1. (i) (a) State the Monte Carlo integration rule for a function $f:[a, b] \longrightarrow \mathrm{R}$ defined on a closed interval.
(b) Write the MATLAB code to integrate $e^{-x^{2}}$ over the interval [0,1$]$ using Monte Carlo integration.
(ii) The Box-Muller algorithm is an algorithm to generate independent normally distributed random numbers with mean 0 and standard deviation 1. One first generates uniformly distributed random numbers U_{1} and U_{2} between 0 and 1 . One then defines $Z_{1}=R \cos (\theta), Z_{2}=R \sin (\theta)$ where $R^{2}=-2 \log U_{1}$ and $\theta=2 \pi U_{2}$.
(a) Write a function boxMuller which takes a parameter n and returns an $2 \times n$ sample of independent normally distributed random numbers generated by the Box-Muller algorithm.
(b) How would you test this function?
(c) Using the MATLAB function chol or otherwise, show how you would generate a sample from a two dimensional multivariate normal distribution with mean 0 and covariance matrix

$$
\left(\begin{array}{ll}
1 & \rho \\
\rho & 1
\end{array}\right) .
$$

2. (i) You believe that the 5 stocks will have annual returns that follow a multivariate normal distribution with mean vector μ and covariance matrix Σ. You have $\$ 1000000$ to invest in these stocks and wish to achieve an expected return of 10% over the year. You wish to select a static portfolio, i.e. you must buy and hold. Express the problem of selecting the portfolio that meets these requirements with the minimum standard deviation as a quadratic programming problem
[30\%]
(ii) Explain what is meant by the efficient frontier and sketch its expected shape. Indicate in the same diagram how portfolios consisting of investments in a single stock would perform.
(iii) Suppose that we do not believe that the stocks have normally distributed returns, but that the 5 stocks follow some specific stochastic process. Explain how you could use Monte Carlo simulation to find the optimal static portfolio in terms of a utility function u.
[30\%]
(iv) You decide instead to pursue a dynamic investment strategy. Investment strategy S_{1} is to, once a week, invest all your money in the stock that had the most return in the previous week. Investment strategy S_{2} is to, once a week invest all your money in the stock that had the least return in the previous week. Assuming the stocks follow a known stochastic process and you have a known utility function u, how could you devise a trading strategy that is guaranteed to be at least as good as strategies S_{1} and S_{2} ? [20\%]
3. A trader has P units of cash and wishes to invest in a stock and a risk free bond to maximize their expected utility at time T. Their utility function is:

$$
u(x)=\left\{\begin{array}{cc}
\ln (x) & \text { if } x>0 \\
-\infty & \text { otherwise }
\end{array}\right.
$$

The trader believes the stock follows geometric Brownian motion:

$$
\mathrm{d} S_{t}=S_{t}\left(\mu \mathrm{~d} t+\sigma \mathrm{d} W_{t}\right)
$$

The bond has interest rate r. At time 0 the trader invests an amount Q of their wealth in stock and the rest in bonds.
(i) Write the expected utility as an integral
(ii) Write the MATLAB code to compute this integral by a Monte Carlo method
(iii) State a variance reduction technique you could use to improve the rate of convergence of the Monte Carlo method
(iv) $u(x)$ takes the value $-\infty$ when x is negative. What trading constraint does this imply?
(v) How could you use MATLAB to find the optimal value of Q ?
4. (a) What is meant by the Value at Risk of a portfolio?
(b) What is meant by the Expected Shortfall of a portfolio?
(c) If a portfolio has current value P and its value at time T is normally distributed with mean M and standard deviation σ write down a formula to compute the Value at Risk of this portfolio over time horizon T in terms of N^{-1}, the inverse cumulative distribution function of the standard normal distribution.
[20\%]
(d) Suppose that the market contains n assets. The current price of asset i $(1 \leq i \leq n)$ is P_{i}. At time T, the asset prices follow a multivariate normal distribution with means M_{i} and with covariance matrix Ω. Give a formula for the standard deviation of a portfolio consisting of α_{i} units of each asset i at time T.
[20\%]
(e) An investor has a budget B and wishes to invest this in a portfolio of the n assets in such a way as to make an expected profit of Q at time T while minimizing the portfolio's Value at Risk at time T at confidence level 95%.
(a) Write down a formula for the Value at risk of the portfolio at time T at confidence level 95%.
[10\%]
(b) Write down a formula for the cost of the portfolio.
[10\%]
(c) You can find the portfolio of minimum variance at a given cost using the function quadprog. How would you find the portfolio minimum expected shortfall?
[10\%]

