Chapter 2

Functions

2.1 What is a function?

In the last chapter we learned the basics of how to use MATLARB as a calculator.
In this chapter we’ll learn how to extend MATLAB by writing our own functions
that we can call. We’ve already seen how useful the built in functions such as
std, sin and hist can be. By the end of this chapter you’ll be able to write
your own functions that are every bit as useful.

A function in MATLAB is a reusable piece of code that:

e Is configured using some parameters that specify what the function should
do.

e Performs zero or more actions, such as printing text or plotting graphs.
o Computes the return values for the function.

For example in the MATLAB expression sin(x), the function named sin takes
a single parameter z, performs no actions and returns the sin of x computed
assuming x is in radians.

The expression hist(v,20) takes two parameters, the first is the vector of
data to plot and the second is the number of bars to show in the histogram. It
performs one action, generating the histogram. Although one usually ignores
its return value, it does actually compute an array of values indicating the size
of each bar.

Here are some functions that we will write this chapterﬂ

(i) cumulativeNormal(x). This will compute the cumulative distribution
function for the normal distribution. This takes a single parameter x,
. 1 T
performs no action and returns the value of —= JZ . exp(—t?/2) dt.

'In actual fact MATLAB already contains built in functions that perform pretty similar
tasks to the functions we are going to write in this chapter. For the purpose of this chapter
we’ll pretend that it does not contain these functions so that we can work out how we would
write them ourselves.

CHAPTER 2. FUNCTIONS 2

(ii) blackScholesCallPrice(K, T, S, vol, r). This takes five parame-
ters, the strike price, the time to maturity, the current stock price, the
volatility and the risk free interest rate. It returns the current value of a
call option given the parameters.

(iii) integrateNumerically(f, a, b, N). This takes four parameters and

returns an approximation to the fab f(t) dt computed using the rectangle
method with N steps.

2.2 Writing a function

2.2.1 Motivation

Example 1: Make the substitution t =z 4+ 1 — % to transform the integral

[Oo exp(—12/2) dt

to an integral of a finite interval. Hence use MATLAB to approximate the value
of \/% J* exp(—t?/2) dt using the rectangle method when z = 1.5.

Solution: Making the suggested substitution we find:

g5 e o [epcie v - s

Let us recall the rectangle method of integration. Suppose f : [a,b] — R is
a function we wish to integrate. We wish to approximate the area under f with
N rectangles. Define h = (b — a)/N and define s,, = a + (n — 1/2)h. Then the

rectangle rule approximation for fa f(s)ds is given by

b N
/ f(s)ds ~ hZf(sn)

See Figure 2.1}

For our problem, let us choose a large value of N, say 1000. Let us take
a=0and b =1 and define

£(9) = exp(—(e+1-27/2)

we can the compute the desired value using the following MATLAB code

o]
I
e

.53
a = 0;

CHAPTER 2. FUNCTIONS 3

b = 1;

N = 1000;

h = (b-a)/N;

s = a+ (1:N - 0.5) * h;

fValues = s.7(-2) .* exp(-(C x + 1 - 1./8).72)/2);
integral = h * sum(fValues);

result = 1 / sqrt(2 * pi) * integral

\j

S1 S2 ... SN

Figure 2.1: The Rectangle Rule

The result will be approximately 0.9331, which is accurate three significant
figures.

This is pretty sophisticated code. We certainly wouldn’t want to retype
all of this code every time we wanted to change the value of z and rerun the
computation. We will want to save this code to a file and we will want to
find some way to reuse the code whenever we need to compute the cumulative
distribution function of the normal distribution. Creating a function called
cumulativeNormal is the perfect way to achieve both of these goals. We will
describe how to do this over the next few sections.

As you will see, there is another advantage to using functions. The code
given above is very hard to follow. This is because it does too much at once.
Using functions we can break it into smaller components which will be easier to
understand. Just as you break a complex theorem into simple lemma’s, so you
should break a complex function into simple functions.

CHAPTER 2. FUNCTIONS 4

2.2.2 Choosing the current folder

When you create a function you will usually want to keep the code you have
written so you can call the function whenever you want. So the first step is
to create a directory to store all your code in. Do the following using Win-
dows Explorer. THIS IS A DIFFERENT PROGRAM TO INTERNET
EXPLORER! You can start it by pressing the Windows key and E.

This is the standard program on Windows to manage your files. Use Win-
dows Explorer to complete the following tasks:

e In your home area create a folder called FMO8.

e In that folder create a sub-folder called Lecturel.

I recommend that each week you create a new folder inside the FMO06 folder
to hold the code you write for that weeks exercises. The folder that you are
using to store your work is called the Current Folder in MATLAB and you
need to tell MATLAB where it is located.

To tell MATLAB where you have put your Current Folder, return to
MATLAB and take a look at the toolbar or ribbon at the top of the screen.
You should see that there is box giving the name of a directory.

e On MATLAB 2009 this box is marked Current Folder. There is a button
to the right of it marked mysteriously with just three dots. Click this to
and browse to the Lecturel folder.

e On MATLAB 2013 this box is at the bottom of the “ribbon” containing
all the buttons and isn’t actually labelled itself. You will see a button to
the left of the box showing a picture of a folder with a green arrow on it.
Click on this button and browse to the Lecturel folder.

2.2.3 Creating and running a function

Once you have selected the Current Folder to be the folder where you wish to
create your function you can create a file to hold your function.

Right click in the middle of the area of the screen on the left labelled Current
Folder and select New File—Function.

Type in the name of the function in the edit box that appears in the Current
Folder window. The correct text is cumulativeNormal.m. This is the name
of the function we are going to create with the additional suffix .m. So we
are creating a function called simply cumulativeNormal. Note that the name
should be like a variable name — no spaces, long and self-explanatory, and using
camel case to make different words distinct.

By typing in the name cumulativeNormal.m we are actually naming the file
that will contain our function definition. The .m suffix simply marks the file as
being a MATLAB file.

CHAPTER 2. FUNCTIONS)

Once you have created the file and chosen its name, double click on the name
of the file in the Current Folder window. This will open up a text editor where
you can type in the MATLAB code for your function.

If you have followed my instructions to the letter the outline code that MAT-
LAB has created should look like this:

function [output_args Jl=cumulativeNormal(input_args)
%CUMULATIVENORMAL Summary of this function goes here
% Detailed explanation goes here

end

This is meant to be a helpful reminder to you of how you write functions
in MATLAB, but until you know how to write a function in the first place it
probably looks more confusing than helpful.

Simply replace it all with the code below:

function [result] = cumulativeNormal(x)
%CUMULATIVENORMAL computes c.d.f of normal distribution
a = 0;

b = 1;
N = 1000;
h = (b-a)/N;

s a + (1:N - 0.5) * h;
fValues = s.7(-2) .* exp(-(C x + 1 - 1./8).72)/2);

integral = h * sum(fValues);
result = 1 / sqrt(2 * pi) * integral;
end

You only need to copy the text. MATLAB provides the colour automatically.
When you have replaced the code, save the file.

You can now test the code by executing the following command in the Com-
mand Window.

cumulativeNormal(1.5)

This should produce the answer 0.9331.

Tip: Help! my function doesn’t work!

If your function isn’t working, check the following:

CHAPTER 2. FUNCTIONS 6

e Did you give the file exactly the same name as the function except for
the suffix .m? Did you make sure the name of the function did not contain
any spaces?

e Is the function in the current folder? It is possible to open a file in the
MATLAB editor that is not in the current folder.

e Have you saved the code for your function? MATLAB will let you rerun
a function without saving it.

The advantages of making this a function are enormous
(i) The code is saved to a file for future reference.

(if) We can easily use the same function to compute the cumulative normal
distribution function for different values of x.

(iii) We can use this function from other functions so we will never have to
write the same code again.

Let us understand what our function is doing.

The easiest bit of code to understand is the line beginning with a percentage
signs and coloured in green. This is just a comment and is only there to remind
you what the code is meant to do. MATLAB ignored any text after a percentage
sign, so you can write whatever comments you like. It is always a good idea
to add comments to your code so you can understand what it does when you
come and look at it a year later. Choosing good function and variable names is
probably even more important than writing comments, however.

The next easiest bit to understand is the main body of the code (the section
after the comment but before the keyword end). This code is simply copied and
pasted from our solution to the previous exercise. It works just like ordinary
MATLAB code.

The really knew thing is the first line of the code. This is called a function
declaration and it says that next piece of code (up to the keyword end) defines
a function. This function is called “cumulativeNormal”. It takes one parameter
called x and computes one value called result. Notice that MATLAB colours in
the keywords for you. This makes the code a little easier to read and reminds
you not to use the keywords as variable names.

Tip: Red marks

Try deleting one of the semi-colons in our function definition. You should see
that MATLAB underlines the code in red and puts a little red mark in the
margin.

CHAPTER 2. FUNCTIONS 7

This is MATLAB’s warning that you’ve probably made a bug in your code.
When writing code you should make sure there are no red marks at all.

In this case, MATLAB is complaining because if there is a semi-colon miss-
ing, your function will print out part of its working. This is very confusing to
someone using your function: how would you like it if the sin function printed
out its working?

The general syntax for a function declaration is:

function [<output values>] =
<functionName >(<input values>)

Here output values and input values should be lists of variable names separated
by commas. The input values are the variable names that will be filled with
the parameter values. The output values are the variable names that should be
used to store the computed return values.

In our example, there is one input value called x and one output value called
result.

As another example, here is a function that takes as input two polar coordi-
nates and computes the Cartesian coordinates of the point. This function takes
two parameters and returns two values.

function [x, y 1] = polarToCartesian(r, theta)
X =1 * cos(theta);

y = r * sin(theta);

end

Here is how you would use this function:

r = 2.0;
theta = pi/2;
[x, vy 1] = polarToCartesian(r, theta);

disp(x); % Prints out the value of x
disp(y); % Prints out the value of y

%If you don’t need y
x = polarToCartesian(r, theta);

%If you don’t need x
[,y] = polarToCartesian(r, theta);

CHAPTER 2. FUNCTIONS 8

If you now look back at the code that was automatically generated when we
created the file cumulativeNormal you should see that it contains an outline
function for you to fill in. The phrase input_args in the input code is short
for input arguments. An argument of a function is just another word for a
parameter of a function.

Tip: Docking Windows

You will probably find that MATLAB opens a separate window for the code
for your function. Personally I hate having lots of windows open and so I like
to “dock” the editor window. You can do this by clicking on the window and
pressing CTRL4+SHIFT-+D.

2.3 Exercises

1) Check that you can create and run the function polarToCartesian and
test that it works using the code above. (You may notice that it doesn’t give
precisely the correct answers, this is because MATLAB only stores numbers up
to a certain accuracy.)

2) Create and run an inverse function called cartesianToPolar

3) Write a function that allows you to solve the quadratic equation ax?+bx+c =
0. It should take three parameters a, b and ¢ and return two values.

4) Write a function that computes the price of a call option using the Black—
Scholes formula.
It should be invoked as follows: blackScholesCallPrice(K, T, S, vol, r).

2.4 Writing tests

Code that doesn’t give the right answers is useless. Nobody in their right mind
would trust your pricing code using the Black Scholes formula and less you
could ensure them that it was thoroughly tested. As you gain experience in
programming, you will quickly learn that the following is (nearly) universally
true:

Tip: Universal Law of Programming

CHAPTER 2. FUNCTIONS 9

Code that is not tested does not work.

When you write code, you should also write test functions for your code.
These test functions are called “unit tests”. Some advantages of writing your
tests as MATLAB functions are:

1. It is quick and easy to rerun the tests whenever you change the code.

2. It provides documented proof that your code is tested and what those
tests are.

3. The tests for a function provide excellent documentation for how that
function should be used.

In this course I will often ask you how you would test your code. I will
expect you to be able to devise testing strategies and write tests for your code.
I may well make you do so in your exam.

As an example, let us consider how to test the cumulativeNormal function.
After a little thought I came up with the following tests:

(a) cumulativeNormal (x) should be between 0 and 1 for aribtrary x.
(b) For 2 = —1000.0, cumulativeNormal(x) should be nearly 0.

(c) Since the normal distribution is symmetric, cumulativeNormal (-x) should
be approximately equal to 1-cumulativeNormal (x).

(d) Itis well known that 20 events happen about 5% of the time. So cumulative-
Normal(2.0) should be about 0.975.

Here is a test function for cumulativeNormal that checks all these behaviours.

function testCumulativeNormal ()

x = 0.3;

assert(cumulativeNormal(x) > 0.0); %a

assert(cumulativeNormal(x) < 1.0); %a

assert (abs(cumulativeNormal (-20.0)) < 0.001); %b

assert(abs(cumulativeNormal (-x) +
cumulativeNormal(x) - 1)<0.001); Yc

assert(abs(cumulativeNormal(2.0) - 0.975) < 0.01);

end

You can enter this code directly into MATLAB, it understands the ... to
mean that the code is continued on the next line.

Notice that in this example, the function testCumulativeNormal takes no
parameters and doesn’t return a value: all it does is perform the action of
running some tests. This is typical of a test function.

CHAPTER 2. FUNCTIONS 10

Notice also that if you run the function, it doesn’t do anything. This is the
standard for tests. If they pass they print nothing out, but they print out error
messages if something goes wrong. That way if you run lots of tests its easy to
spot if any of them have failed.

The function assert is very useful for testing. It stops the program with
an error if the assertion isn’t true. So the two lines marked with the com-
ment \% (a) simply check that for the given value of z, cumulativeNormal lies
between 0 and 1.

More generally you can use the operators <, >, <= and >= for testing state-
ments.

The function abs computes the absolute value of a number. So to check
statement (b) when we test that a number is approximately 0 we need to check
that its absolute value is near zero.

I recommend whenever you write a function you write a corresponding test
function with a name beginning “test”.

2.5 Using functions to simplify code

Our test code in the previous section became a little hard to follow towards the
end. In particular you definitely need to apply your brain to work out that this
line of code

assert(abs(cumulativeNormal (-x) +
cumulativeNormal(x) - 1)<0.001; % (c)

really is testing the fact that cumulativeNormal (-x) is approximately equal to
1-cumulativeNormal (x).

To make the code easier to understand, we could have simplified it by writing
a new function as follows:

function assertApproxEqual(x, y, tolerance)
assert(abs(x-y)< tolerance);
end

With this function the somewhat confusing line of code

assert(abs(cumulativeNormal (-x) +
cumulativeNormal(x) - 1)<0.001; % (c)

could have been rewritten as:

assertApproxEqual (cumulativeNormal (-x),

CHAPTER 2. FUNCTIONS 11

l1-cumulativeNormal (x), 0.001);

This reads almost like the English statement of the test.

2.6 Passing functions as arguments

We can also simplify our code that uses the rectangle rule by writing a function
integrateNumerically(f, a, b, N) which takes as parameters the function,
the limits of the integration and the number of steps to take.

Here is the relevant code.

function [r]= integrateNumerically (f, a, b, N)
h = (b-a)/N;

s =a+ ((1:N) - 0.5) * h;

r =h % sum(£(s));

end

For example to compute an approximation to fol sin(¢) dt you would type
integrateNumerically(@sin, 0, 1, 1000). When you pass a function as
an argument you need to put the @ symbol in front of the function name.

Notice that our function assumes that the function f(x) takes a vector of
points x and returns a vector of the computed values f (x). That’s the way built
in functions such as sin and exp all work in MATLAB. However, are function
cumulativeNormal doesn’t work like this at the moment, so it won’t work for
that function.

When you want to pass a function as a parameter to another function, that
function has to be defined. Let us consider the problem we looked at earlier of
computing

/0 s exp(—((z +1—1/5)?)/2)

. We need to define a new function for the integrand in order to perform the
desired integration. Here’s how we could do this:

function result=cumulativeNormalVersion2(x)

function r = integrand(s)
r =s.7(-2) .x exp(-(C x + 1 - 1./8).72)/2);
end

NSteps = 1000;
result = 1/sqrt (2*pi)
* integrateNumerically(@integrand, O, 1, NSteps);

end

CHAPTER 2. FUNCTIONS 12

Notice that this code contains a nested function declaration. The syntax for
nested functions is just the same as for ordinary functions except that a nested
function is declared inside another function. Notice the way the nested function
can use the variable x defined in the outer function.

Technically speaking when you pass a function as a parameter you need
to pass a “function handle” this is just MATLAB’s term for a reference to a
function. The symbol means “compute the handle of this function”. If you like
you can store function handles in variables and arrays. This can be useful in
more advanced programs, but this isn’t a feature we will use in this course.

2.7 Scripts

An alternative way to save your MATLAB code is to write a script. A script is
just a collection of MATLAB scripts that you can execute together.

You create a script by right clicking in the Current Folder and selecting
New—Script and then calling it whatever you like. You run the script by
opening it and then pressing the “Run” button in the toolbar (you can find this
under the Editor tab in MATLAB 13).

Scripts are a good way to experiment with MATLAB code. When you change
a variable in a script, you can see the changes in the Workspace. This might
help you follow what is going on.

You can also run a script line by line by highlighting the text you want to
run and clicking the “Run selection” button on the toolbar. By working through
a script line by line, you may find it easier to grasp. Notice that this button also
works for stepping through your functions so you can use it to help understand
how functions work.

If you are new to MATLAB you may find scripts easier to use than functions,
but it turns out that they aren’t much use for writing serious code. The problems
are:

e In scripts you see the whole computation “at once”. Functions on the
other hand are modular, the problem is broken down into small pieces.
Understanding the whole computation in one go is usually difficult. Once
it is broken down into simpler steps everything is simpler.

e Scripts do not let you reuse your code. If you use scripts, you will find
you spend a lot of time cutting and pasting code from one to the other.
With functions this is unnecessary.

e You cannot automate tests for scripts.

e Different scripts share the same variables - the ones you can view in the
Workspace. Functions start with a fresh set of variables each time. This
means that scripts can interact with each other in strange ways whereas
functions are more predictable. For example it is easy to write a script
that works the first time you call it and then starts failing.

CHAPTER 2. FUNCTIONS 13

In summary scripts are hard to debug and prevent code reuse. These are
two very bad things!

If you find scripts helpful and want to use them, you can do so. But please
write functions for all the exercises. Since scripts are harder to debug than
functions, it is unreasonable to ask a tutor to help you debug your scripts when
you could have written functions in the first place!

2.8 Exercises

1) Use the function assertApproxEqual to simplify the function testCumula-
tiveNormal. You should be able to make three different simplifications. Notice
how much more readable the code becomes.

2) Write a test function for your Black Scholes formula. It should test the “static
bound” that the price of a call option is always greater than S — exp(—rT)K.
It should also check that very near to maturity the price is well approximated
by the immediate exercise value. Can you think of any other tests?

3) Use the function integrateNumerically to compute fol sin(s) ds and also to
compute ff (22 — 22 + 2) dz.

4) Write some automated tests for the function integrateNumerically.

5) Write a function integrateFromMinusInfinity(£, x, N) which makes the
substitution ¢ = 2+1—1 and uses this to evaluate the integral [*_ f(t)dt using
the rectangle method with NNV steps. This function should itself call integrate-
Numerically. Test your function. Modify the cumulativeNormal function so
that it calls this function.

6) Write a function normalDensity which computes the probability density

function of the normal distribution. Modify the cumulativeNormal function so
that it calls this function.

2.9 What are the benefits of functions?

DESIGN PRINCIPLE: THE ONCE ONLY PRINCIPLE

You should never write the same code twice. Functions are designed to
stop you having to ever write the same code twice. You break functions
into pieces so you never even write the same couople of lines twice. You
pass functions as arguments so you never have to write an algorithm twice.

CHAPTER 2. FUNCTIONS 14

We have now arranged our code so that it is written several small functions each
of which should be easy to understand but which together perform a complex
task. This task is to compute the price of call option using the Black—Scholes
formula. You can find the final version of the code on the Keats page.

In this final version of the code, the function blackScholesCallPrice de-
pends the cumulativeNormal which depends on normalDensity and integrate-
FromMinusInfinity. The latter depends on integrateNumerically.

I want to convince you that splitting the code into lots of pieces like this has
made it much simpler to understand.

First notice in the process of smashing our functions into small pieces, we
have written some functions that we will want to reuse in the future. For
example, we would want to use cumulativeNormal when pricing a put option
or digital option. Similarly our integration functions are obviously generally
useful.

Second, the functions we end up with are much easier to understand. For
example, here is a final version of the cumulativeNormal function:

function result=cumulativeNormal(x)

NSteps = 1000;

result = integrateFromMinusInfinity (
@normalDensity, x, NSteps);

end

All of the complexity such as the rectangle rule and the integration by sub-
stitution have been put in separate functions, so this code contains very little
other than the definition of the cumulative distribution function.

Third, if we decide to improve one of our functions, say by using a faster
algorithm, then all the code that uses those functions will become better too.
For example we might change the function integrateNumerically so it uses
the trapezium rule, or Simpson’s method. All our other code would benefit
immediately.

A fourth advantage of writing lots of small functions is that we can test
each piece of code separately. It requires a bit of ingenuity to think of tests for
cumulativeNormal and a lot of ingenuity to think of tests for blackScholes-
CallPrice. On the other hand, testing component pieces such as integrate-
Numerically is pretty simple.

Also notice that in order to break our code into small pieces, we have been
constantly modifying our original functions. This process of introducing new
functions and polishing your code to make it easier to understand is called
“refactoring”. Notice how helpful it is to have automated tests when you are
refactoring your code. You can quickly rerun all the tests and make sure that
your code changes haven’t broken anything.

CHAPTER 2. FUNCTIONS 15

Tip: Using functions

e When you write code write lots of small functions.

e Try to reuse functions you have already written rather than always writing
new code.

e Write automated tests for each function that you write.

e Give your functions and variables descriptive names so that your code
reads like English.

e If your code is too complicated to quickly understand, break it into small
functions.

2.10 Summary

We have learned how to use functions to achieve the following:
¢ Reuse. Functions allow us to reuse code rather than constantly rewrite
it.

e Modularity. We can break our programs into small pieces each of which
is easy to understand - ideally into pieces that look like they’re written in
plain English.

e Testing. Small functions are easy to test. Our tests are themselves writ-
ten as functions.

	Functions
	What is a function?
	Writing a function
	Motivation
	Choosing the current folder
	Creating and running a function

	Exercises
	Writing tests
	Using functions to simplify code
	Passing functions as arguments
	Scripts
	Exercises
	What are the benefits of functions?
	Summary

