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Abstract

Compositional modelling, the predominant knowledge-based
approach to automated model construction, takes a scenario
describing the constituent interacting components of a domain
system and translates it into a useful mathematical model. This
paper extends this approach to enable its application to systems
that can not be easily described in terms of interacting func-
tional components. In particular, ecological systems are em-
ployed to illustrate the ideas. The previously presented infor-
mal approach, which casts the compositional modelling prob-
lem as a dynamic constraint satisfaction problem, is herein for-
malised by a set of algorithms. The major purpose of this work
is to allow the recent advances in constraints research to benefit
automated model construction and hence model-based reason-
ing at large.

Introduction
The significance of compositional modelling in model-based
reasoning in general (Falkenhainer, B. & Forbus, K. 1991;
Keppens, J. & Shen, Q. 2001) and its role in ecological prob-
lem solving in particular (Heller, U. & Struss, P. 1998; 2001;
Salles, P. & Bredeweg, B 2002) is well understood. This work
concerns the task of building model repositories of ecological
systems, which poses two important new challenges to com-
positional modelling.

Firstly, the processes and components of an ecological sys-
tem are dependent on one another and on the ways they are
described when modelled. In population dynamics for exam-
ple, models describing the predation or competition phenom-
ena between two populations rely on the existence of a pop-
ulation growth model for each of the populations involved in
the phenomenon. This inhibits the conventional approach of
searching for a consistent and adequate combination of par-
tial models, one for each component in the scenario. This
approach provides an adequate solution for physical systems
because these are comprised of components implementing a
particular functionality that can be described by one or mul-
tiple partial models. Although the seminal work on composi-
tional modelling (Falkenhainer, B. & Forbus, K. 1991) recog-
nised the existence of complex interdependencies in model
construction, it only provided a partial solution for it: all the
conditions under which certain modelling choices could be
relevant had to be specified manually in the knowledge base.

Secondly, the domain of ecology lacks a complete the-
ory of what constitutes an adequate model. Most existing

compositional modellers are based on a predefined concept
of model adequacy and they employ inference mechanisms
that are guaranteed to find a model that meets this criterion
of adequacy. The criteria for adequacy of ecological mod-
els varies between ecological domains and even between the
ecologists that require the model in a common area. There-
fore, compositional ecological modelling requires a flexible
facility to define the properties that the generated ecological
models should satisfy.

This paper tackles these issues by providing a formal
method to translate a compositional ecological modelling
problem into an activity-based dynamic constraint satisfac-
tion problem (aDCSP) (Miguel, I. & Shen, Q. 1999; 2000),
based on an earlier approach as presented in (Keppens, J. &
Shen, Q. 2000). The work is demonstrated with a more de-
tailed discussion of a realistic example. The primary advan-
tage of this work is that it enables compositional modelling
problems to be solved by means of efficient aDCSP tech-
niques. As such, compositional modellers can benefit from
recent, and future, advances in dynamic constraint satisfac-
tion.

Compositional Ecological Modelling

This section describes the compositional ecological mod-
elling problem (CEMP), introduces the underlying concepts
and illustrates them by means of a population dynamics ap-
plication.

Preliminary concepts

Participants refer to the objects of interest, which are involved
in the scenario or its model. These participants may be real-
world objects or conceptual objects, such as variables that ex-
press features of real-world objects in a mathematical model.
For instance, a population of a species is a typical example of
a real-world object, and a variable that expresses the number
of individuals of this species forms an example of a concep-
tual object.

Relations describe how the participants are related to one
another. As with participants, some relations represent a real-
world relationship, such as: predation(frog, insect). Other
relations may be conceptual in nature, such as equation (1),
which describes the important textbook model of logistic pop-
ulation growth:



change = parameter × size × (1 −
size

capacity
) (1)

To be consistent with other compositional modelling ap-
proaches, this paper employs a LISP-style notation for rela-
tions. As such, the above two sample relations become:

(predation frog insect)
(== change (d/dt (* change-rate size

(- 1 (/ size capacity)))))

Assumptions form a special type of relation. They are hy-
potheses or presumptions that can be made in the construction
of a scenario model. As a scenario to be modelled does not
provide a consistent and appropriate set of assumptions upon
which to base the resulting scenario model, it is up to the
compositional modeller to find such an assumption set.

The version of the implemented modeller discussed herein
employs two types of assumption: relevance and model as-
sumptions (Keppens, J. & Shen, Q. 2000). Relevance as-
sumptions state what phenomena are to be included in or ex-
cluded from the scenario model. The general format of a rel-
evance assumption is shown in (2). The phenomenon that
is incorporated in the scenario model when describing a rele-
vance assumption is identified by 〈name〉 and is specific to the
subsequent participants or relations. For example, relevance
assumption (3) states that the growth of participant ?popu-
lation is included in the model.

(relevant 〈name〉 [{〈participant〉} | 〈relation〉]) (2)
(relevant growth ?population) (3)

Model assumptions specify which type of model is utilised
to describe the behaviour of a certain participant or relation.
The formal specification of a model assumption is given in
(4). Often the 〈name〉 in (4) corresponds to the name of
a known (partial) model of the phenomenon or process be-
ing described. The example in (5) states that the popula-
tion ?population is being modelled using the logistic ap-
proach.

(model [〈participant〉 | 〈relation〉] 〈name〉) (4)
(model ?population logistic) (5)

The knowledge base
The knowledge base employed by the compositional ecolog-
ical modeller consists of two main constructs: property defi-
nitions and model fragments.

Property definitions describe features of interest to the ap-
plication requiring a scenario model. A typical example of a
feature of interest is the requirement that a certain variable in
the model is endogenous or exogenous.

To be more specific, the property definitions below de-
scribe when a variable ?v is endogenous and exogenous re-
spectively.

(defproperty endogenous
:source-participants ((?v :type variable))
:structural-condition ((or (== ?v *) (d/d ?v *)))
:property (endogenous ?v))

(defproperty exogenous
:source-participants ((?v :type variable))
:structural-condition ((not (endogenous ?v)))
:property (exogenous ?v))

The first property definition states that whenever either
?v = * or d

dt?v = * is true (where * matches any constant
or formula), ?v is deemed to be endogenous. According to
the second property definition, a variable is said to be exoge-
nous if such an object exists and it is not endogenous.

By describing such features formally in the knowledge
base, property definitions enable them to be imposed as cri-
teria on the selection of scenario models. In this way, the
variable describing the size of a particular population in an
eco-system, for instance, can be forced to be endogenous.
Formally,

Definition 1 A property definition Π is a tuple 〈P s,Φ, π〉
where P s = {ps

1, . . . p
s
m} is a set of source-participants, a

predicate calculus sentence Φ whose free variables are ele-
ments of P s, and a relation π, whose free variables are also
elements of P s, such that

∀ps

1, . . . , ∀ps

mΦ → π

Required properties can be specified in two different ways:
either globally as goals for the scenario model construction
or locally as a required purpose of a certain model fragment.
The latter use of model properties will be illustrated later.

Model fragments are the building blocks with which sce-
nario models are constructed. For example, the model frag-
ment below states that a population ?p can be described by
two variables ?p-size (describing the size of ?p) and ?p-
change (describing the rate of change in population size)
and a differential equation

d

dt
?p-size = ?p-change

The usage of this partial scenario model is subject to two con-
ditions: (1) the growth phenomenon is relevant with regard to
?p, and (2) the variable ?p-change is endogenous in the
eventual scenario model. The former requirement is indicated
by the relevance assumption and the latter by the purpose-
required property:
(defModelFragment population-growth

:source-participants ((?p :type population))
:assumptions ((relevant growth ?p))
:target-participants ((?p-size :type variable)

(?p-change :type variable))
:postconditions ((size-of ?p-size ?p)

(change-of ?p-change ?p)
(d/dt ?p-size ?p-change))

:purpose-required ((endogenous ?p-change)))

The purpose-required property is usually satisfied by addi-
tional model fragments, such as the one below:
(defModelFragment logistic-population-growth

:source-participants ((?p :type population)
(?p-size :type variable)
(?p-change :type variable))

:structural-conditions ((size-of ?p-size ?p)
(change-of ?p-births ?p))

:assumptions ((model ?p-size logistic))
:target-participants ((?r :type parameter)

(?k :type variable)
(?d :type variable))

:postconditions ((capacity-of ?k ?p)
(density-of ?d ?p-size)
(== ?d (C+ (/ ?p-size ?k)))

(== ?p-change (- (* ?r ?p-size (- 1 ?d))))))



The latter model fragment implements the logistic popu-
lation growth model. It is instantiated if variables exist that
describe the size and change in a population and it is applied
if the logistic model for population size has been selected.

Generally speaking, model fragments are rules of inference
that describe how new knowledge can be derived from ex-
isting knowledge by committing the emerging model to cer-
tain assumptions. They are instantiated by matching source-
participants to existing participants in the scenario or emerg-
ing model and by matching the structural conditions to cor-
responding relations. If applied, the target-participants and
postconditions of the model fragment are instantiated and
added to the resulting model. Following (6), an instantiated
model fragment is applied if its assumptions are deemed true.
Formally,

Definition 2 A model fragment µ is a tuple
〈P s, P t,Φs,Φt, A,Π〉 where P s = {ps

1, . . . p
s
m} is a set of

variables called source-participants, P t = {pt
1, . . . , p

t
n} is a

set of variables called target-participants, Φs = {φs
1, . . . , φ

s
v}

is a set of relations, called structural conditions, whose free
variables are elements of P s, Φt = {φt

1, . . . , φ
t
s} is a set

of relations, called postconditions, whose free variables are
elements of P s ∪ P t, A = {a1, . . . , at} is a set of relations,
called assumptions, and Π is a set of relations, called
purpose-required properties, such that for i = 1, . . . , s:

∀ps

1, . . . , ∀ps

m, ∃pt

1, . . . , ∃pt

n φs

1 ∧ . . . ∧ φs

v →

(a1 ∧ . . . ∧ at → φt

i)
(6)

∀π ∈ Π, ∀ps

1, . . . , ∀ps

m, ∀pt

1, . . . , ∀pt

n,

φs

1 ∧ . . . ∧ φs

v ∧ a1 ∧ . . . ∧ at ∧ ¬π → ⊥
(7)

Note that, in this work, each property definition 〈P s,Φ, π〉
is equivalent to a model fragment 〈P s, {},Φ, {π}, {}, {}〉.

In most compositional modellers, such as (Levy, A.Y.,
Iwasaki, Y., & Fikes, R. 1997; Nayak, P.P. & Joskowicz, L.
1996; Rickel, J. & Porter, B. 1997; Heller, U. & Struss, P.
1998; 2001), model fragments represent direct translations of
components of physical systems into influences between vari-
ables. Because the compositional modeller presented herein
aims to serve as an ecological model repository, the contents
of the model fragments employed in this work differs from
that of conventional compositional modellers in two impor-
tant regards:

Firstly, model fragments contain partial models describ-
ing certain phenomena instead of influences. These partial
models normally correspond to those developed in ecologi-
cal modelling research. Typical examples include the logis-
tic population growth model (Verhulst 1838) and the Holling
predation model (Holling 1959) devised in the population dy-
namics literature.

Secondly, the partial models contained in the model frag-
ments often need to be composed incrementally. For example,
the aforementioned sample model fragment logistic-
population-growth requires an emerging scenario
model, which may be generated by the other sample
model fragment population-growth. Thus, one model
fragment, e.g. logistic-population-growth, can

bprey
dprey

Kprey

Dprey = dprey × Nprey ×
Nprey

Kprey

Bpred = bpred × Npred

bpred

d

dt
Npred = Bpred − Dpred

dpred

Dpred = dpred × Npred ×
Npred

Kpred

Kpred = k × Nprey

Bprey = bprey × Nprey

d

dt
Nprey = Bprey − Dprey − P

s

th

P =

s×Nprey×Npred

1+s×Nprey×th

Figure 1: Behavioural model of the two species predation sce-
nario

expand on the partial model contained in another, e.g.
population-growth. Because one model fragment may
expand on another, it is presumed that no model fragment µ
generates new relations that are preconditions of model frag-
ments that µ expands on. This would make little sense in the
context of this compositional modeller as it would imply a
recursive extension of an emerging scenario model with the
same set of variables and equations.

The compositional modelling problem
The objective of the compositional modeller presented herein
is to translate a scenario describing an ecological system into
a scenario model of the behaviour of that ecological system.
A typical example of a scenario studied in ecology textbooks
is
(defScenario pred-prey-prey-scenario

:entities ((predator :type population)
(prey :type population))

:relations ((predation predator prey)))

Here, an ecological system is depicted which consists of
a predator population that feeds on a prey population.
The population dynamics community has developed a num-
ber of mathematical models to describe the phenomena that
take place in a system like this, such as the logistic model of
population growth (Verhulst 1838) and the Holling model of
predation between species (Holling 1959). Figure 1 shows
a mathematical model of the aforementioned scenario that
combines the logistic and Holling models and that employs
the system dynamics stock-flow formalism (Ford, A. 1999).

Generally speaking, the compositional ecological mod-
elling problem (CEMP) addressed in this paper can be for-
malised as follows:

Definition 3 Given a scenario 〈Ps, Rs〉, a set of model frag-
ments F , a set of property definitions D, and a set of re-
quired property instances Π, a CEMP is the problem of find-
ing a scenario model 〈Pm, Rm〉, which is not inconsistent



(〈Ps, Rs〉, F, F 0 ⊥), such that it logically follows from the
scenario (〈Ps, Rs〉, F ` 〈Pm, Rm〉), and that it logically en-
tails the required property instances (〈Pm, Rm〉, D ` Π).

Casting a CEMP as an aDCSP

The process of casting a CEMP as an aDCSP involves two
stages. First, a space of plausible models is generated. This
is achieved by first creating a hypergraph, or the model space,
containing all plausible models and the assumptions they de-
pend on. Then, this model space is translated into an aDCSP.

Scenario + Knowledge Base = Model Space

The model space is constructed as follows. First, it is ini-
tialised with the participants and relations of the given sce-
nario. By applying model fragments, new participants and re-
lations are inferred from ones that are already part of the sce-
nario space. The inferences described by the applied model
fragments are stored explicitly as ATMS justifications. Fi-
nally, the model space is extended with the causes of incon-
sistencies, including unsatisfied properties and relations that
can not be combined with regard to the domain knowledge or
representational framework.

More formally, a model space is an ATMS (de Kleer,
J. 1986) containing all the participants, relations and as-
sumptions that can be instantiated from a given scenario.
In this work, the generalised version of the ATMS, intro-
duced in (de Kleer, J. 1988) is employed as it allows the use
of negations of nodes in the justifications. The algorithm
GENERATEMODELSPACE(〈Ps, Rs〉) describes how such a
model space can be created from a scenario 〈Ps, Rs〉. It
first initialises the model space θ with the participant in-
stances (Ps) and the relation instances (Rs) from the scenario.
Then, for each model fragment whose source-participants
and structural conditions match participants and relations al-
ready in θ, new instances of its target-participants, assump-
tions and postconditions are added to θ. Because each prop-
erty definition 〈P s,Φ, π〉 is equivalent to a model fragment
〈P s, {},Φ, {π}, {}, {}〉, this procedure applies to property
definitions as well as model fragments. Matching the source-
participants and structural conditions of a model fragment
µ to the emerging model space is performed by the func-
tion match(µ, θ, σ), where µ is the model fragment being
matched, and σ is a substitution from the source-participants
of µ to participant instances. It is specified as given below:

match(µ, θ, σ) =



















true if σ = {ps

1/o1, . . . , p
s

m/om}∧
P s = {ps

1, . . . , p
s

m}∧
o1 ∈ θ ∧ . . . ∧ om ∈ θ∧
∀φ ∈ Φs, σφ ∈ θ

false otherwise

with µ = 〈P s, P t,Φs,Φt, A,Π〉.

Algorithm 1: GENERATEMODELSPACE(〈Ps, Rs〉)

θ ← new ATMS;
for each o ∈ Ps, add-node(θ, o);
for each r ∈ Rs, add-node(θ, r);
for each µ, σ, (µ = 〈P s, P t, Φs, Φt, A, Π〉) ∧ match(µ, θ, σ)

do



















































































































justification← ∅;
for each a ∈ A

do
{

newnode← add-node(θ, (σa));
justification← justification ∪ {newnode};

for each p ∈ P s

do justification← justification ∪ {find-node(θ, (σp))};
for each φ ∈ Φs

do justification← justification ∪ {find-node(θ, (σφ))};
add-node(θ, n(σ,µ));
add-justification(θ, n(σ,µ),∧n∈justificationn);
for each p ∈ P t

do







σ ← σ ∪ {p/gensym()};
o← add-node(θ, (σp));
add-justification(θ, o, n(σ,µ));

for each φ ∈ Φt

do
{

o← add-node(θ, (σφ));
add-justification(θ, o, n(σ,µ));

for each n1, . . . , nm, inconsistent({n1, . . . , nm)
do add-justification(θ, n⊥, n1 ∧ . . . ∧ nm);

Each match, specified by a model fragment µ =
〈P s, P t,Φs,Φt, A,Π〉 and a substitution σ, is processed as
follows:

• For each assumption a ∈ A, a new node, denoting the as-
sumption instance σa, is created and added to θ.

• Then, a new node n(σ,µ), denoting the instantiation of µ
via substitution σ, is created, added to θ and justified by
the implication:

(∧a∈Aσa) ∧ (∧p∈P sσp) ∧ (∧φ∈Φsσφ) → n(σ,µ)

• Finally, a new instance for each target-participant p ∈ P t

and for each postcondition φ ∈ Φt is created. For the
target-participants, this involves creating a new symbol for
each new participant instance with the function gensym()
and extending σ with the substitution {p/gensym()}. A
new node n is created and added to θ for each new par-
ticipant instance σp and for each new instantiated relation
σφ. Each of these nodes is justified by the implication
n(σ,µ) → n.

Once all possible applications of model fragments have
been exhausted, the inconsistencies in the model space are
identified and recorded in the ATMS. In the algorithm, no-
goods are generated for each set {n1, . . . , nm} of inconsistent
nodes, denoted inconsistent({n1, . . . , nm}). There are three
sources of inconsistencies that are each reported to the ATMS
in a different way:

• Global properties: Let π be an instance of a global prop-
erty that any scenario model must satisfy. Then, any com-
bination of assumptions and negations of assumptions that
prevents π from being satisfied is inconsistent. There-
fore, inconsistent({¬π}) must be reported for any required
global property π.

• Purpose-required properties: Any application of a model
fragment µ = 〈P s, P t,Φs,Φt, A,Π〉 without satisfying its
purpose-required properties Π yields an inconsistency (see
(7). Hence, for each node n(σ,µ) denoting the instantiation



µ2:

π:

µ1: population-growth
model fragment
logistic-population-growth
model fragment

property definition
endogenous

∧

relation:
π

population frog
µ1

assumption:

relation:

participant:

participant:
variable nfrog

relation:

relation:
(size-of nfrog frog)

(model nfrog logistic)

d

dt
nfrog = cfrog

variable cfrog

(change-of cfrog frog)

µ2

participant:
parameter rfrog

participant:

relation:

relation:

parameter kfrog

(capacity-of kfrog frog)

cfrog = rfrog × nfrog × (1−
nfrog
kfrog

)

(endogenous cfrog)

participant:

(relevant growth frog)
assumption:

⊥
¬endogenous(cfrog)
relation:

Figure 2: Partial model space

of µ via substitution σ, and for each node nσπ describ-
ing the appropriate instance of a purpose-required property
π ∈ Π, inconsistent({n(σ,µ),¬nσπ}) is reported.

• Non-composable relations: In any mathematical formalism
designed to describe simulation models of dynamic sys-
tems, certain combinations of relations may over-constrain
the model, and hence, be unsuitable for generating the be-
haviour of a system of interest. Combinations of such non-
composable relations do not yield an adequate model either
and must be reported as an inconsistency as well. Although
a detailed discussion of this issue is beyond the scope of
this paper, the notion of non-composable relations can be
illustrated by means of the system dynamics formalism em-
ployed to represent the ecological models. Here mathemat-
ical relations are specified as influences from one or more
variables to another variable. These include assignment re-
lations containing the composable operators defined as part
of the compositional modelling language CML (Bobrow,
D. et al. 1996). Relations describing assignments, terms
and factors influencing the same variable are mutually non-
composable. However, different terms or different factors
influencing the same variable can be composed with one
another.

To illustrate the model space construction algorithm, fig-
ure 2 presents a small sample model space. It results
from the application of the population-growth and
logistic-population-growth model fragments and
the endogenous property definition, which were described
earlier, for a single population “frog”. If a larger scenario
involving multiple populations and relations between these
populations were specified, a similar partial model space
would be generated for each individual population.

From model space to aDCSP

Once the model space has been constructed, it can be trans-
lated into an aDCSP. The translation procedure, summarised
as algorithm CREATEADCSP(), consists of three steps as de-
scribed below:

Algorithm 2: CREATEADCSP()

comment: σ is the set of substitutions

σ ← {};
comment: Generate attributes and domains

for each A, assumption-class(A)

do



































x← create-attribute();
D(x)← {};
σ ← σ ∪ {A/x};
for each a ∈ A

do







v ← create-value();
D(x)← D(x) ∪ {v};
σ ← σ ∪ {a/x : v};

comment: Generate activity constraints

for each A, assumption-class(A)

do







s← subject(A);
for each {a1>, . . . , ap>,¬a1⊥, . . . ,¬aq⊥} ∈ L(s)

do add(σa1> ∧ . . . ∧ σap> ∧ σ¬a1⊥ ∧ . . . ∧ σ¬aq⊥ → active(σA));
comment: Generate compatibility constraints

for each {a1>, . . . , ap>,¬a1⊥, . . . ,¬aq⊥} ∈ L(n⊥)
do add(σa1> ∧ . . . ∧ σap> ∧ σ¬a1⊥ ∧ . . . ∧ σ¬aq⊥ → ⊥;

1. Generate the attributes and domain values from the as-
sumptions. The aDCSP attributes correspond to the under-
lying assumption classes (i.e. groups of assumptions indi-
cating alternative choices with regards to the same model
construction decision). A relevance assumption and its
negation jointly form an assumption class. For example,
A1 ={(relevant growth frog), ¬(relevant
growth frog)} specifies such an assumption class.
The set of model assumptions involving the same partic-
ipants or relations, but with different model names (i.e.
〈name〉 in the formal specification (4)), also form an as-
sumption class. For instance, A2 ={(model nfrog ex-
ponential), (model nfrog logistic), (model
nfrog other)}, where nfrog is a variable denoting the
size of a population, specifies such an assumption class.
Running this step of the algorithm, an attribute is created
for each assumption class, with the domain of such an
attribute consisting of all assumption instances in the as-
sumption class.

2. Create activity constraints. The attributes and domain val-
ues created in the previous step are only meaningful in
situations where the participant and/or relation instances
contained in the arguments of the corresponding assump-
tions exist. For example, the assumption (model nfrog
logistic) is only relevant if the participant instance
nfrog exists. It is clear that all assumptions within one as-
sumption class have the same participant and/or relation in-
stances as their arguments. Because each assumption class
corresponds to one attribute, the attribute can be activated
if and only if the participant and/or relation instances asso-
ciated with the related assumption class is active. There-
fore, this step creates activity constraints that activate an
attribute based on the conjunction of the environments con-
tained within the labels of the participants/relations of the
assumption class. For instance, as can be deduced from
figure 2, nfrog is activated when (relevant growth
frog) is committed. Thus, the attribute corresponding to
assumption class A2, defined in step 1, is activated under
the attribute value assignment associated with the (rel-
evant growth frog) assumption.

3. Create compatibility constraints. In the ATMS (or model



space), all sources of inconsistencies are contained in the
label of the nogood node. Therefore, the compatibility con-
straints are created directly by translating the environments
in the label L(⊥) into the corresponding conjunctions of
attribute-value assignments.

Towards the analysis of complexity
The translation method presented above enables the use of ef-
ficient CSP solution algorithms. This section briefly discusses
the complexity issues involved.

The algorithm complexity arises from four sources: 1)
model space construction, 2) label propagation in the ATMS,
3) model space to aDCSP translation, and 4) aDCSP so-
lution. GENERATEMODELSPACE(〈Ps, Rs〉) essentially per-
forms a fixed sequence of instructions and produces a small
set of nodes and inferences for each match of a model frag-
ment. Therefore, its time and space complexity is linear with
respect to the number of possible matches of model frag-
ments. CREATEADCSP() extracts certain information from
the model space and rewrites it in a different formalism with-
out further manipulations. Therefore, its time and space com-
plexity is linear with respect to the size of the model space.

The label propagation algorithm of an ATMS is known
to have an exponential time complexity. However, be-
cause the model space is built up incrementally (by
GENERATEMODELSPACE(〈Ps, Rs〉)) from the root nodes of
the ATMS network (i.e. the ones that correspond to facts
and have no antecedents) to the leaf nodes (i.e. the ones that
have have no consequents, other than the nogood node) and
because the inconsistencies are added at the end, this com-
plexity only increases exponentially with the depth of the net-
work and the number of participants and relations in individ-
ual model fragments, rather than with the size of the model
space. This limits the complexity impact of label propagation.
Firstly, the depth of the ATMS network is restricted by the do-
main. In many conventional compositional modellers, where
model fragments are direct translations from scenario compo-
nents to scenario model equations, this depth would be only
one. Empirically, constructing the model space for sophisti-
cated eco-systems, the depth of a model space never exceeded
8. Secondly, the size of the individual model fragments does
not change significantly with the size of knowledge base.

As for the fourth and final source of complexity, it is driven
by the nature that the aDCSP solution algorithm must deter-
mine a consistent combination of assumptions in the model
space. The space of attribute value assignments, in which a
solution must be found, increases exponentially with the size
of the number of assumptions, and hence, with the model
space. Therefore, the overall complexity of the present ap-
proach is largely dominated by the aDCSP solution algorithm
employed. Fortunately, with the advances of CSP research, a
number of efficient methods are available for such use. This
helps minimise the overhead incurred for compositional mod-
elling. Note that most compositional modellers, with the ex-
ception of certain approaches (e.g. (Nayak, P.P. & Joskow-
icz, L. 1996)) that solve a problem of reduced complexity,
perform a similar search but with purpose-built algorithms.
This work hopes to improve the efficiency of compositional
modellers by enabling the use efficient aDCSP solution algo-

rithms.

A Population Dynamics Example
The examples used throughout the previous sections were
taken from a more extensive application study of the present
work. The application was aimed to construct a repository of
basic population dynamic models, describing the phenomena
of growth, predation and competition. This section presents
an overview of how the proposed approach is employed in
this application.

Knowledge base

In essence, the knowledge base of a compositional modeller
is a collection of the component models, each extended with
a specification of the requirements for composition with other
component models. The first model fragment, shown ear-
lier, describes the most basic recurring part of population
growth models (i.e. the differential equation ?p-size =
d
dt?p-change). It contains several conditions for inclusion
in a model: 1) a population ?p must exist in the scenario, 2)
the growth phenomenon must be relevant to ?p, and 3) the
new variable ?p-change, describing the change in popula-
tion size, must be an endogenous variable.

(defModelFragment population-growth
:source-participants ((?p :type population))
:assumptions ((relevant growth ?p))
:target-participants ((?p-size :type variable)

(?p-change :type variable))
:postconditions ((size-of ?p-size ?p)

(change-of ?p-change ?p)
(d/dt ?p-size ?p-change))

:purpose-required ((endogenous ?p-change)))

The variable ?p-change becomes endogenous if the
model contains an equation describing change in population
size. These equations differ between population growth mod-
els. The following model fragments describe two such com-
ponent models: exponential growth (Malthus 1798) and lo-
gistic growth (Verhulst 1838).

(defModelFragment exponential-population-growth
:source-participants ((?p type population)

(?p-size :type variable)
(?p-change :type variable))

:structural-conditions ((size-of ?p-size ?p)
(change-of ?p-change ?p))

:assumptions ((model ?size exponential))
:target-participants ((?r :type parameter))
:postconditions ((== ?p-change (* ?r ?p-size))))

(defModelFragment logistic-population-growth
:source-participants ((?p :type population)

(?p-size :type variable)
(?p-change :type variable))

:structural-conditions ((size-of ?p-size ?p)
(change-of ?p-births ?p))

:assumptions ((model ?p-size logistic))
:target-participants ((?r :type parameter)

(?k :type variable)
(?d :type variable))

:postconditions ((capacity-of ?k ?p)
(density-of ?d ?p-size)
(== ?d (C+ (/ ?p-size ?k)))

(== ?p-change (* ?r ?p-size (- 1 ?d)))))

There is one twist to compositional modelling of popula-
tion growth. Sometimes, the actual growth model is implic-
itly contained in another type of model. In such cases, the



growth phenomenon and the corresponding differential equa-
tion is still relevant, but none of the dedicated growth mod-
els can be employed. For example, as to be shown later, the
Lotka-Volterra predation model comes with its own equations
describing growth.

The model fragment other-growth allows for an empty
growth model, named other, to be selected. However, due
to the purpose-required property stating that any instance of
?p-change must be endogenous, this empty model can
only be selected if a growth model is implicitly included else-
where.
(defModelFragment other-growth

:source-participants ((?p :type population)
(?p-size :type variable)
(?p-change :type variable))

:structural-conditions ((size-of ?p-size ?p)
(change-of ?p-births ?p))

:assumptions ((model ?p other)))

In addition to population growth, two other phenomena are
included in the knowledge base: predation and competition.
Predation and competition relations between species are rep-
resented by predicates over the populations: e.g. (preda-
tion grizzly-bear salmon) and (competition
grizzly-bear brown-bear). However the existence
of a phenomenon does not necessarily mean that it must be
contained within the model. It would make little sense to
model predation and competition without modelling the size
of the populations, because models of these phenomena relate
population sizes to one another. Therefore, the incorporation
of the predation phenomenon is made dependent upon the ex-
istence of variables representing population size. Also, hu-
man expert modellers may prefer to leave a phenomenon out
of the resulting model. To keep this choice open, the follow-
ing two model fragments construct a participant representing
the phenomena of predation and competition and make it de-
pendent upon a relevance assumption:
(defModelFragment predation-phenomenon

:source-participants ((?pred :type population)
(?prey :type population)
(?pred-size :type variable)
(?prey-size :type variable))

:structural-conditions ((predation ?pred ?prey)
(size-of ?pred-size ?pred)
(size-of ?prey-size ?prey))

:assumptions ((relevant predation ?pred ?prey))
:target-participant ((?pred-phen :type phenomenon))
:postconditions ((pred-phen ?pred-phen ?pred ?prey))
:purpose-required ((has-model ?pred-phen)))

(defModelFragment competition-phenomenon
:source-participants ((?p1 :type population)

(?p2 :type population)
(?p1-size :type variable)
(?p2-size :type variable))

:structural-conditions ((competition ?p1 ?p2)
(size-of ?p1-size ?p1)
(size-of ?p2-size ?p2))

:assumptions ((relevant competition ?p1 ?p2))
:target-participant ((?comp-phen :type phenomenon))
:postconditions ((comp-phen ?comp-phen ?p1 ?p2))
:purpose-required ((has-model ?comp-phen)))

Both model fragments have a purpose-required property of
the form (has-model ?phen). This property expresses
the condition that a model must exist with respect to a phe-
nomenon:
(defproperty has-model

:source-participants ((?p :type phenomenon))

:structural-conditions ((is-model-of ?p *))
:property (has-model ?p))

The next two model fragments implement such models
(thereby satisfying the above has-model purpose-required
property) for the predation phenomenon between two pop-
ulations. They describe two well-known predation models:
the Lotka-Volterra model (Lotka 1925; Volterra 1926) and the
Holling model (Holling 1959).
(defModelFragment Lotka-Volterra

:source-participants ((?pred-phen :type phenomenon)
(?pred :type population)
(?pred-size :type variable)
(?pred-change :type variable)
(?prey :type population)
(?prey-size :type variable)
(?prey-change :type variable))

:structural-conditions
((predation-phenomenon ?pred-phen ?pred ?prey)
(size-of ?pred-size ?pred)
(change-of ?pred-change ?pred)
(size-of ?prey-size ?prey)
(change-of ?prey-change ?prey))

:assumptions ((model ?pred-phen lotka-volterra))
:target-participants ((?prey-rate :type variable)

(?pred-factor :type variable)
(?prey-factor :type variable)
(?pred--rate :type variable))

:postconditions
((== ?prey-change (- (* ?prey-rate ?prey-size)

(* ?prey-factor ?prey-size ?pred-size)))
(== ?pred-change (- (* ?pred-factor ?prey-size ?pred-size)

(* ?pred-rate ?pred-size)))
(is-model-of ?pred-phen lotka-volterra)))

As mentioned earlier, the Lotka-Volterra model introduces
its own growth model for the prey and predator populations
by assigning specific equations to the variables, describing
changes in the sizes of the predator and prey populations,
?pred-change and ?prey-change respectively. Thus,
it satisfies the purpose-required property in the application of
the population-growth model fragment for the ?prey
and ?pred populations.
(defModelFragment Holling

:source-participants ((?pred-phen :type phenomenon)
(?pred :type population)
(?pred-size :type variable)
(?capacity :type variable)
(?prey :type population)
(?prey-size :type variable))

:structural-conditions
((predation-phenomenon ?pred-phen ?pred ?prey)
(size-of ?pred-size ?pred)
(size-of ?prey-size ?prey)
(capacity-of ?capacity ?pred))

:assumptions
((model ?pred-phen holling))

:target-participants
((?search-rate :type variable)
(?handling-time :type variable)
(?prey-req :type variable)
(?predation :type variable))

:postconditions
((d/dt ?pred-size (C- ?predation))
(== ?predation (/ (* ?search-rate ?prey-size ?pred-size)

(+ 1 (* ?search-rate ?prey-size ?handling-time))))
(== ?capacity (C+ (* ?prey-req ?prey)))
(is-model-of ?pred-phen holling)))

The Holling model employs a variable denoting the capac-
ity of a population. Such a variable may be introduced by
a logistic growth model. In practice, logistic growth models
and Holling predation models are often used in conjunction.
The compositional modeller need not be aware of such com-
binations of models, however. All it needs to know is the



prerequisites of the individual component models contained
within each model fragment.

The final model fragment in the knowledge base imple-
ments a model of competition between two species. As
this model fragment contains the only population competi-
tion model in the knowledge base, it does not contain a model
assumption to describe the model.

(defModelFragment competition
:source-participants

((?comp-phen :type phenomenon)
(?p1 :type population)
(?p1-size :type variable)
(?p1-density :type variable)
(?p1-capacity :type variable)
(?p2 :type population)
(?p2-size :type variable)
(?p2-density :type variable)
(?p2-capacity :type variable))

:structural-conditions
((comp-phen ?comp-phen ?p1 ?p2)
(density-of ?p1-density ?p1-size)
(capacity-of ?p1-capacity ?p1-size)
(density-of ?p2-density ?p2-size)
(capacity-of ?p2-capacity ?p2-size))

:target-participants
((?weight-12 :type variable)
(?weight-21 :type variable))

:postconditions
((== ?p1-density

(C+ (/ (* ?weight-12 ?p2-size) ?p1-capacity)))
(== ?p2-density

(C+ (/ (* ?weight-21 ?p1-size) ?p2-capacity)))
(is-model-of ?comp-phen default)))

Model space
A model space is constructed when the knowledge base is
instantiated with respect to a given scenario. Consider for
example the following scenario
(defScenario pred-prey-prey-scenario

:entities ((predator :type population)
(prey1 :type population)
(prey2 :type population))

:relations ((predation predator prey1)
(predation predator prey2)
(competition prey1 prey2)))

This scenario describes a predator population that preys
on two other populations, prey1 and prey2, whilst the two
prey populations compete with one another.

The full specification of the model space is too unwieldy
to present here but an abstract graphical representation of the
model space for this scenario is shown in figure 3 instead.
This model space contains the following knowledge:

• From each of the three populations in the scenario, a set
of three population growth models (i.e. exponential,
logistic and other) is derived. This inference is de-
pendent upon a relevance assumption of the population
growth phenomenon, and a model assumption that corre-
sponds to one of the three population growth models.

• From both predation relations (i.e. (predation
predator prey1) and (predation predator
prey2)), and the populations related by them, a set
of two predation models (i.e. Lotka-Volterra and
Holling) is derived. This inference is dependent upon
a relevance assumption of the predation phenomenon and a
model assumption that corresponds to one of the two pre-
dation models.

• From the competition relation (competition prey1
prey2), and the populations related by it, a competition
model is derived. Because there is only one competition
model, the inference of the competition model is only de-
pendent upon a relevance assumption that corresponds to
the competition phenomenon.

In addition to the hypergraph of figure 3, the model space
also contains a number of constraints on the conjunctions of
assumptions that are consistent. As explained earlier, these
stem from two sources: 1) non-composable relations and 2)
purpose-required properties. An example will be given of
each type.

Let prey1-size be the variable representing the
size of the prey1 population, and let predation-
phenomenon-1 denote the predation phenomenon be-
tween predator and prey1. In this example, the
model fragments exponential-population-growth
and Lotka-Volterra will each generate a different equa-
tion for computing the value of a variable representing the
change in prey1-size. Because both equations can not be
composed, the following inconsistency is generated:

(relevant growth prey1) ∧ (model prey1-size exponential)∧
(relevant growth predator) ∧ (relevant predation predator prey1)∧

(model predation-phenomenon-1 lotka-volterra) → ⊥

Other inconsistencies arise from purpose-required prop-
erties. For example, if the model fragment predation-
phenomenon is applicable and the predation relation is
deemed relevant, then the purpose-required property (has-
model ?pred-phen) will become a condition for con-
sistency. Under certain combinations of assumptions, this
property may not be satisfied. Say, when the Holling pre-
dation and exponential growth models are both selected, the
Holling model is not generated because there is no ?ca-
pacity for which (capacity ?capacity ?pred)
is true. No predation model is created in this case (be-
cause the Holling model fragment can not be instanti-
ated), even though the predation phenomenon is deemed
relevant under this set of assumptions. This is inconsis-
tent with the has-model purpose-required property in the
predation-phenomenon model fragment, and the re-
sponsible combination of assumptions is therefore marked as
nogood.

(relevant growth predator) ∧ (model predator-size exponential)∧
(relevant growth prey1) ∧ (model prey1-size exponential)∧
(relevant predation predator prey1)∧

(model predation-phenomenon-1 holling) → ⊥

aDCSP and solution
The model space is translated into an aDCSP to enable the
selection of a consistent set of assumptions, using advanced
CSP solution techniques. The aDCSP derived from the above
model space is depicted in figure 4.
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Attribute Meaning
x1 (relevant growth prey1)
x2 (relevant growth prey2)
x3 (relevant growth predator)
x4 (relevant predation predator prey1)
x5 (relevant predation predator prey2)
x6 (relevant competition prey1 prey2)
x7 (model size-1 *)
x8 (model size-2 *)
x9 (model size-3 *)
x10 (model predation-phenomenon-1 *)
x11 (model predation-phenomenon-2 *)

Table 1: Attribute list

This aDCSP contains 11 attributes. They are listed with the
corresponding assumption classes in table 1. The first 6 at-
tributes correspond to the notion of relevance phenomenon: 3
population growth phenomena, 2 predation phenomena and 1
competition phenomenon to be precise. The other 5 attributes
correspond to 5 sets of models: 3 sets of population growth
models and 2 sets of predation models.

Conventional aDCSP solution algorithms, such the ones
presented in (Mittal, S. & Falkenhainer, B. 1990; Miguel, I. &
Shen, Q. 2000), can find a number of solutions to the aDCSP
depicted in figure 4. For instance, in one such solution, all
phenomena are deemed relevant, logistic models are selected
to describe the population growth phenomena and Holling
models are chosen for the predation phenomena. This model
corresponds to the following set of equations:

d

dt
p-sizepredator = p-changepredator

dpredator =
p-sizepredator

kpredator

p-changepredator = rpredator × p-sizepredator × dpredator

kpredator = prey-reqprey1 × p-sizeprey1 + prey-reqprey2 × p-sizeprey2

d

dt
p-sizeprey1 = p-changeprey1 − predationprey1

dprey1 =
p-sizeprey1 + weight-12× p-sizeprey2

kprey1

p-changeprey1 = rprey1 × p-sizeprey1 × dprey1

predationprey1 =
search-rateprey1 × p-sizeprey1 × p-sizepredator

1 + search-rateprey1 × p-sizeprey1 × handling-timeprey1

d

dt
p-sizeprey2 = p-changeprey2 − predationprey2

dprey2 =
p-sizeprey2 + weight-21× p-sizeprey1

kprey2

p-changeprey2 = rprey2 × p-sizeprey2 × dprey2

predationprey2 =
search-rateprey2 × p-sizeprey2 × p-sizepredator

1 + search-rateprey2 × p-sizeprey2 × handling-timeprey2

where the variable names correspond to those used in the
model fragments and the indices refer to the populations that
a variable relates to.

The domain also allows for alternative models in which
certain phenomena are ignored, and these models correspond
to alternative solutions to the same aDCSP. There are two
ways of discriminating between alternative solutions to the
aDCSP. The first involves imposing additional properties on
the model. The second involves assigning preferences to as-
sumptions and/or properties. These are, however, beyond the
scope of this paper.

Conclusion and Future Work
This paper has presented a novel approach to compositional
modelling that enables the construction of models of ecolog-
ical systems. This work differs from existing approaches in
that it automatically translates the compositional modelling
problem into an aDCSP. This allows formal criteria to be
defined that must be satisfied by adequate scenario models.
More importantly, it also enables efficient, existing and fu-
ture, aDCSP solution techniques to be effectively applied to
compositional modelling.

Most recently, the approach presented herein has been ex-
tended to allow assumptions to be assigned preference valua-
tions. These preferences describe the suitability of the model
design decisions represented by the assumptions they are as-
signed to. This variation on the CEMP can be translated into a
constraint satisfaction optimisation problem (Tsang, E. 1993)
with activity constraints. In its extended form, the compo-
sitional ecological modeller has been applied to automated
model construction of large and complex ecosystems such
as the MODMED model of Mediterranean vegetation (Legg,
C.J., Muetzelfeldt, R.I., & Heathfield, D.N. 1995).

The analysis of the complexity of the present approach is
rather informal. Much remains to be done in this regard, es-
pecially when comparing complexity to that of existing com-
positional modellers. For this, additional work will be re-
quired to adapt the current translation procedure to suit exist-
ing compositional modelling problems. Most compositional
modellers are of exponential complexity, however. As they
employ problem-specific solution algorithms, little is known
about opportunities for improving their efficiency. This work
hopes to be a first step toward further understanding this im-
portant issue.
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d’accroissement de la population. Nouveaux mémoires de
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