing we need to do is translate the �gures from the market into
familiar mathematical notation.

In �nance time is measured in years, so T = 0.25 years. Volatility is quoted
as a percentage change over a year, so σ = 0.1 years−

1
2 . The risk free rate, r,

used in the Black Scholes Formula is a continuously compounded rate. So we
have er = 1.05 if the annual percentage rate (APR) is 5%. Thus r = ln(1.05).
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How will we price this derivative. Learning from our experience we will write
several functions.

� A function to compute the payo� of a call option.

� A function to compute the pricing kernel.

� A function to integrate their product and hence price the derivative.

The payo� of a European call option can be computed using the code below.
We have vectorized the code so it will work equally well with a vector of strikes
and a vector of stock prices.

function p=callPayoff(K, S)

inMoney = S > K;

p = inMoney.*(S-K);

end

You could rewrite this using the maximum function if you wished.
Recall that we have computed the pricing kernel mathematically and found

that it is:

qT (S) =
1

Sσ
√

2πT
exp

(
−

(ln(S/S0)− (r − 1
2σ

2)T )2

2Tσ2

)
We can translate this into MATLAB with ease.

function q=pricingKernel( S, T, S0, r, sigma )

coefficient = 1./(S * sigma * sqrt( 2 * pi * T));

numerator=-(log(S/S0)-(r-0.5*sigma^2)*T).^2;

denominator = 2*T*sigma^2 ;

q =  coefficient .* exp( numerator/denominator);

end

We can now use the theory of risk neutral pricing to compute the payo�.

price = e−rT
∫ ∞

0

P (S)qT (S) dS.

function p=priceCallByIntegration( K, T, S0, r, sigma )

function ret=integrand( S )

   ret = callPayoff( K, S ) .*...

           pricingKernel( S, T, S0, r, sigma );

end

p = exp(-r*T) ...

    * integrateToInfinity( @integrand, 0, 10001);

end

We again remember that we should always test our functions. How can we
test our call price? The most obvious approach is to cheat and compare it to
the values from the Black-Scholes formula.
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function testBlackScholesCallPrice()

%Compares the black scholes price against

%that obtained by integration

r = log(1.05);

S0 = 100;

sigma = 0.1;

T = 0.25;

K = 110;

actual = priceCallByIntegration(K,T, S0, r, sigma );

expected = blackScholesCallPrice(...

           K,T, S0, r, sigma );

assertApproxEqual( actual, expected, 0.001 );

end

If we don't want to cheat, a good test is to notice that a call option with a
strike of 0 always pays o� the same as the stock. So, in e�ect, a call option with
a strike of 0 is the same as the stock and so must have the same price. If we
con�rm that this is the case, our code will still be doing quite a sophisticated
computation involving integrating pricing kernels, so this will be quite a good
test in the sense that if we've made any errors it probably will fail.

function testPriceCallByIntegration()

% A call option with strike 0 is the same thing

% as buying the stock. Check we get the correct answer.

% This is effectively a test that our pricing

% kernel is risk neutral

r = log(1.05);

S0 = 100;

sigma = 0.1;

T = 0.25;

actual = priceCallByIntegration(0,T, S0, r, sigma );

assertApproxEqual( actual, S0, 0.001 );

end

Now we know our code works. Let's answer the speci�c �nancial question.

function answerQuestion()

%Let's answer the question finally

T = 0.25;

r = log(1.05);

S0 = 100;

K = 105;

vol = 0.1;

answer = priceCallByIntegration(K,T,S0,r,vol);

fprintf('The answer is %f dollars\n', answer );

fprintf('The answer to two d.p. is %.2f dollars\n', answer );

end
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This demonstrates the MATLAB code required to print things more attrac-
tively. The fprintf function will automatically replace the %f symbol with the
value of answer. This allows you to mix English sentences with numerical results
in a more sophisticated way than is possible just using disp. Notice that the
\\n means �start a newline�. The disp command always starts a new line, but
the fprintf command is a bit more �exible and lets you decide if you want a
new line.

We won't put a lot of e�ort into printing things out prettily in Matlab, but it
can be useful to use the fprintf function if you want to generate more readable
output than is possible with disp.

What have we gained by pricing the derivative numerically? Well �rstly we
can easily adapt the code to puts and digital options. More interestingly we can
price derivatives with arbitrary payo�s. Even more interestingly given a pricing
kernel qT (S) we can price derivatives using that pricing kernel. For example,
you could take a pricing kernel with fat tails and our code would still work.

4.5.1 Monte Carlo integration as simulation

We have the following formula for the price:

e−rT
∫ ∞

0

payo�(S)q(S) dS

where q(S) is the Q-p.d.f. We can make a substitution by letting Q(S) be the
Q cumulative density function and make the substitution U = Q(S).

dU = q(S) dS

by de�nition of the probability density function as the derivative of the c.d.f..
So the price is given by:

e−rT
∫ 1

0

payo�(Q−1(U))dU.

So the Monte Carlo estimate for the price is:

e−rT
1

N

n∑
i=1

payo�(Q−1(ui)) (4.8)

where the un are uniformly distributed random variables on [0, 1]. This has a
very simple interpretation in terms of simulation.

Given any random variable with cdf F , we can simulate that random variable
by simulating uniform random variables and then applying F−1. See ?? to see
why�it is true simply by de�nition of the CDF.

This means that we can interpret equation (4.8) as saying that to estimate
the risk-neutral price we can:
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Figure 4.2: Applying the inverse cumulative distribution function F−1 to uni-
form random variables gives a distribution with c.d.f. F .

(i) Simulate stock prices in the Qmeasure (Q−1(ui) is a simulated stock price)

(ii) Compute the payo� of the derivative for each scenario (payo�(Q−1(ui)) is
the payo� in each scenario.

(iii) Take the average payo� and discount.

Thus pricing by Monte Carlo integration is essentially equivalent to simulat-
ing in the Q-measure and taking expectations. An advantage of this approach
is that computing the q-pdf earlier was a little tedious as we had to compute
how the pdf of the normal distribution changed when we changed variable from
z to S = exp(z). It is easier to compute how cdfs transform under a change of
variables.

Recall that we showed that for geometric Brownian motion Q measure

S ∼ logN
(
z0 +

(
r − σ2

2

)
T, σ
√
T

)
So by de�nition of the log normal distribution

Q(S) = N

(
1

σ
√
T

(
ln(S/S0)−

(
r − σ2

2

)
T

))
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where N is the cumulative distribution function of the normal distribution with
mean 0 and standard deviation 1. Solving the equation Q(S) = U we �nd that:

Q−1(U) = S0 exp

((
r − σ2

2

)
T + σ

√
TN−1(U)

)
We can computeN−1 using MATLAB's norminv function. We can now compute
prices by simply using (4.5.1).

Note that although the derivation of the explicit formula for Q is a bit easier
than that for q it does have the disadvantage that it contains the function N−1.
We're cheating a bit by using Matlab's built-in norminv function to compute
this. For more general models beyond a log-normal model we might well struggle
to compute Q−1 in practice. This means that formula (4.1) is still useful in
practice.

We will pursue the simulation approach further in the next chapter.

4.6 Further Reading

[1] discusses numerical di�erentiation and integration in chapters 6 and 7.
If you �nd the proof using Taylor's theorem di�cult consult any real analysis

textbook.
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