
Computing for Geometry and Number Theory

Revision

What does /@ mean?

What does /. mean?

What does

#^2 & /@ {1,2,3,4,5}

compute?

Computing for Geometry and Number Theory

Mathematical discussion

Dimension counting suggests that counting lines on cubics is a
�sensible� problem. We reduced it to 4 equations in 4
unknowns.

�sensible� means that we can reasonably expect the number of
solutions to remain constant even if we perturb the cubic. To
be precise our dimension counting is strong evidence that we
can apply the implicit function theorem to show that the
number of solutions remains constant for small perturbations.

It's easy (exercise?) to check the details in this special case
and show that the relevant di�erential in the implicit function
theorem is indeed onto and so cubics near the Clebsch cubic
also have 27 lines.

So our result isn't such a special case as it seems.

Computing for Geometry and Number Theory

Existential Varieties

A variety over some �eld F is de�ned by the intersection and
union of zero sets of polynomials.

V = {(z1, . . . zn) : (p1(z) = 0& p2(z) = 0 . . .) || . . .}

The expression after the colon could be called �an expression
in the language of polynomial sets�

What happens if we extend our language to allow uses of the
symbols ∀ and ∃? For example:

V = {(z1, z2) : ∃z3 s.t. z21 = z3& z22 = z3}

The expression on the right is �an expression in the language
of �elds�. We could sets de�ned in this way �existential
varieties�. For example the space of cubic curves containing 27
lines would be an existential variety.

Computing for Geometry and Number Theory

Quanti�er Elimination

Theorem

(Tarksi) Over an algebraically closed �eld F , existential varieties
and varieties are the same thing. Moreover there is a simple

algorithm for converting an expression in the language of �elds to

one which doesn't contain the quanti�ers ∀ or ∃.

Mathematica has implemented this algorithm:

Reduce[Exists[z3, z1^2 == z3 && z2^2 == z3], {z2, z3}]

See Basu Pollack and Roy for a rigorous treatment (it's not a
di�cult proof)

Computing for Geometry and Number Theory

Corollaries

Corollary

(Thom) Varieties de�ned as non-singular intersections of the zero

sets of polynomials of �xed degree over C are di�eomorphic. For

example all non-singular cubics curves are di�eomorphic. As are all

non-singular cubic surfaces. As are all non-singular degree 8

surfaces . . .

Corollary

(Cayley�Salmon�Schlä�i) The generic cubic surface contains 27
lines and intersect according to the Schlä�i graph. In fact this

result is true if you replace �generic� with non-singular but that

isn't such an immediate corollary.

Computing for Geometry and Number Theory

Exercises

8 Plot the intersection of the lines on the cubic as a graph. The
Schlä�i graph is usually de�ned as the graph obtained by taking 27
points and joining them if the corresponding lines on the cubic do

not exist. I �nd the complement of the Schlä�i graph more
intuitive. Plot whichever you prefer. Place the 27 vertices evenly
spaced on a circle. Search Wikipedia for Schlä�i graph to see what
your answer whould look like.

8 Pick two disjoint lines `1 and `2 on the Clebsch cubic surface.
Choose a parameterization of each of these lines (i.e. a map
φi : C→ `i . Now de�ne a map ψ mapping C× C to the Clebsch
cubic surface by ψ takes (u, v) to the third intersection of the line
through φ1(u) and φ2(v) with the cubic surface. Compute ψ
explicitly and hence generate a parameteric plot of the cubic.

Computing for Geometry and Number Theory

Discussion

The last exercise demonstrates that non-singular cubic surfaces
are rational. All we need is two skew lines on a cubic and we
can construct a map from C× C which is �almost onto�.

If one understands a little about rational maps and the blow
up construction, this map we have constructed can be seen as
a biholomorphism of CP1 × CP1 blown up at �ve points with
the cubic surface.

Since CP1 × CP1 is just the blow up of CP2 at one point, we
have pretty much shown that all non-singular cubic surfaces
are given by blowing up CP2 at 6 points. This gives rise
straightforwardly to a complete classi�cation of cubic surfaces.

We've shown how you can use Mathematica to actually
compute the isomorphism explicitly once you're given the cubic
surface.

Computing for Geometry and Number Theory

Pattern matching

Pattern matching

We've seen pattern matching before:

solveQuadratic[a_, b_, c_]:= (-b + Sqrt[b^2 - 4 a c])/(2a)

normSq[{x_,y_}] := x^2 + y^2

Computing for Geometry and Number Theory

Pattern matching

Di�erentiation

diff[Sin[x_], x_] := Cos[x]

diff[Cos[x_], x_] := -Sin[x]

diff[f_ + g_, x_] := diff[f, x] + diff[g, x]

diff[f_ g_ , x_] := diff[f, x] g + f diff[g, x]

Here we haven't attempted to de�ne di� all at once, we've simply
given instructions on how to di�erentiate certain patterns.

Computing for Geometry and Number Theory

Pattern matching

Di�erentiation

diff[Sin[x_], x_] := Cos[x]

diff[Cos[x_], x_] := -Sin[x]

diff[f_ + g_, x_] := diff[f, x] + diff[g, x]

diff[f_ g_ , x_] := diff[f, x] g + f diff[g, x]

diff[c_ , x_] := 0 /; Element[c, Reals]

This last rule is harder to read - it says D[c,x] is zero if c is simply a
real number

Computing for Geometry and Number Theory

Pattern matching

Exercises

8 Try out the di�erentiation example. Check it works for
3Sin[x] + 5Cos[x] plus any other tests you'd like to try.

8 Extend the de�nition so you can di�erentiate f (x)g(x) and just
x . Check your answer with xn, ex and xx .

8 Implement the chain rule. You'll need to use the ReplaceAll
function (well that was how I did it anyway)

8 See how you get on trying to implement an integration
function - don't devote your life to this!

Computing for Geometry and Number Theory

Pattern matching

Storage and indices

What happens if you omit an underscore?

f[x]:=x^2

f[y]:=y^3

This is pretty irritating a lot of the time. But it can be useful for
lookup. For example:

colour[blackberry] = purple

colour[banana]=yellow

basisVector[1] = {1,0,0};

basisVector[2] = {0,1,0};

basisVector[3] = {0,0,1};

Computing for Geometry and Number Theory

Pattern matching

Subscripts

What happens if a function is not de�ned? Mathematica just
leaves it alone.

You can use x [1], x [2], x [3] to mean x1, x2, x3. x [1] is then
just as good a symbol as any other

clebschCubic = Total[Table[x[i]^3, {i, 1, 5}]]

Computing for Geometry and Number Theory

Pattern matching

The Schlä�i graph through pattern matching

Create a list containing the following symbols a[i] (1 ≤ i ≤ 6),
b[i] (1 ≤ i ≤ 6), c[i , j] (1 ≤ i < j ≤ 6)

Write a function intersectQ that uses pattern matching to
decide if two of these symbols represent intersecting lines. The
rules are:

the ai are skew

the bi are skew,

ai intersects bj if and only if i 6= j
ai intersects cjk if and only i ∈ {j , k}
bi intersects cjk if and only i ∈ {j , k}
cij intersects ckl if and only if {i , j} ∩ {k , l} = ∅.

Assuming it is true that the lines on a cubic surface can be
labelled so that there intersections follow these rules, plot the
complement of the Schlä�i graph. Use the function Text to
label the vertices.

Computing for Geometry and Number Theory

Pattern matching

Discussion

The sets of lines ai and bi are called a �double six�. There are many
ways of labelling the lines on a cubic surface to match the above
rules. Find at least one for the Clebsch cubic surface.

Computing for Geometry and Number Theory

Recursion

Recursion

The Fibonacci sequence gives a classic example of recursion

fibonacci[0] := 1

fibonacci[1] := 1

fibonacci[n_] := fibonacci[n - 1] + fibonacci[n - 2]

Table[fibonacci[n], {n, 1, 10}]

A function is allowed to call itself. Of course, there's a danger that
you'll get stuck in an in�nite loop, but fortunately you'll normally
quickly get a �stack over�ow� telling you that something has gone
wrong.

stackOverflow[n_] :=

 stackOverflow[n - 1] + stackOverflow[n - 2]

stackOverflow[1]

Computing for Geometry and Number Theory

Recursion

E�ciency

The algorithm we've just implemented is very ine�cient. Try
computing the 30-th Fibonacci number.

The problem is that fibonacci forgets its previous working.

Suppose computing the n-th Fibonacci number takes un
�computer operations�

u0 = 1, u1, un = un−1 + un−2 + 1

Computing for Geometry and Number Theory

Recursion

The Mathematica idiom for storing values

fibonacci[n_] :=

 fibonacci[n] = fibonacci[n - 1] + fibonacci[n - 2]

fibonacci[0] = 1;

fibonacci[1] = 1;

fibonacci[999]

Notice that Mathematica's pattern matching is intelligent. It
prefers the most speci�c pattern. When it can't decide on this basis
the order in the �le becomes important with early de�nitions taking
precedence.

Computing for Geometry and Number Theory

How Mathematica Works

How Mathematica Works

Everything in Mathematica is stored as a tree of function calls

Use FullForm to see Mathematica's internal representation:

FullForm[(u + v) (x + y)]

Times[Plus[u,v],Plus[x,y]]

Use TreeForm for a prettier view.

TreeForm[(u + v) (x + y)]

Everything in Mathematica is stored as a list of lists where the
�rst element of the list is labelled.

Computing for Geometry and Number Theory

How Mathematica Works

Parts of an expression

You can access parts of an expression using [[]] or the function
Part

Part[Circle[{x, y}, r], 1] gives . . .

Circle[{x, y}, r][[1]] gives . . .

Circle[{x, y}, r][[1]] gives . . .

Circle[{x, y}, r][[1, 2]] gives . . .

There is nothing special about lists other than the shorthand {}.

FullForm[{1, 2, 3}] gives List[1,2,3]

Computing for Geometry and Number Theory

How Mathematica Works

Head

To access the tag name at the beginning use part 0 or Head

, yCircle[x, r][[0]] gives . . .

Head[Circle[x, y, r]] gives . . .

Many functions work equally well with any expression as they do
with lists.

Length[Circle[x, y, r]]

The function AtomQ is sometimes handy to see if an expression is a
leaf.

Computing for Geometry and Number Theory

How Mathematica Works

Big Idea

The big idea is that Mathematical expressions are simply data
structures which have a hierarchical structure.

Write some good code for pattern matching and working with
lists and you'll have a powerful Maths library in no time.

(Your users will probably want some pretty features like *
instead of Times)

8 Write a function to recursively print out the contents of an
expression. Use Print to print the Head and the atoms.

Computing for Geometry and Number Theory

How Mathematica Works

Solution

printRecursively[x_] := Print[x] /; AtomQ[x];

printRecursively[x_] :=

 Module[{}, Print[Head[x]]; printRecursively /@ x;]

printRecursively[(u + v) (x + y)]

Computing for Geometry and Number Theory

How Mathematica Works

Evaluation

Mathematica automatically processes expressions by
performing a sequence of rules

The most obvious rule is to replace the value of a function
de�nition with the value of the function

What is FullForm[(3*5) + (6*7)]?

FullForm[Hold[(3*5) + (6*7)]] is closer to what we
want.

Hold prevents Mathematica performing its usual processing.

Computing for Geometry and Number Theory

How Mathematica Works

Evaluation

Mathematica automatically processes expressions by
performing a sequence of rules

The most obvious rule is to replace the value of a function
de�nition with the value of the function

What is FullForm[(3*5) + (6*7)]?

FullForm[Hold[(3*5) + (6*7)]] is closer to what we
want.

Hold prevents Mathematica performing its usual processing.

Computing for Geometry and Number Theory

How Mathematica Works

HoldAll

Some functions tell Mathematica NOT to apply rules to their
arguments

i = 7;

Table[i^2, {i, 1, 10}]

If Mathematica was treating this like a normal function this
would be equivalent to: Table[7, {7, 1, 10}]

If we ask for Attributes[Table] we get

{HoldAll, Protected}

Computing for Geometry and Number Theory

How Mathematica Works

Attributes

Attributes of a function modify Mathematica's processing rules

Attributes[Times]

{Flat, Listable, NumericFunction, OneIdentity, -

Orderless, Protected}

Flat means that when nested uses of Times occur, they should
be �attened. It means much the same as associative. Compare
the following:

FullForm[Hold[x*(y*z)]]

FullForm[x*(y*z)]

Computing for Geometry and Number Theory

How Mathematica Works

Other attributes

Orderless means that the order of parameters is
unimportant, so Mathematica should reorder them in a
standard order - essentially alphabetic order.

Times[y, x] gives xy

Protected means that normal users shouldn't be able to
accidentally change the de�nition.

OneIdentity means . . .

Listable means . . .

Computing for Geometry and Number Theory

How Mathematica Works

SetAttribute

Use SetAttributes to set an attribute.

8 Extend diff so it works on Matrices.

Computing for Geometry and Number Theory

How Mathematica Works

Back to HoldAll

Many Mathematica functions have the HoldAll attribute and it can
be confusing

Clear[i];

expression = i^2;

range = {i, 1, 10};

Table[expression, range]

produces an error. The �x is to use Evaluate which will perform
the rules on an expression even if it is stored inside a Hold.

Table[Evaluate[expression], Evaluate[range]]

Hold[Evaluate[3*5 + 6*7]]

Computing for Geometry and Number Theory

How Mathematica Works

Sorting a list

Sorting a list is the most basic algorithm taught to computer
scientists

It's the computer scientist version of the Euclidean algorithm.

Try to come up with a good algorithm. To make it easy, I've
printed some cards for you to sort as a team as quickly as
possible.

Computing for Geometry and Number Theory

How Mathematica Works

A sort algorithm

sort[{}] := {}

sort[{x_}] := {x}

sort[l_] := Module[{mid, lower, upper, midPoint},

 midPoint = l[[1]];

 lower = Select[l, # < l[[1]] &];

 mid = Select[l, # == l[[1]] &];

 upper = Select[l, # > l[[1]] &];

 Join[sort[lower], mid, sort[upper]]

]

We're making heavy use of anonymous functions here (# and &).
We want to select only elements less than/equal to/greater than
l[[1]]. This is a good example of how anonymous functions can
improve your code.

Computing for Geometry and Number Theory

How Mathematica Works

E�ciency

exampleValues = Table[Random[], {i, 1, 100000}];

Timing[sort[exampleValues]]

Timing[Sort[exampleValues]]

The �rst value output by Timing is the time taken. As you will see,
Mathematica's Sort function is MUCH faster than our sort
function. This is the sense in which Mathematica code is slow: it's
built in functions are implemented in C++ and are very fast, one's
own code can be very slow.

Computing for Geometry and Number Theory

How Mathematica Works

Order of magnitude

Let's do a log-log plot of number of points in our list against the
time taken to process it:

nValues = Table[10^i, {i, 3, 5, 0.25}];

sortRandom[n_] := sort[Table[Random[], {j, 1, n}]];

timeSortRandom[n_] := Timing[sortRandom[n]][[1]];

plotPoints = {Log[#], Log[timeSortRandom[#]]} & /@ nValues;

ListPlot[plotPoints, Joined -> True, Mesh -> All,

 AspectRatio -> Automatic]

The best you can do for a single threaded sorting algorithm is order
n log n, so I think we can be pretty happy with this.

Computing for Geometry and Number Theory

How Mathematica Works

Divide and conquer

The sort algorithm is one instance of the general idea of using
�divide and conquer� to speed up algorithms

Recursion gives a convenient way of writing divide and conquer
algorithms

Undergraduate computer scientists spend a lot of time studying
these kinds of algorithms and related data structures. They
provide the building blocks of many sophisticated programs.

Computing for Geometry and Number Theory

How Mathematica Works

Functional programming

We have now seen how to program in the �functional�
programming style

Functional programming is using functions, recursion, Map,
lists and pattern matching to get results

Some of you may have used procedural languages where for

loops do most of the work. You can write for loops in
Mathematica, but it's not good style.

Computing for Geometry and Number Theory

How Mathematica Works

Summary

:=, =

\@

\.

&

_, \;

Computing for Geometry and Number Theory

How Mathematica Works

Exercises

8 Rewrite the sort algorithm so that it does not use anonymous
functions

8 Write a recursive program to draw a tree structure. Ideally
make it look like a real tree.

8 Write a recursive program to create a 3D model of a
Romanesco cauli�ower.

Figure:

	Pattern matching
	Recursion
	How Mathematica Works

