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Abstract. Large scale information systems are increasingly structured around
flexible workflows of services providing a range of functionalities that are con-
figured to suit particular needs, yet this flexibility can bring a lack of organisation
in the ways in which services are combined. Particular system structures bring
different benefits to an application in terms of efficacy and efficiency but some-
times need to reorganise as their circumstances change. In this context, this paper
seeks to establish techniques for reorganisation that preserve particular topologies
in support of their recognised benefit for the target applications. The contributions
are twofold: first, a general vision of reorganisation of defined structures, in which
structure is preserved but efficient and efficacy if optimised; and second, a spe-
cific solution for the case of pipelines, reorganising to optimise key application-
specific metrics, while preserving structure. The paper is thus the starting point
for a more ambitious general programme of research.

Keywords: Self-organisation, reorganisation, pipelines

1 Introduction

Large scale information systems are increasingly structured around workflows of ser-
vices providing a range of functionalities that are configured to suit particular needs. In-
deed, the construction of combinations of services to form systems satisfying application-
specific demands offers a flexibility that is often missing in rigid system structures.
However, this flexibility can bring a lack of organisation in the ways in which services
are combined. For example, many applications are naturally hierarchal in nature and are
thus best suited to a hierarchical organisation of services. Other applications will sug-
gest alternative structural arrangements, some of which may correspond to well-known
organisations, and some of which may be ad hoc instead.

Now, the suitability of an organisational structure to an application in this sense
lies in the efficacy and efficiency of the structure in supporting the particular goals of
the system. This may be in terms of minimising load, in maximising throughput, or in
other such objectives to be optimised. This paper recognises the value of such organi-
sational structures yet seeks to provide a means of enabling them to reorganise as their
circumstances change. Indeed reorganisation is known to be a valuable technique in
the armoury of modern computing systems, motivated in part by increasing interest in
areas such as autonomic computing. Importantly, however, rather than allow arbitrary
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ad hoc structures to emerge, this paper takes a different standpoint in seeking to estab-
lish techniques for reorganisation that preserve particular topologies in support of their
recognised benefit for the target applications.

The contributions of this paper are twofold. First, the paper presents a general vi-
sion of reorganisation of defined structures, in which structure is preserved but efficient
and efficacy optimised. Ultimately, this will lead to a library of techniques for structure-
preserving reorganisation across different topologies, and potentially a means to trans-
form between topologies as needs demand. Second, the paper instantiates this broad
vision with a specific solution for the case of pipelines, reorganising to optimise key
application-specific metrics, while preserving structure. It is thus the starting point for
the more ambitious general programme of research.

The paper is structured as follows. The next section motivates the paper as whole
by presenting a motivating scenario and a task allocation model setting out the problem
we address. Then, in Section 3, we describe the main contribution of the paper, the
techniques for reorganising, both in general and in the specific case of pipelines. Section
4 presents the initial results obtained with our techniques, before reviewing related work
in Section 5, and concluding in Section 6.

2 Task Allocation and Execution Model

2.1 eScience Scenario

To motivate our work, we introduce a scenario based in the domain of eScience. Con-
sider a large, potentially global network of electronic resources (such as devices, or
even data) that are owned by different institutions, all willing to pool their individual
resources in order to gain access to a larger set of shared resources that would otherwise
be unavailable to them. All resources are networked, with some performing computa-
tionally intensive tasks like the analysis of large scientific data sets such as resulting
from the Large Hadron Collider (LHC) at CERN [5, 6]. Processing this data takes con-
siderable time, and we want to process it as quickly as possible. If there is only one
task that cannot be processed concurrently across multiple machines, then the optimal
solution is for it to be processed on the fastest machine.

Now, suppose there are two research centres, each using a particle accelerator (PA),
and a laser research apparatus (LRA) respectively, and both generate large data sets.
Such data needs to be stored and then processed, but neither research facility has the
ability to do so. However, there are two data storage units, (DSU1 and DSU2), that are
each capable of storing 100 units of data, and two supercomputers, (SC1 and SC2),
that are capable of processing data, with SC1 processing data faster than SC2. This is
summarised in Table 1.1

If PA and LRA simultaneously perform experiments, respectively producing 50 units
and 120 units of data, PA can store its data at DSU1, but LRA stores 100 units at DSU2
and 20 units at DSU1, since neither DSU has the capacity for 120 units. PA’s data is then
passed to the fastest supercomputer, SC1, for processing and, since SC1 is now busy,
LRA’s data is passed to SC2 despite it being slower. This is illustrated in Figure 1.

1 The capabilities of PA and LRA are not relevant, so are omitted.
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Fig. 1. Visualisation of the eScience scenario

Computational Devices
SC1 SC2 DSU1 DSU2 PA LRA

Services Data Storage N N Y Y N N
Processing Power Y Y N N N N

Hardware Specs Memory - - 100 100 - -
Processing Power Faster Slower - - - -

Table 1. The capabilities and resources available in the eScience scenario

2.2 Task Model

In this scenario we require the different computational entities to undertake various
tasks (storing data or processing it), and to pass these tasks to others if the entities
themselves cannot execute them. The key task of this scenario is to analyse data. In
this sense, a task satisfies a particular requirement, where that requirement amounts
to a specification of the services needed to perform that task, and the time for which
each such service is needed. Tasks may also be decomposed into subtasks (potentially
with ordering constraints): for example, to analyse data it must first be stored and then
processed.

In our example, DSU1 and SC1 offer services for processing and storing data. The
details of such services are unimportant for our purposes, and we simply specify the
set of all services, S = {s1, s2, . . . }. Clearly, in order to fulfil tasks, services must
perform some work. A requirement is a specification of the services and the amount
of work needed from each in order to achieve the task. For simplicity, we assume that
all services provide the same amount of work, or effort, per unit of time, and we use
time as a simple proxy for an amount of work. In this way, a service may be required
for 3 units of time, while another is required for 6 units of time. A requirement r thus
takes the form (s, reqt), where s 2 S is the required service, and reqt 2 Z+ is the
amount of time for which it is required. The enactment of a service to satisfy a task’s
requirement is encapsulated as a service instance, in the form, si = (t, s), where s is
the service satisfying task t. Since tasks are decomposable, as indicated above, they are
represented in a tree structure, as in Figure 2, where each vertex indicates a subtask,
and each line an ordering constraint between subtasks. These constraints mean that t1
must be completed before t2 and t3 can begin, but once t1 is completed, t2 and t3 can
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Fig. 2. Example of a task hierarchy.

be executed concurrently. To represent this additional complexity, a task takes the form
t = (r, SUBT) where r is a requirement, and SUBT is a set of subtasks.

Given all this, devices such as PA or DSU1 are represented as agents, that use their
services SERV to execute tasks that are in its list of tasks, TASKS. Each agent has a
capacity cap 2 Z+ limiting the number of service instances they can run concurrently,
which represents a limit of resources such as memory in a data storage unit. As each
service is used, a service instance is created and added to a’s set of current service
instances SI, such that |SI|  cap. Once all of a task’s requirements have been met,
the service instance will be removed, allowing more to be created. Finally, an agent has
a set CON of connections with other agents. An agent a, therefore, is represented as
a = (SERV, TASKS, cap, SI, CONN).

2.3 Task Allocation

Given our basic model above, we can now consider how agents are allocated tasks. We
adopt a simple model with the assumption that time is in discrete units, with a number
of rounds, in each of which an agent a undertakes two major activities: it manages
its TASKS list; and it executes tasks. In managing its tasks, a first places any received
tasks in its TASKS list. Then, in order of arrival, each task t in the list is reviewed: if
t’s requirements can be satisfied directly by a, and a has capacity to do so, a creates a
service instance si to execute t, adds si to SI, and removes t from the TASKS list; if a
can satisfy t’s requirements, but does not currently have capacity to do so, then the task
remains on the list, waiting for capacity to become available; finally, if a cannot satisfy
t’s requirements, then it must find another agent to which to delegate the task.

Once a has finished managing its TASKS list for the current round, it begins execut-
ing tasks, each of which is represented as a service instance in SI. As indicated above,
tasks require a service for a specified number of rounds (reqt in the task’s requirement),
so a service instance persists until reqt has elapsed, at which point the service instance
is removed. If a completed task has subtasks, each subtask is added to the TASKS list so
that they can be allocated or executed on the next round. In our model, each agent con-
nects to a set of other agents, which are the only agents with which it can communicate,
giving an organisational structure. Then, if an agent wants to find a service to which to
allocate tasks, it performs a depth first search across the organisational structure until
an appropriate service is found. Clearly the links between agents determine how easily
an agent can find another agent offering a required service.
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2.4 System Metrics

While any system can be designed to achieve different goals, in this paper we assume
the most obvious goal of executing tasks as quickly as possible. In this subsection,
therefore, we complete the description of our model by introducing the ways in which
we are able to measure the performance of our system, first through three main metrics:
load, throughput, and messages, and subsequently through ways of measuring other
relevant systems properties.

The load of an agent is specified as (|SI|/cap) ⇥ 100, where |SI| is the number of
service instances. The result is a percentage, indicating the degree of usage from full
capacity at 100% to complete idleness at 0%. An agent is overloaded when its load is
100% and there are tasks in its TASKS list for which it satisfies the requirements. An
agent’s throughput is the number of tasks it finishes executing each round. The system’s
throughput is the total number of tasks that finish being executed at each time step. This
value is suboptimal if tasks are waiting to be executed by one overloaded agent, but
there are other agents that can execute these tasks immediately instead. Finally, when
trying to locate a service to allocate a task that an agent cannot perform itself, the
agent sends query messages to others for the required service. Similarly, when a task is
actually allocated, another message is sent by message. If the organisational structure
is well designed, then agents will be close to the required services, thus sending fewer
messages.

In addition to these three main metrics for performance, we can consider others that
may be useful in what follows. For example, an agent’s task arrival rate is the number
of tasks that it receives each round, its executable task arrival rate is the number of tasks
that it is capable of executing it receives each round, and its allocation task arrival rate
is the number of tasks that it cannot execute it receives each round, and so must allocate
elsewhere. We can also consider how frequently each service type is used, as service
frequency.

3 Adapting Organisational Structure

The model just described specifies how tasks may be allocated and executed in dis-
tributed systems exemplified by our eScience scenario. However, since the structural
organisation of the system is determined by the connections between agents, which in
turn constrain the way in which tasks are allocated, we may not have an efficient sys-
tem, or not as efficient as may be possible. For example, load (tasks requiring allocation
and execution) may be poorly distributed across the agents (and their services) as a re-
sult. In consequence, this section describes a set of techniques that allow a system to be
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reorganised in such a way as to improve its efficiency in line with the metrics described
above.

Importantly, we want techniques that adapt a system so that efficiency is improved
while also preserving the organisational structure the system is designed to exploit.
These techniques might apply to pipelines, hierarchies or other structures, each of which
has particular characteristics. In this respect we seek to provide a general form of reor-
ganisation, a template that can be instantiated for different structures, while at the same
time drawing them all together in a coherent whole. In this paper we therefore discuss
aspects of the general tools, but focus in particular on the case of simple pipelines.

In what follows, each reorganisation technique is designed around a two-stage pro-
cess, where the first stage is concerned with analysing the organisational structure and
determining what links between agents should be added to or removed, while the sec-
ond stage ensures that the adaptation (the addition or removal of links) preserves the
particular structure or topology. In this paper, due to space constraints, we illustrate the
general concept by means of one of the simplest topologies, pipelines, but seek to apply
this template for reorganisation to other structures, in the same way, proposing changes
to the links between agents, while preserving the overarching structure.

3.1 Analysing Structure

The first stage in reorganisation thus requires an analysis of an organisational structure
in order to populate a change set, C, in which each element c = (a1, a2, action) 2
C indicates a change to be made, where a1 and a2 are agents that are either con-
nected, or have the potential to be connected, and action is an element in the set
{create, remove}. Now, since an organisational structure is, in essence, a graph de-
fined by the agents (or vertices) involved and the connections (or edges) between them,
the initial analysis uses graph metrics to find potential problems in the organisational
structure, as follows.

By convention, a vertex is denoted by v such that v 2 V where V is the set of all
vertices, and an edge is denoted by e such that e 2 E where E is a set of all edges. The
end points of an edge are always two vertices, so an edge e is a vertex pair e = (v1, v2).
We thus represent a graph as G = (V, E) [8]. Similarly, we denote a multiagent system
MAS = (A, C), where A is the set of all agents and C is the set of all connections
between the agents in A. In a graph G = (V, E), a path is a set of ordered vertices
P = {v1, v2, . . . } such that each vertex is connected to the next, in order, and the same
vertex does not appear twice. A path is a traversal of a graph.

Given this description, we can introduce some standard graph metrics that may be
used to undertake our initial analysis. First, the degree of connectivity, or the degree, of
a vertex v is the number of edges that v is a part of, and is denoted by deg(v). Second,
the length of a path is the number of edges that it traverses. The shortest path is the path
with the least number of edges, and the length of the shortest path between v1 and v2 is
the distance between v1 and v2, denoted by d(v1, v2).

Now, one of the key properties of an agent is its ability to interact with others. In
this context, Freeman reviews different concepts of centrality [2], which is accepted
as playing a significant role in influence in social networks and on the efficiency of
group behaviour. For example, in Figure 3, an intuitive assessment suggests that m and
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p are central. According to Freeman, this is for three reasons: first, m has direct contact
with the largest proportion of the system; second, m is closest to all other nodes in the
system; and third, m and p are in control of much information that may pass between
nodes [2]. Different measures of centrality can be defined: degree centrality, closeness
centrality, and betweenness centrality.

Degree Centrality states an agent’s centrality based on its degree, compared to the
degree of all other agents. The higher the value the more central the agent. The degree
centrality of an agent m is Cd(m) = deg(m).

Betweenness Centrality is concerned with the position of an agent in relation to
others. An agent m is between a pair of agents n and q if it appears in the shortest
path connecting n and q. Betweenness centrality is the number of agent pairs that m
appears between: the higher the value, the more central. In Figure 3, agent m is between
seven agent pairs, while agent p is between six pairs, so agent m is the most central.
Calculating m’s betweenness centrality is more complex when there is more than one
shortest path between two agents, because m will no longer be between the two agents
all of the time. If there are two shortest paths between n and q, and m appears in only
one, then there is 0.5 chance that a message between n and q will pass through m. More
formally, m’s betweenness centrality can be measured by the number of shortest paths it
appears in �nq(m), divided by the total number of shortest paths �nq , as in Equation 1.

CB(m) =
X

m 6=n 6=q2A

�nq(m)

�nq
(1)

Closeness Centrality gives an agent m’s centrality based on how close it is to the rest of
the system. We can use Dijkstra’s algorithm to find the shortest spanning tree rooted at
agent m, consisting of the shortest path from m to all other agents. Agent m’s closeness
centrality is the the sum of the length of all of these shortest paths as in Equation 2; the
lower, the value the more central.

CC(m) =
X

n2A\m

d(m,n) (2)

3.2 Proposed Changes to Structure

The above metrics provide a means of understanding certain properties of our organisa-
tional structures so that we are able to consider the changes that should be made. In the
previous discussion, we have considered metrics in general, and continue this general
analysis in this section in which we consider two simple ways of modifying a structure
to give greater efficiency.

First, we seek to reduce the distance between an agent and the service it uses most
frequently. Here, for each agent m, a depth-first search is used, starting at that agent,
and searching through the entire organisational structure to find the closest instance of
the service s that m most frequently uses, but that m and its neighbours do not offer. If
the closest agent n offering service s is more than a specified number of hops away from
agent m, then an element is added to the change set recommending a direct connection
between m and n: C = C [ {(m,n, create)}.
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Second, we seek to decrease the load on overloaded agents by decreasing their
closeness centrality, and moving them away from the centre of the system. Here, each
agent’s load is measured. If at least one agent has a load of 100%, with tasks waiting
in its TASKS list that it has the capability to execute, then the system contains at least
one overloaded agent. In response, each agent’s centrality value is calculated and over-
loaded agents are moved one step away from the centre of the system, as follows. An
overloaded agent m finds the neighbour n with the highest centrality, and the neighbour
p with the lowest centrality. It also finds q, a neighbour of p with the lowest centrality
out of p’s neighbours. A new connection is then created between m and q, while the
connection between m and n is removed. The resulting elements in the change set are:
C = C [ {(m, q, create), (m,n, remove)}.

3.3 Preserving Structure

To this point, the techniques introduced, and indeed the methodology for doing so, have
been presented in the most general way. However, this last part of the process requires
us now to instantiate our work with the specific organisational structure or topology
that constrains the changes proposed. In fact, as indicated in the introduction to the
paper, the aim of our work is to facilitate reorganisation by building up a library of
techniques and constraints in a stepwise fashion across different topologies, and then
to generalise these instances to provide a generic model. This paper describes the early
stages of this programme of work, and is restricted, as a first step, to pipelines, one of
the simplest possible topologies, in order to illustrate the general approach. Subsequent
work will consider application to hierarchies, matrices and other structures, but that is
not considered in this paper.

In a pipeline, all of the vertices are lined up sequentially. Each vertex has a degree
of connectivity of exactly 2, except for the vertices at the ends of the pipeline, which
have exactly 1. In a multi-agent system, this translates to each agent having a maximum
of two connections. If we wish to reorganise a pipeline, then we cannot change the
number of connections, but we can change the connections themselves as long as we
preserve the pipeline properties. The only legal change to such a structure is thus the
positioning of each agent. Note that to do this we have only two possible changes from
the change set: remove a connection and create (or add) a connection. However, if we
remove a connection from a pipeline, we cannot preserve the structure since it breaks the
pipeline irretrievably. For this reason, we do not entertain this possibility for pipelines
(though we will do so in future work for other topologies), and focus here only on
creating connections (though, confusingly, we will see that this will require removal of
connections as part of the process of structure preservation).

To illustrate, suppose we have a pipeline with five agents, as shown in Figure 4 part
1, and a change set in which the first element states that a connection should be created
between agents p and n. If this connection is created, then the organisational structure
is no longer a pipeline. To ensure that the pipeline is maintained, the following changes
must also be added to the change set: remove connections between m and p, q and p, and
k and n, and create connections between m and q, and k and p. With all these changes, a
connection can be created between p and n, while maintaining a pipeline. In fact, this is
one way to achieve the result we aim for, but the same can also be achieved by adding



Towards A General Model of Organisational Adaptation: Pipelines 9

k n qm p

k n qm p

k p qn m

1.

2.

3.

Fig. 4. An example of enacting a change in a pipeline.

the connections elsewhere. For ease of exposition, we will not consider the alternatives
in this paper, but note that they lead to the same outcome.

More formally, the change set is altered as follows: for each (x, y, create) 2 C, x
is moved next to y. As just noted, this is possible in different ways; here we do so by
removing agent x, then reinsert x next to y in just one way.

Remove Agent Removing x from a pipeline depends on x’s position in the pipeline. If
x has one connection then it is at the end of the pipeline, and so its only connection
is removed. If x has two connections then it is in the middle of the pipeline, so both
of its connections are removed. Then, a connection is created between x’s previous
neighbours, ensuring that the pipeline is maintained. In both instances, the result is
a pipeline, excluding the single disconnected agent x.

Reinsert Agent Reinserting x next to y similarly depends on y’s position. If y has one
connection then it is at the end of the pipeline, so a connection is created between
x and y, and x is now at the end of the pipeline. If y has two connections then it is
in the middle of the pipeline, so we must decide on which side of y to reinsert x. To
do so we randomly select one of y’s neighbours, z, remove the connection between
y and z, and create connections between x and y, and x and z. In both instances, the
result is a pipeline where x is directly connected to y.

As indicated above, we do not consider the removal of connections due to the con-
straints of a pipeline, since this cannot be done without irretrievably breaking the struc-
ture, and these changes are therefore simply eliminated from the change set.

4 Evaluation

Given these techniques designed to reorganise pipelines to increase the performance of a
system, we undertook a series of experiments to show their impact and indeed whether
they are successful. In order to provide a baseline for comparison, we experimented
with random changes to the structure as well as the reducing distance and decreasing
load changes.

As described above, the changes involved in pipelines are to move agents from one
position in a pipeline to another. Whenever reorganisation is triggered in the random
approach, 10 agents are randomly selected and moved next to another randomly selected
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agent that it is not currently connected to. Moving an agent a to an agent b consists of:
removing the connection between a and each of its neighbours; creating a connection
between each of a’s old neighbours; removing the connection between b and one of
its neighbours; and creating connections between a and b, and between a and b’s old
neighbour.

In what follows, we describe our results from simulating the task allocation and
execution model described above. The simulation consisted of 100 agents in a pipeline
with a random initial structure, where the agents receive tasks, and allocate or execute
them. The simulation consisted of 2000 rounds, in each of which a number of tasks
are randomly generated, and allocated to agents at random, regardless of the services
offered by agents. The number of tasks generated at each time step varies according
to the Poisson distribution with a mean task arrival rate of 10. On each round, agents
follow the behaviour described in Section 2.3, after which reorganisation is potentially
triggered: in rounds 0–499, there is no reorganisation, but in rounds 500–2000 reorgan-
isation is triggered each time. Each simulation was repeated 15 times, with all results
being averaged over these multiple runs.

4.1 Task Allocation and Execution

Throughout the simulation, the number of tasks that each agent is allocated and executes
is counted, and the mean number across all agents plotted over time. Figure 5(a) shows
how many tasks are allocated on average at each time step, and moreover that there is
little variation between all three techniques, which each display a small increase in the
number of tasks allocated. Random reorganisation shows a slightly larger increase, but
the difference is minimal.

Figure 5(b) shows how many tasks are executed on average at each time step, and
again that there is little variation between the reducing load and decreasing distance
techniques. However, we see better performance from random reorganisation.

In our model, locating services and sending a task between agents takes no time,2
so the number of tasks executed increases because, rather than waiting on an over-
loaded agent’s TASKS list, after reorganisation individual tasks are allocated to agents
with spare capacity. In turn, this increases the number of subtasks being released for
execution, so the number of tasks allocated also increases. The increase appears in all
simulations, including random, indicating that the increase in task execution is due to
the organisational structure as a whole, rather than any specific change instance. Since
an agent uses the relevant service on the closest agent, it will always use the same agent
for a particular service unless the structure changes. Globally, this means that without
any change to structure, agents whose services are not initially used will never be used,
while those services that are initially used will be used regularly. However, by mak-
ing regular changes to the organisational structure (random, or otherwise), the closest
instance of a service to an agent will also regularly change.

2 Instead, the number of messages needed, and the distance that tasks travel, are considered
separately.
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Fig. 5. Comparison of the number of tasks allocated and executed.

4.2 Load and Waiting Tasks

Throughout the simulation, the load of each agent, the number of tasks waiting to be ex-
ecuted, across all agents, are recorded. Figure 6(a) shows the average load plotted over
time, indicating that though all techniques increase the load of the system, random re-
organisation improves loading the most significantly. Figure 6(b) shows the number of
tasks waiting to be executed, with reducing distance and decreasing load both decreas-
ing the rate at which tasks accumulate, but increasing the number of waiting tasks. In
contrast, random reorganisation executes tasks faster than they arrive, so the number of
tasks waiting to be executed decreases. However, this effect begins to plateau after 1,000
time steps. Overall, each technique offers some improvement, but random reorganisa-
tion is effective enough to address the accumulation of tasks before reorganisation. It
is understandable that the first simulation does not significantly improve performance,
since the desire to be closer to one instance of a required service does not aid in the
distribution of load.

The second simulation tries to move overloaded agents away from areas of high cen-
trality so that overloading can be avoided, and this seems to be only partially achieved.
This could be for one of two reasons: either centrality is not a good enough indicator of
the potential load of each agent, so using it to determine where to move an overloaded
agent is not sensible; or the reaction to finding an overloaded agent is not sufficient. In
this latter case, instead of moving an overloaded agent away from areas of high central-
ity step by step, agents should be moved faster. Random reorganisation performs best
out of the three techniques, because the changes it makes are stronger, encouraging the
use of multiple instances of services by changing the organisational structure, without
changing the behaviour of agents. While we do not believe that random reorganisation
is the most effective, it clearly has some properties that can improve the effectiveness
of a reorganisation process.

4.3 Messages Sent and Average Distance

Our model does not directly account for the time spent locating services, and instead we
consider this separately by counting the number of messages sent. Every message sent
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(b) Mean number of tasks waiting.

Fig. 6. Comparison of average agent load, and the number of tasks waiting.

accounts for time that a task is waiting to be executed, either because a service is being
located, or because the task is being moved to an agent that can execute it. Figure 7(a)
shows the number of messages sent over time, indicating that this varies greatly from
technique to technique. Decreasing load increases the number of messages required
significantly, random reorganisation requires slightly more messages, and reducing dis-
tance successfully decreases the number of messages substantially. Figure 7(b) shows
the reason for the difference in the number of messages, in terms of the average distance
tasks are moved at each time step. With decreasing load, the distance from required ser-
vices is increased, random reorganisation has no effect on the distance from required
services, and reducing distance successfully moves agents closer to the services they
require more frequently.

Though we previously showed that random reorganisation can execute tasks faster
because it most effectively distributes load, this does not take into consideration the
delay caused by locating services. Here, we can see that random reorganisation has no
effect on the time required to allocate tasks, whereas by actively moving agents closer
to the service they use most often, tasks can be allocated more quickly, reducing the
time between a task being initially provided to the system, and the time the tasks start
to be executed.

4.4 Number of Changes

Figure 8 shows the number of connections changed each time step while reorganis-
ing. Before round 500, no connections are changed, but afterwards, random reorgan-
isation makes the least number of changes, which do not vary since this is fixed and
not triggered by some conditions. Reducing distance initially makes a massive num-
ber of changes, changing nearly 800 connections, but this almost instantly falls to 100
connections each round, and then slowly rises to a plateau. The initial spike is due to
the initial structure being badly organised, but this spike quickly falls when a better
structure is found. However, reorganisation does not stop completely. This is because
an agent a may have a service that many other agents desire, but a single agent can only
have two neighbours at most, creating competition to be directly connected to agent a.
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Fig. 7. Comparison of the number of messages sent, and the distance tasks are allocated.

In addition, every time an agent a moves, it potentially triggers its neighbours to move
if a’s neighbours relied on a service a offered. Decreasing load has no initial spike, but
instead rises to a plateau, making more changes than reducing distance.

4.5 Summary

We can see that the performance of each technique varies according to what we want
to achieve. Random reorganisation is an effective way to encourage the use of multiple
service instances, which in turn distributes load. However, this does nothing to increase
the time between a task initially arriving, and the time at which execution begins. Nev-
ertheless, each of our techniques can have a positive effect on different phases of the
task allocation and execution lifecycle. Potentially by combining these techniques, and
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determining when to use each, we may be able to optimise reorganisation more effec-
tively. Clearly the challenge lies in how to combine them and how to recognise when
each is appropriate.

5 Related Work

Gershenson introduces reorganisation as a means of increasing the number of tasks a
distributed system can execute, by decreasing communication delay arising from both
transmission (latency of sending messages) and work to be performed before a reply
can be sent (decision delay) [4]. In essence, this is concerned with locating the agent a
that suffers the most from transmission and decision delays combined, the agent b that
is a neighbour of a and causes the most decision delays, and the agent c that causes
the least decision delays in the whole system. Then, the connection from a to b is
removed, and a connection created from a to c. This technique was tested on a number
of topologies (random-homogeneous, random-normally distributed, symmetrical, and
scale-free), with results suggesting that: delay can be diminished, increasing the number
of tasks executed; and the more connections, the longer to reorganise. While tackling a
similar problem to this paper, Gershenson’s consideration of topologies is not in their
preservation but only their initial state.

Sims et al. introduce a self-organisation technique for a distributed sensor network
that tracks the position and movement of vehicles [9]. Each sector involves a group
of agents responsible for vehicles within the sector; problems arise when a vehicle
moves along a boundary between sectors, requiring inter-sector communication with
large overheads. Reorganisation here aims to minimise this communication by adjust-
ing sector membership: if sector s1 regularly needs information from a sensor in another
sector s2, and s2 rarely uses it, then the sensor can be moved from s1 to s2, increas-
ing global utility. This technique can adapt the organisational structure of a distributed
sensor network, while maintaining the hierarchical structure in each sector. However,
this is a basic two-tier hierarchy, and the changes do not consider the agent’s position
in the hierarchy, but rather the utility of an agent’s capability (what area an agent can
monitor). In contrast, our work is concerned with the organisational structure itself. Ab-
dallah and Lesser extend the work of Sims et al. and improve the self-organisation with
reinforcement learning [1]. While this improves the effectiveness of reorganisation, it
still focuses on the performance of individual agents in the system, rather than on the
organisational structure itself.

Gaston and Jardins introduce a couple of techniques to adapt the organisational
structure of a set of agents so that teams can more easily be formed to execute tasks [3].
This is relevant to our work in providing an initial attempt at adaptation based purely
on organisational structure, rather than on application-specific information. The results
show that structural adaptation can be effective, and lead to better performance, but with
a very high number of changes.

Similarly, Kota et al. introduce a reorganisation technique for the adaptation of
problem-solving agent organisations [7] in which agents receive tasks that require ser-
vices to be executed by an agent itself or by delegating to another agent. Here, reorgani-
sation involves evaluating individual connections between agents based on performance
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or potential performance, and creating or removing connections appropriately. The per-
formance of a connection is based on its effect on the load of the agents on either side,
the change in the number of messages sent, and cost of reorganising, so that, for exam-
ple, middlemen in lines of communication are removed. However, the structure of the
organisation is never directly analysed, and again the process is based on the system
which is application specific.

6 Conclusions

This paper has presented a novel method of reorganisation to optimise system perfor-
mance, while at the same time preserving organisational structure. While the focus in
the paper has been on the case of simple pipelines, the implications of the work, and the
more general programme of research in which it is situated, are much more far-reaching.
In terms of the specific techniques presented, it is interesting to note that random reor-
ganisation turns out to be most successful at distributing load because it brings about
radical rather than incremental changes: this is another case of the simple outperform-
ing the sophisticated in certain conditions. Nevertheless, the broad conclusions that we
come to indicate that our techniques are sound in particular aspects as elaborated though
the paper, as well as providing a template for further work on other structures. Indeed,
as part of a more general programme, this is just the first step. Pipelines are clearly one
of the more simple structures that can be analysed, yet this first effort shows the way
forward in seeking to develop a general methodology for reorganisation as well as a
library of techniques for particular purposes.
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