
Chapter 10

Optimization

10.1 Introduction

Optimization problems occur a lot in �nance. We're going to consider two basic
types of optimization problem in this chapter.

1. Portfolio optimization

2. Model calibration

In most of this course, we have written our own algorithms and not made
much use of Matlab's built in functions. This chapter is di�erent, we will use
the built in optimization functions and not worry too much about how they are
implemented.

This means that the main challenge will be to write our optimization prob-
lems clearly so that we can then use the built on solvers.

The Matlab functions we will use are:

1. quadprog to solve quadratic optimization problems. quadprog is short for
�quadratic programming�. For historical reasons, optimization problems
are often called �programming� problems. This is a di�erent use of the
word �programming� to the more familiar use in the phrase �computer
programming�. I will use the word �optimization� myself, but it is help-
ful to know when you read the literature that �linear programming� and
�quadratic programming� simply mean solving linear optimization prob-
lems and solving quadratic optimization problems.

2. fminunc to solve smooth unconstrained optimization problems. That is
to minimize f(x) where there are no restrictions on x. The name of the
function comes from �Minimize the function f(x) with x unconstrained�.

3. fmincon to solve smooth constrained optimization problems. That is to
minimize f(x) where x is restricted to lying in a particular set. The
name of the function comes from �Minimize the function f(x) with x
constraints�.

1

CHAPTER 10. OPTIMIZATION 2

All of these functions solve some variant of the problem �Find x to minimize
f(x) subject to the constraint x ∈ X for a given set X.� All of the functions
above assume that the function f is smooth, other algorithms are available if f
is not smooth but we won't need them in this lecture.

All of these functions look for a local minimum only. That is they look for x
where ∇f is zero and the matrix of second derivatives is positive semi-de�nite.
This is just like looking for the minimum of a function of one variable by solving
for f ′(x) = 0 and where checking f ′′(x) > 0.

If the function f is convex, then a local minimum will always be a global
minimum, so all of the functions above will �nd the true minimum if you give
them a convex problem to solve. If you give them a non-convex problem, you
can't guarantee that you will get a global minimum. This is one of the advan-
tages of solving convex optimization problems rather than general optimization
problems. Convex problems are much easier to solve than general optimization
problems. MATLAB does contain functions that try to �nd global solutions of
general optimization problems, but they don't always work very well in practice.

One interesting point is that it normally doesn't matter very much if we
�nd more than one solution x1, x2 to our minimization problem. So long as
f(x1) = f(x2) they can both be perfectly valid solutions. Similarly, if we are
looking for approximate solutions then we can often �nd x1 and x2 with f(x1) ≈
f(x2) even though x1 and x2 might be quite di�erent. This means that when
testing if your optimization has been successful by comparing it with another
optimization routine, you should check the value of f(x) rather than x itself as
two algorithms might return quite di�erent values for x.

10.2 Application: Modern Portfolio Theory

In 1950's, Markowitz developed a very well-known theory which is called �Mod-
ern Portfolio Theory� even though by now it is not very modern.

The aim of the theory is to work out how to choose �optimal� investments
in various assets, say a collection of n di�erent stocks.

The model that Markowitz used is that there are n assets whose returns
over some �xed time period T are random variables Ri (where the index i ∈
{1, 2, . . . , n} runs over the di�erent assets). The return of an asset is de�ned by
the following equation:

Ri =
price of asset i at time T - current price of asset i

current price of asset i

So the return of an asset is simply a scaled version of the pro�t and loss that
takes into account how much you had to pay for the asset.

The random variables Ri are assumed to have a known mean µi. So we have
a vector µ of length n containing the means of all the assets. We also know the
n× n covariance matrix Σ for all the assets.

We wish to invest a �xed amount P over the time period T in a �xed portfolio
of the assets. The portfolio is determined by choosing the weights wi to assign

CHAPTER 10. OPTIMIZATION 3

to each asset with
∑n
i=1 wi = 1.

We will assume that we are allowed to short sell so the wi may take any real
values.

Markowitz's idea was that that optimal portfolio for a given expected return
is a portfolio that minimizes the risk for that level of expected return. Markowitz
suggested that the risk could be measured using the standard deviation of the
portfolio.

If we assume that returns are normally distributed, then if the expected
return of the portfolio is �xed, the distribution of the returns is determined
entirely by knowing the standard deviation. This means that standard deviation
is a good measure of risk for normally distributed assets, indeed it is the only
possible measure of risk. However, for more general distributions one can argue
that standard deviation is not a particularly good measure of risk. For this
reason, it is often said that Markowitz's theory assumes that the returns on
assets are normally distributed.

Suppose that we choose a vector w of weights, then the mean return of our
portfolio will be:

µTw

and the variance of the return will be:

wTΣw

So if we require that the expected return of our portfolio r, the optimal
portfolio w can be found by solving the following optimization problem:

minimize
x

wTΣw

subject to
∑
i

wi = 1,

µTw = r.

(10.1)

Here Σ is a positive de�nite matrix containing the covariance matrix of the
returns of the assets, µ is a vector containing the mean return of each asset.

This is an example of what is called a quadratic programming problem.
Matlab has a built in function quadprog that can solve such problems for you.
The general quadratic programming problem can be written in the following
form:

minimize
x

1

2
xTHx + fTx

Subject to

Ax ≤ b

A′x = b′

l ≤ x ≤ u

(10.2)

Here A and A′ are matrices, vecb, b′, l and u are vectors. We are writing x ≤ y
if every entry of the vector x is less than or equal to the corresponding entry in

CHAPTER 10. OPTIMIZATION 4

y. MATLAB allows you to use the values −∞ and +∞ in the lower and upper
bounds l and u if you wish.

We will call the constraint Ax ≤ b the �inequality constraint�. We will call
the constraint A′x = b′ the �equality constraint� and we will call the constraints
l ≤ x ≤ u upper and lower bounds on x.

Because we are using matrix equations for the constraints, we can combine
multiple constraints together into a single matrix equation. For example in the
problem (10.1) we have two equality constraints, but they can be combined into
the single constraint:

A′w = b′ where

A′ :=

(
1 1 1 . . . 1
µ1 µ2 µ3 . . . µn

)
,

b′ :=

(
1
r

) (10.3)

Thus the problem (10.1) is a special case of the quadratic programming
problem with H = 2Σ, f = 0 and with A′ and b′ as above. There are no
inequality constraints or upper or lower bounds.

We can now call quadprog with these parameters to compute the optimal
portfolio. To solve the problem (10.2), one writes A′ = Aeq and b′ = beq then
makes the MATLAB call:

[x,fVal ,exitFlag]= quadprog(H,f,A,b,Aeq ,beq ,lb,ub ,x0 ,options);

When this function returns x will contain the optimal value for x and fVal

will contain the corresponding mimimum of 1
2xTHx + fT. The return value

exitFlag indicates whether the optimization worked. You must check this is
greater than zero whenever you call quadprog to be sure that the optimization
actually worked.

As you can see quadprog takes a lot of parameters. We won't always have
inequality constraints, equality constraints or upper or lower bounds. If this is
the case you can use the empty array [] in place of the constraint in your call
to quadprog.

The �nal options parameter allows you to �ne tune the optimization if you
wish. It can be omitted if you are happy with the default options. We will see
how to con�gure options shortly.

But �rst let us see how to write a function to �nd the solution of (10.1).

function [ret , variance , w] = markowitzOptimizeRet (...
r, mu, sigma)

H = sigma;
n = size(sigma ,1);
f = zeros(n,1);

CHAPTER 10. OPTIMIZATION 5

Aeq = [ones(1,n); mu];
beq = [1; r];

[w,~,exitFlag] = quadprog(H,f,[],[],Aeq ,beq ,[] ,[] ,[]);
assert(exitFlag >0);
ret = mu * w;
variance = w' * sigma * w;

end

The code simply translates the problem (10.1) into the precise format (10.2)
that Matlab understands. We compute the required values for H, f , A′ = Aeq

and b′ = beq. All the other constraint matrices and vectors are empty.
The computation of A′ = Aeq and b′ = beq corresponds exactly to our

computation (10.3).
If you run the code on the previous slide, MATLAB prints out a lot of mes-

sages and (for some versions of MATLAB) a warning. This is rather annoying
if you plan to call this function often. To switch o� the messages you can cus-
tomize the options and to switch o� the warning you use the warning command
to indicate that you aren't interested in the speci�c warning message. These
changes are made in the code below.

function [ret, variance, w] = markowitzOptimizeRet(...

 r, mu, sigma)

warning('off','optim:quadprog:WillRunDiffAlg');

H = sigma;

n = size(sigma,1);

f = zeros(n,1);

Aeq = [ones(1,n); mu];

beq = [1; r];

options = optimset('quadprog');

options = optimset(options,'Display','off');

[w,~,exitFlag]=...

 quadprog(H,f,[],[],Aeq,beq,[],[],[],options);

assert(exitFlag>0);

ret = mu * w;

variance = w' * sigma * w;

end

It is worth examining this code to see how one creates options for quadprog.
First we �nd the default options with a call to optimset passing in a single
parameter, the name of the optimization routine you will call. This returns an
options object.

CHAPTER 10. OPTIMIZATION 6

options = optimset('quadprog ');

We then call optimset a second time to modify the options. This time we pass
in our options object and a set of key/value pairs that indicate what options
you would like to set. In this example, we're setting the option Display to off.

options = optimset(options ,'Display ','off');

The function optimset returns the new modi�ed options object which is equal
to the default options modi�ed to switch o� the display of information about
whether the optimization succeeded.

Having con�gured the options object, we pass it to the optimization function
as the �nal parameter.

[w,~,exitFlag]=...

quadprog(H,f,[],[],Aeq ,beq ,[],[],[], options);

The reason for this rather complicated procedure is to make sure that you choose
the default values for all options except the ones you wish to customize.

All optimization functions take similar options that are con�gured in this
way. You can use options to set things like:

� How much information to print during the calculation (Display)

� The actual algorithm to use (Algorithm)

� How accurate the answer needs to be

� The maximum number of steps to perform of the algorithm before giving
in

� etc.

You should consult the MATLAB documentation for details of the available
options and their settings.

10.2.1 An application with real data

Historic stock prices

Let us try to use Markowitz's theory to select an optimal portfolio of FTSE 100
stocks�i.e. to �nd the portfolio that minimizes standard deviation for a given
expected return.

To do this, we will �rst need to estimate the mean vector µ and the covariance
matrix Σ. We can do this using historic data. The �le ukx.xslx on my website
contains data downloaded from Bloomberg for the FTSE 100 index (and then

CHAPTER 10. OPTIMIZATION 7

modi�ed as one shouldn't publish Bloomberg data). It contains weekly prices
for each of entry of the FTSE 100 since the year 2000

As is often the case when working with real data, there is some missing
data. For a couple of companies there are missing entries. For simplicity we
will exclude those from our Portfolio.

The code below reads the excel �le and returns a matrix data containing a
column of prices for each stock in the FTSE 100 for which we have a full set
of prices. To understand the code you will need to look at the spreadsheet of
data. Note that only every third column contains a stock price.

function data = ukxData(nSecurities)

% Read the raw data from the excel file

bloombergData = xlsread('ukx.xlsx', 'A3:KP736');

% n is the number of securities that we've read

n = min(nSecurities, floor(size(bloombergData,2)/3));

% Now eliminate the empty columns and any data

% for a security where

% we don't have a full history of returns

index = 1;

for i=1:n

 col = bloombergData(:,(i-1)*3+1);

 if (~isnan(col(end)))

 data(:,index)=col;

 index = index+1;

 end

end

end

We're using the isnan function to detect missing data. If there is no number
at the end of the column, some data is missing.

It's quite normal when working with data to have to write a bit of code to
read the �le. As we've done here, it is best to put this in a function of it's own
so it is easy to understand and test.

Estimating µ and σ

To estimate µ and σ we simply compute the weekly returns and hence estimate
the sample covariance matrix Σ and the mean weekly vector µ for the FTSE 100.
We will then assume that over the next week, these stocks will be distributed
with the same return and variance.

data = ukxData(nSecurities);

returns = (data(2:end,:) - data(1:end-1,:))./data(1:end-1,:);

CHAPTER 10. OPTIMIZATION 8

% We assume that historical returns allow us to estimate

% expected return (mu) and covariance (sigma)

sigma = cov(returns);

mu = mean(returns);

It is interesting to plot the mean return and standard deviation for each
stock for which we have data. This can be done with the following code.

% Plot a scatter plot of the return for each consitutent

sds = sqrt(diag(sigma));

scatter(sds, mu);

xlabel('Standard deviation');

ylabel('Expected return');

10.2.2 The e�cient frontier

Finally, we would like to compute the solution to (10.1) for various values of r.
We will then plot the standard deviation of the optimal portfolio, the result is
shown in Figure 10.1. The small circles show the return and standard deviation
for each individual stock. The curve shows the optimal standard deviation for
each level of return. Each point representing a stock is on the right of the
e�cient frontier. This is simply because investing in one stock is riskier than
investing in the optimal portfolio with the same return. Figure 10.1 gives a
visual illustration of the bene�ts of diversi�cation.

The code used to plot the e�cient frontier is shown below. It simply calls
our markowitzOptimizeRet function repeatedly.

% Now compute the efficient frontier and plot it

r = -0.01:0.0005:0.02;

frontierX = zeros(length(r),1);

frontierY = zeros(length(r),1);

for i=1:length(r);

 [ret,var]=markowitzOptimizeRet(r(i), mu, sigma);

 frontierX(i)=sqrt(var);

 frontierY(i)=ret;

end

hold on;

plot(frontierX, frontierY);

title('The Markowitz efficient frontier');

hold off;

One interesting point is that we use the functions hold on and hold off.
Sometimes you want to superimpose charts in Matlab. For example, our plot
Figure 10.1 shows a scatter plot and a line plot simultaneously. By calling
hold on you tell Matlab that you want all plotting commands to appear on the
same chart. You then cancel this behaviour with a call to hold off.

CHAPTER 10. OPTIMIZATION 9

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
−0.01

−0.005

0

0.005

0.01

0.015

0.02

Standard deviation

E
x
p
e
c
te

d
 r

e
tu

rn

The Markowitz efficient frontier

Figure 10.1: The e�cient frontier
.

Discussion

The Markowitz model is very in�uential, but you shouldn't use it uncritically.
Firstly, standard deviation is not always a good measure of risk. Using

standard deviation to measure risk can be justi�ed for normally distributed
assets, but not in general. For more general return distributions it makes more
sense to perform utility optimization. We will show how this is done later in
the chapter.

In addition, the results we obtained for the FTSE 100 are too good to be
true. We've calibrated a 100× 100 matrix Σ using historic data and this means
that we've over-�t our model. It would be more sensible to use just 10 stocks
as illustrated in the �gure below.

CHAPTER 10. OPTIMIZATION 10

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

Standard deviation

E
x
p
e
c
te

d
 r

e
tu

rn

The Markowitz efficient frontier

As you can see, with ten stocks, diversi�cation improves our portfolio but
not too such a radical extent.

We have shown how to optimize portfolios in the Markowitz model with
no trading constraints. For such problems, the e�cient frontier will always be
a hyperbola. It is actually quite easy to prove analytic results in this special
case. However, for more general problems with constraints using quadprog is
essential.

10.3 Calibrating pricing models

As is well known, the Black�Scholes model does not �t market data precisely.
Recall that the implied volatility is the value of σ you must plug into the Black�
Scholes formula to obtain the market price of an option. If the Black�Scholes
model was correct, all European options would have the same implied volatility,
but in reality, if you plot the implied volatility against the strike of a call option
you get a curve called �the volatility smile�. This is shown in �gure ??. Note
that this picture shows the curve for one maturity, you will get di�erent smiles
for di�erent maturities.

There are many factors which explain the inaccuracy of the Black�Scholes
model. For example stock returns have fat tails, time series analysis suggests
volatility is not constant, market prices sometimes jump etc..

For example, there are stochastic volatility models where the volatility itself
follows a stochastic process. One example is the Heston model which we have
already met once in this course.

In this section we will consider another type of model, called jump di�usion
models. In these models, in addition to the usual white noise that changes the
stock price continuously, there is also the possibility of instantaneous jumps in
the stock price.

CHAPTER 10. OPTIMIZATION 11

These models are both examples of incomplete market models. In both
stochastic volatility models, there is more than one source of randomness e�ect-
ing the stock price. However, you can only hedge one source of risk by trading in
the underlying. As a result, for these models there is more than one equivalent
martingale measure compatible with a P-measure model of jump di�usion or
stochastic volatility type.

In practice, when working with an incomplete market model one normally
chooses a Q-measure model directly without attempting to derive it from a P
measure model. One then uses this to model both the underlying and vanilla
option prices as discounted expectations for this measure.

Since we are using a Q-measure model, prices obtained in this way will be
arbitrage free. Moreover if option prices and the stock follow the model, it will
be possible to �nd dynamic replication strategies for exotics by trading in both
the underlying and in vanilla options.

Thus, in practice one chooses a general form for a Q-measure model and
then calibrates this model to match market price reasonably closely. The hope
is that one can then o�er to buy and sell derivatives and hedge them using both
the stock and exchanged traded options.

The process of calibrating is an optimization problem. We are seeking a
Q-measure model that gives the best �t to market prices. The word best is the
clue that optimization will be involved in calibration.

Although we are giving the example of calibrating a Q-measure model to
prices, it is also very normal to calibrate a P-measure model to historic data.
This process normally called �tting a statistical model. It too is an optimization
problem. For example, one well known example is �nding the best linear model
to data which is carried out using least squared regression. This is in fact a
quadratic optimization problem which could be solved with quadprog, although
it is simple enough to solve by hand.

10.3.1 A Jump Di�usion model

We will consider the simplest possible jump di�usion model. We will simply
write down a Q-measure model and the associated pricing formula for European
call options.

Our model will consist of a di�usion process for the stock price with addi-
tional jumps that occur occasionally. The jumps will be of a �xed size and occur
with a Poisson distribution. This is a very simple jump di�usion model, it is
easy to elaborate on this basic model if desired.

We let Nt be an integer valued random process, representing the number
of events that have occurred for a Poisson process with intensity λ. We then
suppose that when a jump occurs, the stock price jumps from St to JSt for some
J > 0. So J < 1 represents a �xed size downward jump and J > 1 represents a
�xed upward jump. Between jumps the stock price obeys the standard geometric
Brownian motion

dSt = St(µdt+ σdWt).

CHAPTER 10. OPTIMIZATION 12

For this to be a valid Q measure model, we will need to make sure that
exp−rT St is a martingale.

Fortunately it is easy to calculate expectations of payo�s at time T . Let NT
be the number of jumps that have occurred up to time T . Let ST follow the
process:

dSt = St(µd + σdWt).

without any jumps, then ST = JNT ST . So the expectation conditioned on
the number of jumps being NT can be calculated using the expectation in the
Black-Scholes model but with a starting price of JNT S0.

As an example, we compute the expectation of the stock price at time T :

EQ(S) =

∞∑
i=0

PQ(NT = i)J ieµTS0

=

∞∑
i=0

e−λ
λi

i!
eµTJ iS0

= eJλe−JeµTS0

= e(J−1)λ+µTS0

So this is a Martingale if and only if

µ = −(J − 1)λ+ r.

We can also write down the price of a European call in our jump di�usion
model it is:

∞∑
j=0

e−λT
(λT)j

j!
BS(K,T, S0e

(µ−r)TJj , r, σ) (10.4)

Here BS(K,T, S0, r, σ) is the usual Black Scholes pricing formula.
Note that we are not claiming that �xed size jumps and a constant intensity

is a particularly plausible model for jumps in a stock price, we've chosen this
model simply because it gives an example of an incomplete market model where
we can easily price call options.

Let us write the MATLAB code to price an option in our jump di�usion
model. Since (10.4) is an in�nite sum, we can't evaluate every term in the sum.
We will use a while loop to evaluate terms in the sum until they contribute less
than one part in a million to the sum. This gives rise to the following code:

function total = jumpDiffusionPrice(...

 K, T, S0, r, sigma, lambda, J)

total = 0.0;

coefficient = exp(- lambda*T);

j = 0;

mu = -(J-1)*lambda + r;

while true

 term = coefficient * blackScholesCallPrice(...

CHAPTER 10. OPTIMIZATION 13

 K, T, S0*exp((mu-r)*T)*J^j, r, sigma);

 total = total + term;

 if (abs(term)/abs(total)<1e-6)

 return;

 end

 j = j+1;

 coefficient = coefficient * lambda*T / j;

end

end

10.3.2 Calibrating a Jump Di�usion model

Having written down our jump di�usion model, we now consider how to choose
the parameters σ, λ and J . We wish to calibrate the model to market option
prices. In other words we wish to �nd the values of the parameters that give
the �best �t� to market prices.

It is up to use to de�ne what �best �t� actually means. We need to choose
some metric to measure the error of the �t. We can then use an optimization
algorithm to minimize the error.

We will de�ne the error to be the sum of the squared errors when comparing
the predicted price of an option with the market price. Using squared errors
rather than absolute values ensures our error function is smooth. It is perfectly
possible, and legitimate, to use other measures of �best �t�, we have simply
made a simple and convenient choice.

So let us suppose that we have n exchange traded call options all with
maturity T . Option i has strike Ki. Let Ci denote the market price of the
option i. We will then let C ′i(σ, λ, J) denote the jump-di�usion predicted price
with the given parameters. We de�ne:

error(σ, λ, J) =
∑
i

(Ci − C ′i(σ, λ, J))2 (10.5)

The calibration problem is to minimize error subject to the constraints

σ > 0, λ > 0, J > 0.

To eliminate the constraints we write σ = ex1 , λ = ex2 , J = ex3 we can
convert this to an unconstrained optimization problem of choosing (x1, x2, x3)
to minimize the error.

Matlab provides a function fminunc for unconstrained optimization. To use
fminunc you must �rst write your objective function, that is the function to
minimize. This function just should take a vector of parameters and return a
single real number.

In our case we will want to write a function to compute �error� given the
3-vector of parameters x = (x1, x2, x3).

Assuming that you have written a function f that computes your objective,
you call fminunc as follows:

CHAPTER 10. OPTIMIZATION 14

[x,fVal ,exitFlag]= fminunc(@f , x0, options);

In this call x0 is an initial guess at the solution. x, fVal and exitFlag and
options have the same meaning as for quadprog. Just as for quadprog it is im-
portant to check the exit �ag to make sure the optimization has succeeded. Just
as for quadprog you can provide options if you want to tune the optimization,
but you don't have to.

One important ddi�erence is that the quadratic program we solved was
convex. That is we wished to minimize a convex function de�ned over a con-
vex domain. Convexity ensures that the optimization problem is �nice�. For
example a local minimum of the function is an absolute minimum.

The calibration problem we have written down is smooth, but non-convex.
As a result fminunc will only �nd a local minimum of the problem. We'll just
have to hope that the error achieve for our �t is small, we can't guarantee that
it is the best possible �t.

10.3.3 Implementation

To calibrate a model, we need the market price of the options. The �le goog-options.xslx
contains option data for Google taken from Bloomberg on 20 March 2014 (and
then modi�ed slightly as one shouldn't publish actual Bloomberg data).

This �le contains strikes and mid prices for numerous options all with the
same maturity date of 19 April. On that day the stock price was 1205.415. We
will also assume a risk free rate of 0.16. The time to maturity is 31/365.

The code below reads in this market data and returns the various values as
MATLAB arrays and variables.

function [strike,T,S0,r,mid] = googOptionData()

% Read the raw data from the excel file

T = 31/365;

S0 = 1205.4;

r = 0.16/100;

bloombergData = xlsread('goog-options.xlsx', 'C5:D54');

mid = bloombergData(:,1);

strike = bloombergData(:,2);

end

The main task in performing the optimization is to implement the objective
function. We write this as a nested function called errorFunction inside of our
main function calibrateJumpDiffusion.

The implementation of the objective function follows from our de�nition of
error given in (10.5). The code simply sums the squares of each individual error
in a for loop.

CHAPTER 10. OPTIMIZATION 15

function [sigma, lambda, J] = calibrateJumpDiffusion()

[strike,T,S0,r,mid] = googOptionData();

function e = errorFunction(x)

 sigma = exp(x(1));

 lambda = exp(x(2));

 J = exp(x(3));

 fprintf('Sigma=%d, lambda=%d, J=%d\n',sigma,lambda,J);

 e = 0;

 for i=1:length(strike)

 K = strike(i);

 p1 = jumpDiffusionPrice(K,T,S0,r,sigma,lambda,J);

 p2 = mid(i);

 e = e + (p1-p2)^2;

 end

end

Now that we have written the objective function, we simply need to call
fminunc.

% Note that we may only find a local minimum, so

% a good choice of x0 is important

x0 = [log(0.25), 0.3,0.9];

[xOpt,~,exitFlag] = fminunc(@errorFunction, x0);

assert(exitFlag>0);

sigma = exp(xOpt(1));

lambda = exp(xOpt(2));

J = exp(xOpt(3));

end

Note that we check the exit �ag to ensure that the optimization was suc-
cessful.

Having calibrated the model, we can plot a graph of the prices predicted
by the model against actual market prices. The code to plot the graph and to
compute the implied volatilities from market data is left for you to implement
yourself. See Section 10.3.3 for the �nal result.

10.3.4 Using fminunc

Using fminunc seems very easy, but there are potential pitfalls to watch out for.
Firstly, as we have mentioned fminunc only �nds local minima. Only if your

problem is convex will it �nd global minima.

CHAPTER 10. OPTIMIZATION 16

1050 1100 1150 1200 1250 1300 1350
0.23

0.24

0.25

0.26

0.27

0.28

0.29

0.3

strike

v
o
la

tl
it
y

Market data smile

Jump diffusion smile

Secondly, the numerical algorithms assume that the problem is centered and
scaled. You may recall that the integral function can give the wrong answer
if you do not centre and scale the function well. For example, if you ask it to
compute the integral of the pdf of the normal distribution with a mean of 1000
and a standard deviation of 0.0001, it will fail. This is because the �center�
of this function is roughly at 1000 and the scale is roughly 0.0001. A function
is well centered and scaled if the interesting parts of the function are near the
origin and the major changes in the function's size occur in a region of roughly
size 1.

The reason that this is necessary is that the numerical methods used by
fminunc use discrete approximations to derivatives and di�erential equations.
They choose the step sizes in these approximations based on an assumption of
good scaling.

The algorithm used by fminunc is (roughly) to estimate the �rst and sec-
ond derivatives of the objective function near x0. By Taylor's theorem we can
approximate f using a quadratic function with coe�cients given by these deriva-
tives. By solving the optimization problem for this quadratic approximation us-
ing quadprog we get new estimate x1. Continuing in this way, we get a sequence
of approximations. This method is called the Newton method. We terminate
the search for a solution once the gradient is reasonably close to zero.

There are many options you can con�gure when using fminunc. For example:

� When estimating derivatives what value should we use for δx?

� When do we consider the gradient to be su�ciently close to zero?

� How many steps of the algorithm should we perform before giving in?

CHAPTER 10. OPTIMIZATION 17

� Should we use a di�erent algorithm entirely (e.g. for large scale problems
where x is high dimensional)?

Although there are many options, typically the best approach is to ensure that
your problem is centred and scaled and then use the defaults.

10.3.5 Remarks on calibration

Our choice of jump di�usion model is very crude. Although it �t the market
prices rather well for a single maturity date, it probably wouldn't �t the full
pricing surface at di�erent maturities very well.

We chose this model mostly because it is easy for us to price rapidly. If you
run the optimization, you will see from the fprintf statement that it is called
extremely often. Each call to this function then prices every single derivative.
This means that to calibrate a model it is essential that you can price exchange
traded options quickly.

This explains why some probabilistic models are more popular than others
for pricing derivatives. An arbitrary model can probably only be priced using
Monte Carlo which is very slow. For example, the Heston model is popular
because it can be priced reasonably rapidly using Fourier transform methods.
(We have not covered these methods in this course.)

We should emphasize again that the parameters found by �tting are for a
risk neutral model and not the real world model. This means that the model
tells us as about market beliefs and risk preferences rather than about actual
probabilities.

10.4 Utility optimization

Markowitz's model of portfolio optimization has been very in�uential, but it is
rather limited by the assumption that we use standard deviation to measure
risk.

It makes considerably more sense to solve the problem of �nding a port-
folio that maximizes expected utility. If assets are normally distributed, this
will always give a portfolio on the Markowitz initial frontier. However, unlike
Markowitz's theory, utility optimization has a sound logical justi�cation what-
ever the distribution of asset returns.

To write down a utility optimization problem mathematically, we suppose
that the market contains n assets X1, X2, . . .Xn and we have a stochastic model
for the price of these assets.

There may be various constraints on our trading � for example we might
only be allowed to buy or sell a certain quantity of each asset. We suppose
that we have a utility function u : R −→ R which maps the �nal value of our
portfolio to our utility. We wish to �nd quantities q1, q2, . . . , qn of each asset

CHAPTER 10. OPTIMIZATION 18

to buy subject to our constraints in order to maximize our expected utility.

maximize E(u(

n∑
i=1

qiXn))

Since MATLAB has built in functions for solving minimization problems, we
rewrite this as the problem of minimizing the disutility.

minimize E(−u(

n∑
i=1

qiXn))

We recall that a utility function is a concave function. Popular examples
are:

� power utility with risk aversion parameter η

u(x) =

x1−η−1
1−η η 6= 1, x > 0

ln(x) η = 1, x > 0

−∞ x ≤ 0

� exponential utility with risk aversion parameter λ

u(x) = 1− e−λx

Note that power utility assigns in�nite negative utility to losing money. This
means that only trading strategies that have 0 chance of bankruptcy will ever
be considered. So using power utility implies prohibiting short selling.

MATLAB has a built in function fmincon for optimization with constraints.
Just as with fminunc, the main task we have to perform is to implement the
objective function. This means computing the expected utility of a portfolio
given the quantities of each asset.

Since computing expected utility is just a matter of computing an expecta-
tion, we can use all the techniques we have developed for computing expecta-
tions.

The most general approach we have seen in this course for calculating ex-
pectations it the Monte Carlo method. When applied to this problem, this
means we should: �rst simulate all our assets using Monte Carlo; then given
a vector of quantities of each asset we can compute the payo� of our portfolio
in each scenario; the mean payo� is an estimate for the expected utility. All
the theory of Monte Carlo integration holds in this case. For example: we can
estimate a con�dence interval using the central limit theorem; we can attempt
to improve accuracy using antithetic sampling; we can apply all the variance
reduction techniques described in the next chapter.

Occasionally one might also be interested in low dimensional problems. For
example you might be interested in choosing the optimal portfolio of options on
a single stock S with all the options maturing at time T . In this case we only

CHAPTER 10. OPTIMIZATION 19

need to consider the one underlying random variable ST . We can then compute
expectations using low-dimensional integration methods such as the rectangle
rule, Simpson's rule etc.

Assuming that we decide to use the Monte Carlo approach, this shifts the
main problem we must solve to be that of simulating all of the assets. We have
covered this extensively in this course. In particular:

� If the assets follow multivariate Brownian motion, they can be simulated
in one step using Cholesky decomposition.

� If the assets follow multivariate geometric Brownian motion, they can be
simulated in one step by simulating the log process and then exponenti-
ating.

� For general stochastic models, you can use the Euler scheme.

So far we have been discussing the problem of �nding optimal quantities for
a portfolio when one is not allowed to rebalance your portfolio at intermediate
times. We have been insisting that one follows a buy-and-hold strategy.

The general problem of �nding the optimal trading strategy when one is
allowed to rebalance the portfolio at each time step is an example of a �dy-
namic programming problem�. We have been considering �static programming
problems� where one does not dynamically change the portfolio.

Solving dynamic programming problems is very tricky. Although some nu-
merical methods exist, they are not always very e�ective, especially for large
problems. This is beyond the scope of the course. However, we will see that
one can use fmincon to help us �nd good solutions to dynamic programming
problems, so long as we don't insist on �nding genuinely optimal solutions.

Suppose that one has a �xed number of trading strategies: S1, S2, . . . , Sn.
One could then ask what would happen if one followed a linear combination of
strategies α1S1 +α2S2 + . . . αnSn. For example: strategy S1 might be �buy one
Google stock�. Then strategy α1S1 would be �buy α1 Google stocks�. A more
sophisticated strategy S2 might be �sell one call option at $100 and delta hedge
it�. Then α2S2 would require selling α2 call options for the same price and delta
hedging them.

In e�ect each investment strategy Si can be thought of as an asset in it's own
right, so there isn't any mathematical di�erence between optimizing a portfolio
over a set of strategies and optimizing over a set of assets.

We can solve for the optimal choices of αi using Matlab's built-in function
fmincon for constrained optimization.

To do this we will calculate N possible scenarios for the asset prices. We
will then compute the pro�t or loss of each strategy in each scenario. This will
give a vector x(i) of pro�t and loss for each strategy with rows corresponding to
each scenarios.

Note that it is crucial to use the same scenarios for each strategy. This is
because we want to compute the pro�t and loss of our entire portfolio for each

CHAPTER 10. OPTIMIZATION 20

scenario, so we clearly need to use the same scenarios for each strategy. The
pro�t and loss of the combined strategy in each scenario is∑

i

αix
(i)

Using the Monte Carlo approximation for the expected utility, we can ap-
proximate our optimization problem as

minimize
α

− 1

N

N∑
j=1

u(

n∑
i=1

αix
(i)
j)

(subject to any constraints)

In this formula, the j is running over N scenarios. i is running over the n
strategies.

To be concrete, let us assume that we have some constraints of the form

Aα ≤ b

and
l ≤ α ≤ b

and that our utility function is exponential utility with parameter λ.
Since the variable name x is rather over-used we will write pnlArray for the

corresponding variable in our MATLAB code. The rows of j will correspond to
scenarios, the columns to strategies. Thus the problem we wish to solve is:

minimize
α

− 1

N

N∑
j=1

u

(
n∑
i=1

αipnlArrayji

)
subject to Aα ≤ b

l ≤ α ≤ u

where u(x) = 1− exp−λx

(10.6)

So long as the utility function is smooth and concave, this will be a smooth
convex optimization problem.

With the problem written in this form, we can perform the optimization
using fmincon. This function behaves like fminunc in that you must provide an
objective function as the �rst parameter. However, it also allows you to specify
additional constraints in much the same way as we did with quadprog. The
resulting code to solve (10.6) shown below.

function [alpha] = optimizeUtility(...

 lambda, ...

 pnlArray, ...

 A, ...

 b, ...

CHAPTER 10. OPTIMIZATION 21

 lb, ...

 ub)

function d = expectedDisutility(alpha)

 pnl = pnlArray*alpha;

 u = mean(1 - exp(-lambda*pnl));

 d = -u;

end

nStrategies = size(pnlArray,2);

alpha0 = zeros(nStrategies,1);

alpha0(1)=1;

options = optimset('fmincon');

options = optimset(options,...

 'Display','off', 'Algorithm', 'active-set');

[alpha,~,exitFlag] = fmincon(...

 @expectedDisutility, alpha0, A,b,[],[],lb,ub,[],options);

assert(exitFlag>0);

end

Thus the problem of �nding the optimal proportions to invest in assets, or
of �nding the optimal linear combination of strategies can be reduced to the
problem of simulating pnlArray.

We summarize the key features of fmincon below:

� fmincon is MATLAB's function for constrained nonlinear optimization

� It takes similar parameters to both quadprog and fminunc.

� Just like fminunc you specify the objective function by creating an ap-
propriate MATLAB function. In this case we use the exponential utility
function to compute the objective.

� Just like quadprog you specify constraints using various matrices and
vectors such as A and b.

� fminunc also allows you to specify a general non linear constraint function
if necessary.

� The same considerations of centering, scaling, smoothness and non-uniqueness
apply to fmincon as apply to fminunc.

10.4.1 Application to hedging

As a concrete example, we will consider a market which a single underlying
assets X1. X1 is a stock and it follows geometric Brownian motion. X2 is a
call option on the stock. We know the payo� at maturity and we know that we

CHAPTER 10. OPTIMIZATION 22

have a customer who is willing to buy one call option today at the Black Scholes
price plus a small commission.

We have the following constraints on our trading:

(i) We can sell up to one unit of the call option at time 0. We can't buy the
call option. We can't trade in the call option at other times.

(ii) We can only trade in the stock at 20 evenly spaced time points. i.e.
continuous time trading is not possible.

This is a dynamic programming problem and calculating the optimal trad-
ing strategy would be rather di�cult. However we can consider the following
strategies:

(i) Strategy S1: delta hedging. Sell the customer the option, delta hedge at
each time time point (and then pay out as required option).

(ii) Strategy S2: no hedging. Sell the customer the option and don't bother
hedging.

(iii) Strategy S3: stop-loss hedging. Sell the customer the option, perform
stop-loss at each time time point.

(iv) Strategy S4: trade in the stock alone. Borrow money to buy the stock,
wait till maturity and then sell the stock.

We can then form linear combinations of strategies. You can think of the
strategy αiSi as having four traders and instructing trader i to follow strategy
i (scaled up or down by a factor of αi) and then see what the net e�ect is.

We have already seen how to reduce the problem of �nding the optimal
strategies to simply calculating the pro�t and loss of each strategy for each
scenario. For our concrete example, we did this for all the strategies except
investing in the stock the chapter on delta hedging, so we can simply re-use this
code. Thus computing the optimal combination of strategies can be left as an
exercise. You should use the following concrete market parameters:

� S follows the Black Scholes model with K = 100, S = 100, T = 0.5,
r = 0.03, µ = 0.2, σ = 0.2

� The customer is willing to pay 1.1 times the Black�Scholes predicted price
for the call option.

We also need to write our constraints explicitly. The customer is only willing
to buy up to one call option. We cannot sell call options. This gives constraints:

α1 ≥ 0

α2 ≥ 0

α3 ≥ 0

α1 + α2 + α3 ≤ 1

CHAPTER 10. OPTIMIZATION 23

We can write the last equation in matrix form as

(1 1 1 0)α ≤ 1

and the �rst three can be written together as the bound.
0
0
0
−∞

 ≤ α.
We can now solve the optimization problem by calling optimizeUtility

and passing in the appropriate pnlArray and constraint vectors and matrices.
The result will depend upon the choice of risk-aversion parameter λ

In Figure 10.2 we have plotted the values of each αi against the risk aversion
parameter λ. What we see is that for low risk-aversion, we actually prefer to
invest in the stock (which is a risky strategy) rather than sell the option and
delta hedge. For moderate risk-aversion we enjoy the relatively low-risk option
of selling an option at a mark-up and then hedging away the risk. For high risk
aversion, the fact that discrete time delta-hedging is still a risky strategy means
that we become reluctant to delta-hedge as λ increases.

This trick of �nding the optimal linear combination of some �xed set of
strategies rather than attempting to solve the full dynamic programming prob-
lem is called �the Galerkin method�. The idea of using it in this way comes
from the paper Koivu & Pennanen: �Galerkin methods in dynamic stochastic
programming�.

The combined strategy we get from this method is unlikely to be a per-
fectly optimal solution to the problem, but it is guaranteed to be at least as
good as any individual strategy. Thus the Galerkin method allows you to im-
prove performance by diversifying over strategies. This generalizes the notion
of diversi�cation for static trading strategies to dynamic trading strategies.

We should emphasize that this method can be applied equally well to static
trading strategies. This allows us to optimize static trading strategies even when
Markowitz's assumptions do not hold.

We have plotted the quantities of each strategy in our diagram. In a fuller
report, it is likely that you would want to report the expected utility of the
strategy. If you want to do this, note that the returned fval will not be an
unbiased estimate of the disutility of performing our strategy. To estimate the
utility correctly, you must try the portfolio on a new random sample of scenarios.
In general you should always test a strategy on out-of-sample data if you have
used a Monte Carlo method to �nd an optimal strategy.

Although we have found a static strategy, you could decide to re-run the
Galerkin method once a day to �nd a new strategy which incorporates the
information received since the previous time step. This would give an improve-
ment on using the Galerkin method once at the beginning and never looking at
how the market has changed.

CHAPTER 10. OPTIMIZATION 24

0 0.5 1 1.5 2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Lambda (risk aversion)

Q
u
a
n
ti
ty

 o
f
s
tr

a
te

g
y

How much of each strategy is optimal?

Delta hedge strategy

Stop loss strategy

No hedge strategy

Invest in stock

Figure 10.2: The coe�cients of the optimal Galerkin strategy for our hedging
problem

The power of this method is that it can be generalized easily. For example,
to include transaction costs in the model you would simply need to change the
computations of the pro�t and loss vectors to take this into account. Similarly,
you can easily use a di�erent model to generate stock paths. You can use any
model at all, or historic data, to simulate price paths and hence compute pro�t
and loss vectors. It is also simple to add in other strategies, assets etc.

In summary, although the Galerkin method does not �nd the true opti-
mal solution to the problem, it does allow us to �nd improved solutions easily.
Moreover it can be applied very generally.

10.5 Further Reading

The classic paper on Portfolio Selection is [3]. I have written my own geometric
account of the same theory [1].

The Galerkin method used here is based on [2].

10.6 Summary

We have seen how quadprog, fmincon and fminunc can be used to perform:

� Static portfolio optimization

� Model calibration

� Dynamic portfolio optimization (via the Galerkin method)

BIBLIOGRAPHY 25

Bibliography

[1] J. Armstrong. The Markowitz category. https://arxiv.org/abs/1611.

07741, 2017.

[2] Matti Koivu and Teemu Pennanen. Galerkin methods in dynamic stochastic
programming. Optimization, 59(3):339�354, 2010.

[3] Harry Markowitz. Portfolio selection. The journal of �nance, 7(1):77�91,
1952.

https://arxiv.org/abs/1611.07741
https://arxiv.org/abs/1611.07741

	Optimization
	Introduction
	Application: Modern Portfolio Theory
	An application with real data
	The efficient frontier

	Calibrating pricing models
	A Jump Diffusion model
	Calibrating a Jump Diffusion model
	Implementation
	Using fminunc
	Remarks on calibration

	Utility optimization
	Application to hedging

	Further Reading
	Summary

