
Computing for Geometry and Number Theory

Last week

Last week: We learned how to do simple procedural

programming Python.

for i in range(0,10):

 print i

def fibonacci(n):

 a = 1

 b = 1

 for i in range(1,n):

 a,b=b,a+b

 return a

This week: �ow of control.

Computing for Geometry and Number Theory

Errors

You can create an error using raise

You can recover from an error using try and except

You can execute some code whether an error occurs or not

using finally

def debit_account(account, amount):

 if amount>account:

 raise ValueError("You have insufficient funds")

 return account-amount

account = 100; amount = 20

try:

 account = debit_account(account, amount)

 print("Account debitted")

except ValueError:

 print("Failed to debit account")

finally:

 print("An attempt was made to debit from the account")

Computing for Geometry and Number Theory

Using Errors

Never just print out a message in response to an error.

Handling errors is for expert programmers. Don't bother

yourself.

There are di�erent types of error, e.g. ValueError or simple

Exception. For �normal� errors it doesn't matter too much

what exception type you use as no-one will be able to handle

the error anyway

Make heavy use of assert

Finally clauses are designed for situations like database

connections or �les that you must close when you have

�nished with them

Computing for Geometry and Number Theory

Generators

Generators provide a cool way of returning a sequence of values

without needing to hold the entire sequence of values in memory

def is_fibonacci_2(x):

 for fib in generate_fibonacci():

 if fib==x:

 return True

 if fib>x:

 return False

def generate_fibonacci():

 a = 1

 b = 1

 while True:

 yield a

 a,b=b,a+b

Computing for Geometry and Number Theory

Working with iterators

Working with iterators. You can use iter to turn a generator into

something you can iterate through with next()

def test_generate_fibonacci():

 all_fib = iter(mymath.generate_fibonacci())

 first_six = []

 for i in range(0,6):

 first_six.append(next(all_fib))

 nose.tools.assert_equals(first_six, [1, 1, 2, 3, 5, 8])

Computing for Geometry and Number Theory

Ending iteration

def my_range(start, end):

 i = start;

 while i<end:

 yield i

 i+=1

 raise StopIteration()

Usage example

r = iter(my_range(1,6))

try:

 while (True):

 print(str(next(r)))

except StopIteration:

 pass

The pass statement does nothing. Use it when a statement is

required by Python, but you don't want to do anything.

Computing for Geometry and Number Theory

The list function

For �nite iterators, you can use the list function

print(range(0,6))

print(list(range(0,6)))

Lists use up more memory than iterators. Clearly

list(mymath.generate_fibonacci())

is never going to work. Iterators are great for, say, reading lines of a

large �le.

Computing for Geometry and Number Theory

Break

def is_prime_1(n):

 for x in range(2, n):

 if n % x == 0:

 return False

 return True

An alternative

def is_prime_2(n):

 x = 2

 while True:

 if x>=n:

 return True

 if n % x == 0:

 break

 x+=1

 return False

Computing for Geometry and Number Theory

Break and else

Another alternative

def is_prime_3(n):

 for x in range(2, n):

 if n % x == 0:

 break

 else:

 return True

 return False

Computing for Geometry and Number Theory

Continue

The continue statement.

def find_factors(n):

 factors = []

 for x in range(1, n+1):

 if not(n % x == 0):

 continue

 factors.append(x)

 return factors

Computing for Geometry and Number Theory

Try and else

You can use else with try too

try:

 debit_account(account, amount)

except ValueError:

 print('Could not debit account')

 raise

else:

 print('Debitted account')

raise without any arguments re-raises an exception. If you insist

on catching exceptions and printing them out, you should normally

re-raise them.

Computing for Geometry and Number Theory

Working with �les

You must call open to start writing to a �le. This opens a

�stream�

You must call close when you have �nished with the �le.

f = open('testfile.txt','w')

f.write('This is a line\n')

f.write('This is another line\n')

f.close()

Computing for Geometry and Number Theory

Gotcha

Errors can occur at any time. They typically happen when you

least expect them

f = open('testfile.txt','w')

i = iter(range(1,6))

f.write(str(next(i)))

f.close()

Computing for Geometry and Number Theory

Fix it with �nally

Fix it with �nally (or even better...)

f = open('testfile.txt','w')

try:

 i = iter(range(1,6))

 f.write(str(next(i)))

finally:

 f.close()

Computing for Geometry and Number Theory

Fix it with with

Fix it with with (stet)

with open('testfile.txt','w') as f:

 i = iter(range(1,6))

 f.write(str(next(i)))

With works with data objects that have a close function

Computing for Geometry and Number Theory

Tips

raise is good, assert is even better

yield is good

I'd avoid except except with iterators

break, continue aren't so useful

else with for isn't so useful

else with try isn't so useful

finally with try is useful, but with is better.

Computing for Geometry and Number Theory

Bible Study

Download the Bible from

http://www.gutenberg.org/cache/epub/10/pg10.txt and

save it as 'bible.txt'.

 line_count = 0

 with open('bible.txt','r') as f:

 for line in f:

 line_count = line_count+1;

 print('There are '+str(line_count)+' lines in the Bible');

Computing for Geometry and Number Theory

Exercises

Use s.split to �nd all the words in a string s. How many

words are there in the Bible?

What is the �rst line in the Bible containing the word

Beelzebub? Use in to see if a string contains another string.

How often does the word God appear in the Bible? Use lower

to check how often the word God or god appears.

Write a function bible_words() which uses yield to create

an iterator through all the words in the Bible. Why might it

not be a good idea to create a list of all the words in the Bible?

Use len to �nd the length of a string. What is the longest

word in the Bible? To answer this, write a function

longest_item which �nds the longest item coming from any

iterator.

What does your function longest_item do if it is given an

empty iterable? What should it do?

Computing for Geometry and Number Theory

Finding God

The best way to do this is using a 'regular expression' from the

package re. We compile a pattern and can then check if our

pattern matches an string.

import re

def countGodRe():

 pattern = re.compile('\W*God\W*')

 god_count = 0

 with open("bible.txt", "r") as f:

 for line in f:

 for word in line.split():

 if pattern.match(word):

 god_count=god_count+1

 print ('The word God appears '+str(god_count)+' times.')

Computing for Geometry and Number Theory

Regular expressions

. means any character, * means zero or more times so

.* Station matches "Paddington Station" and "Charing

Cross Station"

\w means any "word character", i.e. a letter or a numbers. So

\w* Station matches "Paddington Station" but not

"Charing Cross Station"

\W means any "non=word character", i.e. anything other than

a letter or a number such as a punctuation mark.

\W*God\W* matches "God" and "God," and "'God!'" but not

"Godless"

Regular expressions are a powerful tool for manipulating text that

are well worth learning if you ever need to perform some repetitive

search and replace tasks.

Computing for Geometry and Number Theory

Objects and Classes

f is a �le object with useful functions like write, readline,

next

line is a string object with useful functions like split and

lower

pattern is a regular expression pattern object with usefull

functions like match

Most of the time you use a . to access a function. Python

also provides some shorthands, for example the command

'god' in line is equivalent to line.__contains__('god').

We will learn how to write our own classes of object next week.

Computing for Geometry and Number Theory

Optional and named parameters

 def print_number(number, base=10, units='', currency=''):

 assert (base<=10)

 print(currency, end='')

 digits = []

 if number==0:

 digits.append('0')

 while number>0:

 digit = number % base

 digits.append(str(digit))

 number = number//base

 for digit in reversed(digits):

 print(digit, end='')

 print(units, end='')

 print() # inserts newline

e.g. mymath.print_number(100,units='kg',base=8)

Computing for Geometry and Number Theory

Optional and named parameters

def print_number(number, base=10, units='', currency=''):

 assert (base<=10)

 print(currency, end='')

 digits = []

 if number==0:

 digits.append('0')

 while number>0:

 digit = number % base

 digits.append(str(digit))

 number = number//base

 for digit in reversed(digits):

 print(digit, end='')

 print(units, end='')

 print() # inserts newline

e.g. mymath.print_number(100,units='kg',base=8)

Computing for Geometry and Number Theory

Multiple argument lists

Occasionally it is useful to write functions that take multiple

arguments

def concatenate_strings(*strings, sep='', include_last=False):

 ret = ""

 for i in range(0,len(strings)):

 s = strings[i]

 ret +=str(s)

 if i<len(strings)-1:

 ret +=sep

 elif include_last:

 ret +=sep

 return ret

print(concatenate_strings(1,2,3,4,sep='+'))

Computing for Geometry and Number Theory

Unpacking argument lists

Multiple arguments are very convenient if the user hasn't yet

created a list and saves them the bother. However, it can be

annoying if you already have a list.

four_numbers = [1,2,3,4]

concatenate_strings(four_numbers,sep='+')

The code above doesn't do what we want. Note the * in the code

below.

four_numbers = [1,2,3,4]

concatenate_strings(*four_numbers,sep='+')

Computing for Geometry and Number Theory

List comprehensions

squares = [x**2 for x in range(10)]

n = 10

triads = [(a**2-b**2, 2*a*b,a**2+b**2) \

 for a in range(1,n) for b in range(1,n) if b<a]

This is pretty slick

Computing for Geometry and Number Theory

Map and lambda functions

def square_it(x):

 return x**2

l = range(1,100,2)

sl = list(map(square_it, l))

print(sl)

sl = list(map(lambda x: x**2, l))

print(sl)

You can apply map to anything you can iterate over, i.e. anything

you can use in for statements.

Computing for Geometry and Number Theory

Comparison with Mathematica

List comprehensions are very like the Table command

Mathematica has an If function and a For function

Computing for Geometry and Number Theory

Sets

Use {} for sets

Set comprehensions work as you would expect

The function set works

The in statement works as you would hope to see if an

element is in a set

squares = {x**2 for x in range(-10,11)}

assert(len(squares)==11)

assert(16 in squares)

assert(17 not in squares)

Computing for Geometry and Number Theory

Dictionaries

dict = { 'horse':'hairy quadruped',

 'bird':'feathery biped',

 'man':'biped without feathers' }

for key,value in dict.items():

 print('A {} is a {}'.format(key,value))

dict['fish']='legless thing, but not a plant'

for key in dict:

 print('A {} is a {}'.format(key,dict[key]))

Dictionaries allow you to look up and store values quickly

Computing for Geometry and Number Theory

Global variables

bill = 0

def expensiveFunction():

 global bill

 bill +=100

def printBill():

 global bill

 print('Your total bill is {}'.format(bill))

for i in range(0,100):

 expensiveFunction()

printBill()

Computing for Geometry and Number Theory

Summary

We have seen the procedural programming style today

The functions we have written are the �procedures�

There are a large number of ��ow of control� statements

You know exactly what tasks the computer performs and in

what order

The values of variables changes often, in strict functional

programming the values of a variable never change

We have seen that Python has good support for unit testing.

Use it.

Computing for Geometry and Number Theory

Exercises - Page 1

Implement the sieve of Eratosthenes in Python. Write as few

lines of code as possible if you want to show o�.

Write a unit test for the above.

Write a recursive function of fibonacci that uses a global

dictionary to be e�cient

Write a function concatentate that takes two iterable objects

and returns a single iterable object that joins them together.

Enhance concatentate so that it takes an arbitrary number

of iterable objects and returns a single iterable object that

joins them together. itertools.chain is the built in way to

do this.

Computing for Geometry and Number Theory

Exercises - Page 2

Create a table of the frequency of use of each letter in the

Bible.

Write a function merge that takes two iterable objects that

each return numbers in order and creates a single ordered

iterator. Note that I found this pretty challenging myself.

Implement a merge sort by recursion. (Of course, Python has

the sorted function you want already. My merge sort

implementation is 100 times slower than this)

