
Computing for Geometry and Number Theory

Python

Python is a computer language (as is Wolfram). You can use

it for lots more than mathematics.

It is named after its inventor, Monty Python (Wolfram is

named after its inventor, Stephen Wolfram)

PyCharm is an integrated development environment that

makes Python more enjoyable to code

Sage is a maths environment rather like Mathematica where

you can do maths using Python.

SageMathCloud is a web service that runs Sage for you

https://cloud.sagemath.com

https://cloud.sagemath.com

Computing for Geometry and Number Theory

Using Python Interactively

Open PyCharm

Create a project called PythonLecture1

Select the unlabelled button in the bottom left hand corner

(obviously)

Select Python console

Run the following commands

a = 3

b = 4

c = a**2 + b**2

print(c)

a,b = 5,12

print(c)

Computing for Geometry and Number Theory

Writing a Python script

Right click on �PythonLecture1�, choose New

Select Python �le

Call it triads.py

Insert the following code, then right click the �le and Run it

for m in range(1,100):

 for n in range(1,m):

 a = m**2 - n**2

 b = 2*m*n

 c = m**2 + n**2

 assert a**2 + b**2 == c**2

 print("m="+str(m)+", n="+str(n))

 print("Triple "+str(a)+", "+str(b)+", "+str(c))

print('That\'s enough')

Computing for Geometry and Number Theory

Observations

range(1,10) starts at 1 and ends at 9

You need to type * for multiplication

== tests equality

assert means much the same as in Mathematica

You can use " to create strings

You can use + to concatentate strings

You us for with in and don't forget the :

You group code using tabs (which should be 4 characters wide)

You can use ` to create strings too

You can use \ to escape special characters

With scripts your code is saved. The console is interactive.

Use round brackets to call functions

Computing for Geometry and Number Theory

Maths functions

To use basic maths functions you can do any one of the following

import math

root2 = math.sqrt(2)

import math as m

root2 = m.sqrt(2)

from math import sqrt

root2 = sqrt(2)

from math import *

root2 = sqrt(2)

Computing for Geometry and Number Theory

Symbolic calculations

To perform symbolic calculations use the package sympy. First we

must install it.

Select File->Settings->Project->Project Interpreter

Click the +

Type in sympy and click Install Package

Now try running the following

import sympy

x, y, theta = sympy.var('x y theta')

x = sympy.cos(theta)

y = sympy.sin(theta)

print(sympy.simplify(x**2 + y**2))

Computing for Geometry and Number Theory

Observations

There is more than one sin function in Python, a numerical

one and a symbolic one.

You must use sympy.var to declare which variables should be

treated symbolically.

Question: how would you avoid typing sympy so often?

Question: why aren't math and sympy automatically imported?

Some functions, such as var appear to return multiple values.

Computing for Geometry and Number Theory

Tuples

A tuple is an immutable data structure consisting of a number

of elements

1,2,4,8 is a tuple of four elements

() is the empty tuple

(7,) is a tuple of length 1

Use [] to access elements of a tuple, starting at 0

triple = 3, 4, 5

assert triple[0]**2 + triple[1]**2==triple[2]**2

emptyTuple = ()

assert len(emptyTuple)==0

tripleOfTriples= (3,4,5),(5,12,13),(9,40,41)

#triple[2]=7

singlet="vest", #try removing the comma

len(singlet)

Computing for Geometry and Number Theory

Lists

A list is a mutable data structure consisting of a number of

elements

[1,2,4,8] is a list of four elements

[] is the empty list

[1] is a list of one elements

Use append to add to a list

Use [] to access elements of a list, starting at 0

squares = []

for i in range(1,100):

 squares.append(i**2)

s = 0

for i in range(0,len(squares)):

 s = s+squares[i]

print(s)

Computing for Geometry and Number Theory

Iterating

Note that we started at 0 and ended at len when looping. Here's a

better approach.

s = 0

for square in squares:

 s += square

print(s)

Note the +=. This is often quite convenient.

soliloquoy = """HAMLET: To be, or not to be--that is the question:

Whether 'tis nobler in the mind to suffer

The slings and arrows of outrageous fortune

Or to take arms against a sea of troubles

And by opposing end them."""

for c in soliloquoy:

 print (c)

Computing for Geometry and Number Theory

Slicing

Slicing strings

str = "0123456789"

print(str[7])

print(str[1:8])

print(str[1:-1])

print(str[1:])

print(str[:8])

print(str[:])

Slicing lists

vec = [0,1,2,3,4,5,6,7,8,9]

print(vec[7])

print(vec[1:8])

vec[3:9] = ["..."]

print(vec)

Computing for Geometry and Number Theory

Slicing

S l i c e M e

0 1 2 3 4 5 6 7

-7 -6 -5 -4 -3 -2 -1

str = "SliceMe"

print(str[0:5])

print(str[3:0])

Computing for Geometry and Number Theory

Functions

A function to numerically solve a quadratic equation

def solve_quadratic(a,b,c):

 discriminant = b**2-4*a*c

 x1 = (-b + math.sqrt(discriminant))/(2*a)

 x2 = (-b - math.sqrt(discriminant))/(2*a)

 return x1,x2

a = 2; b = 3; c = -7

y1,y2 = solve_quadratic(a,b,c)

print('Solutions are {} and {}'.format(y1,y2))

for x in y1,y2:

 print(a*x*x+b*x+c)

Computing for Geometry and Number Theory

Using nosetests with PyCharm

Install the package nose

Select File->Settings->Tools->Python Integrated

Python Tools->Default Test Runner->nosetests

Nose is a package which makes it easy to test your Python code.

Actually, one should probably use nose2 these days, but there aren't

any signi�cant di�erences between di�erent Python testing

packages, so I haven't updated these slides.

Computing for Geometry and Number Theory

Unit tests

In �le mymath

def solve_quadratic(a,b,c):

 discriminant = b**2-4*a*c

 x1 = (-b + math.sqrt(discriminant))/(2*a)

 x2 = (-b - math.sqrt(discriminant))/(2*a)

 return x1,x2

In �le mymath_tests

import mymath

import nose.tools

def test_solve_quadratic():

 a = 2; b = 3; c = -7

 x1,x2 = mymath.solve_quadratic(a,b,c)

 for x in x1,x2:

 nose.tools.assert_almost_equals(a * x * x + b * x + c, 0.0)

Computing for Geometry and Number Theory

Unit tests

The single biggest idea in computer programming of the 1990s

Took a decade (or more) to fully catch on

All your code should be tested

All tests must be fully automated

All your tests should be run regularly at the click of a button

Write small functions with tests

Any well-designed code should be testable. That is part of

what well-designed means.

A unit test tests a small piece of code such as a single function

A system test tests the whole software system

A smoke test tests things super�cially work OK

Human beings are unreliable and expensive.

Computing for Geometry and Number Theory

Be test-infected

Write your tests before you write your code

If you ever detect a bug in your code, write a test that

identi�es the bug so it can never happen again

Don't write scripts, write tests

Computing for Geometry and Number Theory

If statements

def victor(x,y):
 """Return the index of the victor, or None"""
 if x=='paper':
 if y=='paper':
 return None
 elif y=='scissors':
 return 1
 elif y=='stone':
 return 0
 else:
 raise Exception('Invalid value '+str(y))
 elseif x=='scissors':
 # you get the picture
 # ...

We have a docstring describing what the function does. Click

ctrl and hover over a function call to see the docstring.

You can generate errors with raise Exception. Don't just

print things out!

There is a special data item called None

Computing for Geometry and Number Theory

Logical operators

def victor(x,y):

 if (x=='paper' and y=='paper') or \

 (x=='stone' and y=='stone') or \

 (x=='scissors' and y=='scissors'):

 return None

 # you get the picture

This example shows that you can break a statement up over

multiple lines using \

Computing for Geometry and Number Theory

While statements

def is_fibonacci(x):

 n=1

 fib = 0

 while fib<x:

 fib = fibonacci(n)

 if fib==x:

 return True

 n += 1

 return False

A while loop continues until the test statement is False

True and False

Computing for Geometry and Number Theory

Miscellany

The function abs computes the absolute value

The symbol % means modulo. print(7 %3)

The symbol // means �or division. print(7//3)

The function math.floor computes the integer below

The function math.ceil computes the integer above

PyCharm will auto complete for you when you type math.

Computing for Geometry and Number Theory

Exercises

Put all your answers in mymath.py or mymath_tests.py

1 Write a function fibonacci that returns the n-th Fibonacci

number

2 Write a test for this function

3 Write a function fibonacciNumbers that returns the �rst n
Fibonacci numbers

4 Write a test for this function

5 Write a function that computes the greatest common divisor

of two integers a and b

6 Write a test for this function

7 Write a function that allows you to �nd x and y such that

xa+ yb = gcd(a, b).

8 Guess what question you are being asked. Answer it.

9 What is wrong with the ordering of these questions?

