
Computing for Geometry and Number Theory

Object Oriented Programming in Python

Computing for Geometry and Number Theory

Using Sage

Here's how you create a 3× 3 grid of cubes in Sage

n=3

g = None

for x in range(0,2*n,2):

 for y in range(0,2*n,2):

 g = cube((x,y,0), color='blue') + g

g.show(aspect_ratio=[1,1,1])

Sage has lots of functions ready imported such as cube

g is an example of an object. It stores data and has functions

such as show.

We'll pretend in this lecture that 3d graphics classes don't

exist.

Computing for Geometry and Number Theory

Numpy

v1 = [0,1,2]

v2 = [3,4,5]

print(v1 + v2)

Prints [0,1,2,3,4,5]. The �x is

import numpy

v1 = numpy.array([0,1,2])

v2 = numpy.array([3,4,5])

print(v1 + v2)

Prints [3 5 7].

Computing for Geometry and Number Theory

Jupyter notebooks and matplotlib

We can create a new Jupyter notebook which is a bit like a

Mathematica worksheet.

%matplotlib inline

import matplotlib.pyplot as plt

x = numpy.array(range(0,100))/10

y = numpy.vectorize(lambda x : x**2)(x)

plt.plot(x,y,'b-.')

plt.show()

Use numpy.vectorize to take a function that operates on

scalars and turn it into one that operates on vectors.

matplotlib is full of tools to generate plots

Computing for Geometry and Number Theory

numpy and e�cient numerics

Use dot to multiply matrices (or in general tensor product).

Use * for element wise multiplication.

Python is rather slow. numpy calls low-level routines and so is

very fast.

For e�cient use of numpy try to write your computations as

manipulations of large arrays. This is called �array

programming�.

In array programming, you often want to perform component

by component calculations. For example, element wise

multiplication of matrices. This is what *

Computing for Geometry and Number Theory

Example: The Mandelbrot set

import numpy
import matplotlib.pyplot as plt
numpy.seterr('ignore') # ignore overflow

n = 1000
nSteps = 100

xMin, xMax, yMin, yMax=(-2,0.8,-1.2,1.2)
rValues = numpy.linspace(xMin,xMax,n)
iValues = numpy.linspace(yMin,yMax,n)*1j
R,I = numpy.meshgrid(rValues,iValues)
c = R + I
z = numpy.zeros((n,n))

for i in range(0,nSteps):
 z = z**2 + c
mandelbrot = numpy.logical_or(numpy.isnan(z), abs(z)>=2)

plt.matshow(mandelbrot, extent=[xMin, xMax, yMin, yMax])
plt.show()

Computing for Geometry and Number Theory

Objects and classes

A class is a type of object. For example Rectangle is a class,

a speci�c Rectangle is an object.

An object has associated data and functions.

The data available and the functions available are determined

by the class.

Example: a class Circle should say that all instances of this

class have a center and a radius. All circles should also have

functions area and circumference that return their area and

circumference.

Computing for Geometry and Number Theory

The circle class

class Circle2D:

 """Represents a circle"""

 def __init__(self):

 self.center = numpy.array([0,0])

 self.r = 1

 def circumference(self):

 return self.r * 2* math.pi

 def area(self):

 return (self.r ** 2) *math.pi

c = Circle2D();

c.r = 2

print(c.circumference())

Computing for Geometry and Number Theory

Writing classes

The �rst parameter of each function is called self and

represents the object on which the method has been called.

You use a . to access �elds and functions of an object.

There is a special function called __init__ which initializes

the object. The variables of the object are de�ned by assigning

values in the __init__ function.

Computing for Geometry and Number Theory

A line class

class Line2D:
 """Represents a single line segment joining two points"""

 def __init__(self, p1=numpy.array([0,0]), p2=numpy.array([1,1])):
 self.p1 = p1
 self.p2 = p2

 def draw(self):
 xVals = [self.p1[0],self.p2[0]]
 yVals = [self.p1[1],self.p2[1]]
 lines = plt.plot(xVals, yVals, 'k-')
 plt.setp(lines, linewidth=2)

 def length(self):
 p1 = self.p1;
 p2 = self.p2;
 return math.sqrt((p1[0]-p2[0])**2 + (p1[1]-p2[1])**2)

 def __str__(self):
 return 'A line from {} to {}'.format(self.p1, self.p2)

Computing for Geometry and Number Theory

Our line now knows how to draw itself using pyplot.

It is drawn as black and solid k-.

We can set additional properties of the lines in our plot using

setp.

To make lines easy to work with we add a __str__ function.

Computing for Geometry and Number Theory

Examples of usage

l1 = Line2D()

print(str(l1))

print('The length of the line is {}'.format(l1.length()))

l2 = Line2D()

l2.p1 = numpy.array([1,0])

l2.p2 = numpy.array([1,0])

print(str(l2))

print('The length of the line is {}'.format(l2.length()))

l1.draw()

plt.show()

Computing for Geometry and Number Theory

Enhancing the circle class

class Circle2D:
 # ... code from earlier
 def __str__(self):
 return 'A circle centre {} and radius {}'.format(self.center, self.r)

 def length(self):
 return self.circumference()

 def _pointAtAngle(self, theta):
 return [self.center[0] + math.cos(theta)*self.r,
 self.center[1] + math.sin(theta)*self.r]

 def draw(self):
 n = 100;
 theta = 0;
 last_point = self._pointAtAngle(theta)
 step = 2*math.pi/n;
 while theta< 2*math.pi:
 theta += step
 point = self._pointAtAngle(theta)
 line = Line2D()
 line.p1 = last_point
 line.p2 = point
 line.draw()
 last_point = point

Computing for Geometry and Number Theory

A Graphics2D class

class Graphics2D:
 """An object that groups together shapes that can then be displayed using matplotlib"""

 def __init__(self):
 self.elements = []

 def add(self, element):
 self.elements.append(element)

 def show(self, large=False):
 plt.axis('off')
 plt.axes().set_aspect('equal', 'datalim')
 for element in self.elements:
 element.draw()
 if large:
 # get current figure and set its size
 fig = plt.gcf()
 fig.set_size_inches(10, 10)
 plt.show()

 def length(self):
 ret = 0.0
 for element in self.elements:
 ret+=element.length()
 return ret

Computing for Geometry and Number Theory

Discussion

The Graphics2D simply gathers together a list of objects that

we can draw.

We assume that all the objects added have a draw method

which we call in the show function.

We assume that all the objects have a length method. We

call this in the length function to compute the total length of

all the lines in our image and hence estimate the total cost of

ink required to display the object on screen.

Computing for Geometry and Number Theory

Usage

g = Graphics2D()

g.add(l1)

g.add(l2)

c = Circle2D()

g.add(c)

print('Cost of ink {}'.format(g.length()))

g.show()

We have the makings of a useful 2-d geometry library.

Let's try to design a 3d geometry library...

Computing for Geometry and Number Theory

Isometry class

class Isometry:

 """Isometry of R^3"""

 def __init__(self):

 self._u = numpy.array([[1,0,0],[0,1,0],[0,0,1]])

 self._v = numpy.array([0,0,0])

 def transform_point(self, point):

 # Apply the transformation to the point

 return numpy.dot(self._u,point) + self._v;

 def transform_vector(self, vector):

 # Apply the transformation to a vector

 return numpy.dot(self._u, vector);

Computing for Geometry and Number Theory

Properties

class Isometry:

 # ... all the code above ...

 @property
 def u(self):
 """Unitary matrix"""
 return self._u

 @u.setter
 def u(self, value):
 value = numpy.array(value)
 product = numpy.dot(value,value.transpose())
 assert numpy.linalg.norm(product - numpy.identity(3))<0.0001, \
 "u must be a unitary matrix"
 self._u = value

 @property
 def v(self):
 """Offset vector"""
 return self._v

 @v.setter
 def v(self, value):
 self._v = numpy.array(value)

Computing for Geometry and Number Theory

Properties discussion

By convention a variable or method beginning with an

underscore is considered �private�. This means that the

programmer of the class reserves the right to change the name

or get rid of the variable without notice.

To generate a property type prop and tab or props and tab in

Pycharm

We have used properties to make sure that the matrix is

unitary and that numpy is used.

Functions can have attributes marked with the @ notation.

Some attributes are understood by Python, but you can add

your own if you want too.

Computing for Geometry and Number Theory

Example

i = Isometry();

i.v = [1,2,3] # converted to numpy automatically

i.u = [[2,0,0],[0,2,0],[0,0,2]] # causes error

Using properties and private variables makes your class easier

to use

Goal of object-oriented programming: write classes that are

easy for other people to use.

Computing for Geometry and Number Theory

A static method

 @staticmethod

 def rotation(x_angle=0.0, y_angle=0.0, z_angle=0.0):

 """Creates a transformation representing a rotation through

 the given angle about each axis in turn"""

 i = Isometry()

 r_z = numpy.array([[math.cos(z_angle), math.sin(z_angle), 0],

 [-math.sin(z_angle), math.cos(z_angle), 0],

 [0, 0, 1]])

 r_x = numpy.array([[1, 0, 0],

 [0, math.cos(x_angle), math.sin(x_angle)],

 [0, -math.sin(x_angle), math.cos(x_angle)]])

 r_y = numpy.array([[math.cos(y_angle), 0, -math.sin(y_angle)],

 [0, 1, 0],

 [math.sin(y_angle), 0, math.cos(y_angle)]])

 i.u = numpy.dot(numpy.dot(r_z, r_y), r_x)

 return i

Computing for Geometry and Number Theory

Static methods

Static methods are associated with the class itself and not

with any instance.

They don't have self as the �rst parameter

A static method that is designed to help create instances of a

class is called a factory method.

Computing for Geometry and Number Theory

The Viewpoint class

class Viewpoint:

 """Represents the position of an artist's eye and the

 coordinate system they are using for the canvas"""

 def __init__(self):

 self.eye = numpy.array([0,-1,0])

 self.canvasOrigin = numpy.array([0,0,0])

 self.canvasX = numpy.array([1,0,0])

 self.canvasY = numpy.array([0,0,1])

 def _perp(self):

 unnormalized = numpy.cross(self.canvasX, self.canvasY)

 return unnormalized/numpy.linalg.norm(unnormalized)

Computing for Geometry and Number Theory

Perspective drawing 101

Computing for Geometry and Number Theory

The Viewpoint class, continued

 def _project(self, coords_3d):
 """Project the point orthogonally onto the canvas,
 returns canvas coordinates of point and signed distance"""
 offset = coords_3d-self.canvasOrigin
 x_vec = self.canvasX
 y_vec = self.canvasY
 p = self._perp()
 distance = numpy.dot(offset, p)
 canvas_offset = offset - distance*p
 canvas_x = numpy.dot(canvas_offset, x_vec)/numpy.dot(x_vec, x_vec)
 canvas_y = numpy.dot(canvas_offset, y_vec)/numpy.dot(y_vec, y_vec)
 return numpy.array([canvas_x,canvas_y]), distance

 def coords_2d(self, coords_3d):
 eye_proj, eye_distance = self._project(self.eye)
 point_proj, point_distance = self._project(coords_3d)
 total_distance = eye_distance - point_distance
 canvas_point = -eye_proj * point_distance/total_distance + \
 point_proj*eye_distance/total_distance
 return canvas_point

Computing for Geometry and Number Theory

class Line3D:

 def __init__(self, p1=numpy.array([0,0,0]), p2=numpy.array([1,0,0])):

 self.p1 = p1

 self.p2 = p2

 def draw(self, viewpoint : Viewpoint, graphics: Graphics2D):

 c1 = viewpoint.coords_2d(self.p1)

 c2 = viewpoint.coords_2d(self.p2)

 l2 = Line2D(c1, c2)

 graphics.add(l2)

 def transform(self, transformation: Isometry):

 other = copy.deepcopy(self)

 other.p1 = transformation.transform_point(self.p1)

 other.p2 = transformation.transform_point(self.p2)

 return other

To help the auto-complete we are telling Python that the parameter

named viewpoint is of class Viewpoint etc. That's what the

colon is doing in the function parameters of draw. This is optional.

Computing for Geometry and Number Theory

De�ning a cube class

First compute all the edges of the unit cube

def _compute_unit_cube_edges():
 """Compute a list of pairs representing the edges
 in the unit cube """
 ret = []
 offsets = [numpy.array([i, j, k]) for i in range(0, 2) for j in range(0, 2) for k in range(0, 2)];
 for i1 in range(0, len(offsets)):
 for i2 in range(i1 + 1, len(offsets)):
 p1 = offsets[i1]
 p2 = offsets[i2]
 diff = p1 - p2
 if abs(numpy.dot(diff, diff) - 1.0) < 0.001:
 ret.append((p1, p2))
 return ret

Computing for Geometry and Number Theory

class Cube:

 """A cube with the given side length and edges

 in the directions v1, v2 and v1xv2"""

 _unit_cube_edges = _compute_unit_cube_edges()

 """Pairs of triples indicating the edges of a cube"""

 def __init__(self):

 self._origin = numpy.array([0,0,0])

 self._v1 = numpy.array([1,0,0])

 self._v2 = numpy.array([0,1,0])

 self._v3 = numpy.array([0,0,1])

 self.side_length = 1

 def _vertex(self, offsets):

 return self._origin + self.side_length*(\

 offsets[0]*self._v1 + offsets[1]*self._v2\

 + offsets[2]*self._v3)

_unit_cube_edges is called a static variable because there is only

one variable associated with the whole class. Add static variables at

the top of your class declaration.

Computing for Geometry and Number Theory

Cube class continued...

 def _edges(self):
 edges = []
 for p1,p2 in Cube._unit_cube_edges:
 v1 = self._vertex(p1)
 v2 = self._vertex(p2)
 line3d = Line3D(v1,v2)
 edges.append(line3d)
 return edges

 def draw(self, viewpoint: Viewpoint, graphics: Graphics2D):
 for edge in self._edges():
 edge.draw(viewpoint, graphics)

 def transform(self, transformation : Isometry):
 other = copy.deepcopy(self)
 other._v1 = transformation.transform_vector(self._v1)
 other._v2 = transformation.transform_vector(self._v2)
 other._v3 = transformation.transform_vector(self._v3)
 other._origin = transformation.transform_point(self._origin);
 return other

Computing for Geometry and Number Theory

cubes = []

r = Isometry.rotation(z_angle=-0.5)

n = 3

for x in range(0,n):

 for y in range(0,n):

 cube = Cube()

 cube.side_length = 0.35

 t = Isometry.translation([x,y,0])

 c1 = cube.transform(t)

 c2 = c1.transform(r);

 cubes.append(c2)

g = Graphics2D()

set the viewpoint quite far back and a little above ground

v.eye = numpy.array([0,-4,3])

for cube in cubes:

 cube.draw(v,g)

g.show(large=True)

Computing for Geometry and Number Theory

The Result

Computing for Geometry and Number Theory

Di�e Hellman Key Exchange

Di�e Hellman Key Exchange allows two people to devise a

shared secret that can be used for encrypting messages.

Alice and Bob agree on an Abelian group G with multiplicative

notation and a group element g .

Alice picks a random integer a.

Bob picks a random integer b.

Alice tells Bob ga.

Bob tells Alice gb.

They both now compute gab, their shared secret.

This is a �secret� because although exponentiation can be

performed quickly, �nding the logarithm to the base g in a group

can be hard.

Computing for Geometry and Number Theory

Multiplicative Group Elements

class ModInteger:

 """An integer mod p"""

 def __init__(self, p, value):

 self.p = p # the associated multiplicative group

 self.value = value % p

 if self.value<0:

 self.value += p

 def multiplicative_identity(self):

 return ModInteger(self.p,1)

 def __mul__(self, other):

 new_value = self.value*other.value

 return ModInteger(self.p,new_value)

Computing for Geometry and Number Theory

Remarks

This is called operator overloading.

I have implemented lots of operators in the ModInteger class,

but __mul__ is all that's important no

We now see how sympy works. It has overloaded + and * etc.

for symbolic objects.

Recall we typed x,y=var('x y')

This returns objects of type Symbol

Computing for Geometry and Number Theory

E�cient exponentiation

def exponentiate(g, exponent):

 """Raise a multiplicative group element to the given power"""

 result = g.multiplicative_identity()

 base = g

 while exponent > 0:

 if exponent % 2 == 1:

 result *= base

 exponent = exponent >> 1 # bitwise shift left

 base = g*g

 return result

The cool thing is this will work for di�erent groups. This is called

polymorphism. All we need is a multiplicative_identity

function and a * function (i.e. __mul__)

Computing for Geometry and Number Theory

Random Number Generation

class PoorRandom:

 """A pseudo random number generator, awful for cryptography"""

 def generate(self, n_bits):

 """Generate a random integer with the given number of bits"""

 return random.randint(0,2**n_bits-1)

class BetterRandom:

 """This is securely random"""

 def generate(self, n_bits):

 n_bytes = int(math.ceil(n_bits/8))

 random_bytes = os.urandom(n_bytes)

 int_value = int.from_bytes(random_bytes, byteorder='big')

 return int_value % (2**n_bits)

They both have the same generate function. They can be used

polymorphically.

Computing for Geometry and Number Theory

class DiffieHelmanExchanger:

 def __init__(self, base, random=BetterRandom(), n_bits=512):

 self.__secret = random.generate(n_bits)+1

 self.__public = exponentiate(base, self.__secret)

 def shared_secret(self, other_public):

 return exponentiate(other_public, self.__secret)

 @property

 def public(self):

 return self.__public

Computing for Geometry and Number Theory

Usage

def test_diffiehelman():

 p = 982451653

 base = ModInteger(p,126363)

 alice = DiffieHelmanExchanger(base)

 bob = DiffieHelmanExchanger(base)

 shared_secret1 = alice.shared_secret(bob.public)

 shared_secret2 = bob.shared_secret(alice.public)

 assert shared_secret1==shared_secret2

Computing for Geometry and Number Theory

Remarks on what we have achieved

Objects allow you to collect together data and functionality in

a convenient way

By creating objects that have methods in common we can use

polymorphism. This allows us to write functions which can act

equally well on di�erent kinds of input.

You can overload operators to make your objects really easy to

use. Don't go crazy though, it normally only makes sense for

maths objects.

Computing for Geometry and Number Theory

Implementing elliptic curves

class EllipticCurve(object):

 def __init__(self, a, b):

 self.a = a

 self.b = b

 self.discriminant = -16 * (4 * a*a*a + 27 * b * b)

 assert self.discriminant!=0

 def contains(self, x, y):

 return y*y == x*x*x + self.a * x + self.b

 def __str__(self):

 return 'y^2 = x^3 + %Gx + %G' % (self.a, self.b)

 def __eq__(self, other):

 return (self.a, self.b) == (other.a, other.b)

Computing for Geometry and Number Theory

Implementing elliptic curves

class EllipticCurve:
 """An elliptic curve and its associated group"""

 def __init__(self, a, b, n):
 assert n!=2
 assert n!=3
 self.n = n
 a = self.to_ring_element(a)
 b = self.to_ring_element(b)
 self.a = a
 self.b = b
 self.n = n
 self.discriminant = -self.to_ring_element(16) * \
 (self.to_ring_element(4) * a * a * a + self.to_ring_element(27) * b * b)
 assert self.discriminant!=self.to_ring_element(0) , 'Curve is not smooth'

 def to_ring_element(self, x):
 return ModInteger(self.n,x)

 def contains(self, x, y):
 return y*y == x*x*x + self.a * x + self.b

This represents the curve y2 = x3 + ax + b over the integers

mod n.

Computing for Geometry and Number Theory

class EllipticCurvePoint:
 """A point on an elliptic curve"""

 def __init__(self, curve, x=0, y=0, point_at_infinity=False):
 self.curve = curve
 self.x = curve.to_ring_element(x)
 self.y = curve.to_ring_element(y)
 self.point_at_infinity = point_at_infinity
 if not point_at_infinity:
 assert curve.contains(self.x,self.y)

 def multiplicative_identity(self):
 return EllipticCurvePoint(self.curve,point_at_infinity=True)

 def __eq__(self, other):
 if self.point_at_infinity:
 return other.point_at_infinity
 else:
 return self.x == other.x and self.y == other.y

 def __str__(self):
 return "(" + str(self.x.value) + "," + str(self.y.value) + ")"

Computing for Geometry and Number Theory

def __mul__(self, other):
 """This isn't computationally the most efficient multiplication method as it
 involves division"""
 if self.point_at_infinity:
 return other
 if other.point_at_infinity:
 return self

 x_1, y_1, x_2, y_2 = self.x, self.y, other.x, other.y

 if (x_1, y_1) == (x_2, y_2):
 if y_1 == self.curve.to_ring_element(0):
 return EllipticCurvePoint(self.curve,point_at_infinity=True)

 # slope of the tangent line
 m = (self.curve.to_ring_element(3) * x_1 * x_1 + self.curve.a) / \
 (self.curve.to_ring_element(2) * y_1)
 else:
 if x_1 == x_2:
 return EllipticCurvePoint(self.curve,point_at_infinity=True)

 # slope of the secant line
 m = (y_2 - y_1)/(x_2 - x_1)

 x_3 = m * m - x_2 - x_1
 y_3 = m * (x_3 - x_1) + y_1

 return EllipticCurvePoint(self.curve, x=x_3.value, y=-y_3.value)

Computing for Geometry and Number Theory

class ModInteger:

 # ... functions defined above ...

 def __add__(self, other):
 new_value = self.value+other.value
 return ModInteger(self.p,new_value)

 def __sub__(self, other):
 new_value = self.value-other.value
 return ModInteger(self.p,new_value)

 def __neg__(self):
 return ModInteger(self.p,-self.value)

 def __truediv__(self, y):
 '''Modular division, can be avoided'''
 g, a, b = mymath.euclidean_algorithm(y.value, self.p)
 return self * ModInteger(self.p,a)

 def __str__(self):
 return str(self.value) + " mod " + str(self.p)

 def __eq__(self, other):
 return other.value==self.value and other.p == self.p

Computing for Geometry and Number Theory

Remarks on elliptic curve cryptography

You might think that Abelian groups are simple, but in fact

the isomorphism between an Abelian group and the

�canonical� group in its isomorphism class may be very hard to

compute e�ciently.

This particular use of elliptic curves is susceptible to quantum

computing attacks. However, elliptic curves are used in more

modern and sophisticated schemes that should hopefully be

able to withstand quantum computing.

We have used polymorphism to implement a scheme that is

�pluggable� we can choose the group and the random number

generator. A realistic cryptography scheme must be pluggable

so it can be upgraded when needed.

Computing for Geometry and Number Theory

Exercises

How you would compute the greatest common divisor of two

polynomials in Python? The code will take too long to write,

sketch the idea.

Change the area and circumference functions of circle so

that they are properties. In other words you should be able to

type circle.circumference.

Write a Cylinder class. Just draw (say) a 20 sided polygonal

prism.

Create a stylised 3D image of Battersea Power station (a

rectangular box with four cylinders on each corner).

Write an AdditiveGroup class. This should represent the

integers under addition with a given modulus but using

multiplicative notation. Check that Di�e Hellman key

exchange works. Note that this is not very useful!

