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Abstract—Norms are a valuable mechanism for establishing
coherent cooperative behaviour in decentralised systems in
which no central authority exists. In this context, Axelrod’s
seminal model of norm establishment in populations of self-
interested individuals [1] is important in providing insight into
the mechanisms needed to support this. However, Axelrod’s
model suffers from significant limitations: it adopts an evolu-
tionary approach, and assumes that information is available to
all agents in the system. In particular, the model assumes that
the private strategies of individuals are available to others,
and that agents are omniscient in being aware of all norm
violations and punishments. Because this is an unreasonable
expectation, the approach does not lend itself to modelling real-
world systems such as peer-to-peer networks. In response, this
paper proposes alternatives to Axelrod’s model, by replacing
the evolutionary approach, enabling agents to learn, and by
restricting the metapunishment of agents to only those where
the original defection is perceived, in order to be able to apply
the model to real-world domains.

I. INTRODUCTION

In many application domains, engineers of distributed
systems may choose, or be required, to adopt an architecture
in which there is no central authority and the overall system
consists solely of self-interested autonomous agents. The
rationale for doing so can range from efficiency reasons to
privacy requirements. In order for such systems to achieve
their objectives, it may nevertheless be necessary for the
behaviour of the constituent agents to adhere to certain
constraints, or norms. In peer-to-peer file sharing networks,
for example, we require (at least a proportion of) peers
to provide files in response to others’ requests, while in
wireless sensor networks nodes must share information with
others for the system to determine global properties of the
environment. There is typically a temptation in such settings
for individuals to deviate from the desired behaviour. For
example, to save bandwidth peers may not provide files and
to conserve energy the nodes in a sensor network may not
share information. It is therefore desirable to minimise the
temptation for agents to deviate from the desired behaviour,
and encourage the emergence of cooperative norms.

Axelrod’s seminal investigation of norm establishment in
populations of self-interested individuals [1] provides an
analysis of the conditions in which norms can be estab-
lished, but makes several assumptions that are unrealistic.

In particular, in many domains it is not possible to re-
move unsuccessful agents and replicate those that are more
successful, and there is no centralised control that could
oversee this process. Instead, if we enable individuals to
compare themselves to others, and adopt more successful
strategies, then we can take a learning interpretation of the
evolutionary mechanism [2], without needing to remove and
replicate individuals. However, this learning interpretation
requires that the private strategies of individuals are available
for observation by other agents, which is again an unreason-
able assumption. Furthermore, as has been shown elsewhere,
Axelrod’s model is unable to sustain cooperation over a large
number of generations [3], and relies on agents being able
to punish both those that defect and those who fail to punish
defection, which assumes omniscience through agents being
aware of all norm violations and punishments.

In this paper we investigate alternatives that allow use
of the mechanisms resulting from Axelrod’s investigations
in more realistic settings. Specifically, we remove the as-
sumption of omniscience and constrain the ability of agents
to punish according to the defections they have observed.
Finally, to obviate the need for information on others’ private
strategies we propose a learning algorithm through which
individuals improve their strategies based on experience.

II. AXELROD’S MODEL

In Axelrod’s norms game, each agent in the population
has four opportunities (o) in which it can choose to defect
by violating a norm, and such behaviour has a particular
known probability of being observed, or seen (So). An agent
i has two decisions, or strategy dimensions, as follows.
First, it must decide whether to defect, determined by its
boldness (Bi); and second, if it sees another agent defect
in a particular opportunity (with probability So) it must
decide whether to punish this defecting agent, determined
by its vengefulness (Vi), which is the probability of doing
so. If So < Bi then i defects, receiving a temptation payoff,
T = 3, while hurting all other agents with payoff H = −1.
If a defector is punished (P ), it receives an additional
punishment payoff of P = −9, while the punishing agent
pays an enforcement cost, E = −2. The initial values of Bi
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and Vi are chosen at random from a uniform distribution of
a range of 8 values between 0

7 and 7
7 .

Axelrod’s simulation had 20 agents, each having four
opportunities to defect, and the chance of being seen for each
drawn from a uniform distribution between 0 and 1. After
playing a full round (all four opportunities), scores for each
agent are calculated to produce a new generation, as follows.
Agents that score better or equal to the average population
score plus one standard deviation are reproduced twice in the
new generation. Agents that score one standard deviation
or more under the average score are not reproduced, and
all others are reproduced once. Finally, mutation is used to
enable new strategies to arise. Bi and Vi (which determine
agent behaviour) take eight possible values, so they are
represented by three bits, to which mutation is applied (by
flipping a bit) when an agent is reproduced, with a 1% rate.

In this model, cooperative norms are established when Vi

is high and Bi is low for all members of the population,
so that defection is unlikely, and observed defections are
likely to be punished. Over 100 generations, Axelrod found
only partial establishment of a norm against defection, so
introduced an additional mechanism to support norms in
his metanorm model, providing further encouragement for
enforcing a norm. In the metanorms game, if an agent sees
a defection but does not punish it, this is itself considered
as a form of defection, and others in turn may observe this
defection (with probability So) and apply a punishment to
the non-enforcing agent. As before, the decision to punish
is based on vengefulness, and punishment and enforcement
costs are the same as before. The metanorm game gives runs
with high vengefulness and low boldness, which is exactly
the kind of behaviour needed to support the establishment
of a norm against defection.

However, Axelrod’s analysis of results was limited. As
has been shown subsequently, allowing Axelrod’s metanorm
game to run for an extended period (1,000,000 generations)
ultimately results in norm collapse [4]. As Mahmoud et al.
have shown [3], this norm collapse arises as a consequence
of two aspects. First, a sufficiently long run (compared to
Axelrod’s limited run of 100 generations) provides the op-
portunity for a sequence of mutations to cause norm collapse
even after a norm has been established in the population.
Second, such mutation is magnified by the evolutionary
manner of replication generating a new population of agents.

III. OBSERVATION OF DEFECTION

In Axelrod’s model, an agent Z is able to punish another
agent Y that does not punish a defector X, even though Z
did not see the defection of X. However, in reality, such
metapunishment is not possible if the original defection is
not observed: guaranteed observation of the original defec-
tion is an unreasonable expectation in real-world settings. In
consequence, we adjust the model so that metapunishment
is only permitted if an agent observes the original defection.

IV. STRATEGY IMPROVEMENT

Reinforcement learning offers an alternative to Axelrod’s
evolutionary approach to improving performance of the
society while keeping agent strategies and decision outcomes
private. There are many reinforcement techniques in the
literature, such as Q-learning [5], PHC and WOLF-PHC [6],
which we use as inspiration in developing a learning algo-
rithm for strategy improvement in the metanorms game.

A. Q-learning

Q-learning is a reinforcement learning technique that
allows the learner to use the (positive or negative) reward
gained from taking a certain action in a certain state in
deciding which action to take in the future in the same state.
Here, the learner keeps track of a table of Q-values that
records an action’s quality in a particular state, and updates
the corresponding Q-value for that state after each action.
The new value is a function of the old Q-value, the reward
received, and a learning rate, δ, and the action with the
highest updated Q-value for the current state is chosen. For
us, Q-learning suffers from two drawbacks. First, it considers
an agent’s past decisions and corresponding rewards, which
are not relevant here; doing so would inhibit an agent’s
ability to adapt to new circumstances. Second, actions are
precisely determined by the Q-value; there is no probability
of action, unlike Axelrod’s model. To address this latter
limitation, Bowling and Veloso [6] proposed policy hill
climbing (PHC), an extension of Q-learning in which each
action has a probability of execution in a certain state,
determining whether to take the action. Here, the probability
of the action with the highest Q-value is increased according
to a learning rate δ, while the probabilities of all other
actions are decreased to maintain the probability distribution,
with each probability update occurring immediately after the
action. In enhancing the algorithm, a variable learning rate is
introduced, which changes according to whether the learner
is winning or losing, inspired by the WOLF technique (win
or learn fast). This suggests two possible values for δ: a low
one to be used while an agent is performing well and a high
one while the agent is performing poorly.

However, in one round of Axelrod’s game, an agent can
impose multiple punishments (potentially one per defection
and non-punishment observed), while only having a small
number of opportunities to defect (four in Axelrod’s configu-
ration). Therefore, punishment and metapunishment actions
would be considered much more frequently than defection,
leading to disproportionate update of probabilities of actions,
with some converging more quickly than others. To address
this imbalance we can restrict learning updates to occur only
at the end of each round, rather than after each individual
action, so that boldness and vengefulness are reconsidered
once in each round and evolve at the same speed. The aim
here is to change the probability of action significantly when
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Table I
EFFECTS OF DECISIONS ON SCORES

Decision Effects
Defect Gain temptation payoff

Hurts all other agents
Potentially suffer punishment cost

Cooperate —
Punish Punisher pays enforcement cost

Defector pays punishment cost
Not punish Potentially suffer metapunishment

(incurring punishment cost)
Metapunish Punisher pays enforcement cost

Defector pays punishment cost
Not metapunish —

losing, while changing it much less when winning, providing
more opportunities to adapt to good performance.

While basic Q-learning is not appropriate because of the
lack of a probability of taking action, PHC-WOLF suffers
from a disproportionate update of probabilities of action.
Nevertheless, the use of the variable learning rate approach
in PHC-WOLF is valuable in providing a means of updating
the B and V values in determining which action to take.
However, since agents that perform well need not change
strategy, we can consider only one learning rate.

B. BV Learning

To address the concerns raised above, in this section,
we introduce our BV learning algorithm. This requires an
understanding of the relevant agent actions and their effect
on boldness and vengefulness, as summarised in Table I,
which outlines the different actions available to an agent
and the consequences of each on the agent’s score.

Now, since boldness is responsible for defecting, an agent
that obtains a good score as a result of defecting should
increase its boldness, and an agent that finds defection
detrimental to its performance should decrease its boldness.
Learning suitable values for vengefulness is more compli-
cated, since while it is responsible for both punishment
and metapunishment, these also cause enforcement costs
that decrease an agent’s score. Low vengefulness allows an
agent to avoid paying an enforcement cost, but can result
in receiving metapunishment. Vengefulness thus requires a
consideration of all these aspects. This intuition is formalised
within the whole simulation control loop in Algorithm 1, as
follows. (Note that we use subscripts to indicate the relevant
agent only when needed.)

First, and in order to determine the unique effect of each
individual action on agent performance, note that we de-
compose the single combined total score (TS) of the original
model into distinct components, each reflecting the effect of
different classes of actions. The defection-cooperation action
brings about a change only if an agent defects (Line 4): the
agent’s score increases by a temptation payoff, T (Line 5),
but it hurts all others in the population, whose scores

Algorithm 1 The Simulation Control Loop
1. for each round do
2. for each agent i do {Decision Making}
3. for each opportunity to defect o do
4. if Bi > So then
5. DSi = DSi + T ;
6. for each agent j: j ̸= i do
7. TSj = TSj +H;
8. if see(j,i,So) then
9. if punish (j, i, Vj ) then

10. DSi = DSi + P;
11. PSj = PSj + E;
12. else
13. for each agent k : k ̸= i ∧ k ̸= j do
14. if see(k,j,So) then
15. if punish (k, j, Vk) then
16. PSk = PSk + E;
17. NPSj = NPSj + P;
18. for each agent i do {Learning}
19. TSi = TSi + DSi + PSi + NPSi;
20. if TSi < avgS then {avgS is the mean score of all agents}
21. if explore(γ) then
22. Bi = random(); Vi = random();
23. else
24. if DSi < 0 then
25. Bi = Bi − δ;
26. else
27. Bi = Bi + δ;
28. if PSi < NPSi then
29. Vi = Vi − δ;
30. else
31. Vi = Vi + δ;

decrease by H (line 7). If an agent cooperates, no scores
change. We can therefore use just one distinct value to keep
track of this score, referred to as the defection score (DS),
which determines whether to increase or decrease boldness.

Conversely, punishment and metapunishment both have
two-sided consequences: if an agent j sees agent i defect in
one of its opportunities (o), with probability So (Line 8),
and decides to punish it (which it does with probability
Vj ; Line 9), i incurs a punishment cost, P , to its DS
(Line 10), while j incurs an enforcement cost, E, to a
different score, its punishment score, PS (Line 11). As the
name suggests, PS captures the total score obtained by
an agent as a result of punishing another, and applies to
both punishment and metapunishment (enforcement costs).
There is also a different change (resulting from potential
subsequent received metapunishment) if it decides not to
punish (Line 12). If j does not punish i, and another agent k,
which has already observed i’s defection, sees this (Line 14)
and decides to metapunish (Line 15), then k incurs an
enforcement cost, E, to its PS, and j incurs a punishment
cost P to its no punishment score, NPS (obtained from not
punishing, and comprising the metapunishment cost alone).

In Axelrod’s original model, agents that are one standard
deviation or more below the mean are eliminated and
replaced in the subsequent population generation with new
agents following the strategy captured by the B and V values
of those agents that are one standard deviation or more above
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the mean. Thus, poorly performing agents are replaced by
high-performing ones. In contrast, in our model, we dis-
tinguish more simply between good and poor performance,
with only agents that score below the mean reconsidering
their strategy. Thus, for each agent, we combine the various
component scores into a total, TS and, if the agent is
performing poorly (in relation to the average score, avgS
in Line 20), it reconsiders its boldness and vengefulness.

Now, in order to ensure a degree of exploration (similar to
mutation in the original model’s evolutionary approach) and
to enable an agent to step out of the learning trend, we adopt
an exploration rate, γ, which regulates adoption of random
strategies from the available strategies universe (Line 21).
If the agent does not explore, then, if defection is the cause
of a low score (Line 24), an agent decreases its boldness,
and increases it otherwise. Similarly, agents increase their
vengefulness if they find that the effect of not punishing is
worse than the effect of punishing (Line 28), and decrease
vengefulness if the situation is reversed. As both PS and
NPS represent the result of two mutually exclusive actions,
their difference for a particular agent determines the change
to be applied to vengefulness. For example, if PS > NPS,
then punishment has some value, and vengefulness should
be increased. Finally, given a decision on whether to modify
an agent’s strategy, the degree of the change, or learning
rate (δ), must also be considered. Since vengefulness and
boldness have eight possible values from 0

7 to 7
7 , we adopt

the conservative approach of increasing or decreasing by one
level at each point, corresponding to a learning rate of δ = 1

7 .
Thus, an agent with boldness of 5

7 and vengefulness of 3
7

that decides to defect less and punish more will decrease its
boldness to 4

7 and increase its vengefulness to 4
7 .

C. Evaluation

The algorithm is designed to mimic the behaviour of
Axelrod’s evolutionary approach as best possible, while
relaxing its unrealistic assumptions. This allows us to repli-
cate Axelrod’s results and investigate his approach in more
realistic problem domains. The analysis of a sample run
reveals that agents with low vengefulness and agents with
high boldness start changing their strategies. Here, agents
with high boldness defect frequently, and are punished as a
result, leading to a very low DS, in turn causing these agents
to decrease their boldness. Agents with low vengefulness do
not punish and are consequently frequently metapunished; as
a result, their PS is much better than their NPS, causing them
to increase their vengefulness. The population eventually
converges to comprise only agents with high vengefulness
and low boldness. While noise is still introduced via the
exploration rate causing random strategy adoption, the learn-
ing capability enables agents with such random strategies
to adapt quickly to the trend of the population. Requiring
the original defection to be observed in order to apply a
metapunishment, we ran experiments over different periods,
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Figure 1. Strategy improvement with defection observation (γ = 1%)

with results indicating that norm establishment is robust in
all runs. The result of 1000 runs for 1,000,000 timesteps is
shown in Figure 1, with each point representing the average
boldness and vengefulness of the population after a single
run. This shows that the learning algorithm is able to avoid
the weakness of the original model in the long term [3].

V. CONCLUSION

In systems of self-interested autonomous agents, we often
need to establish cooperative norms to ensure the desired
functionality. Axelrod’s work on norm emergence [1] gives
valuable insight into the mechanisms and conditions in
which such norms may be established, but suffers from limi-
tations relating to assumptions of omniscience. In response,
this paper has (i) investigated those aspects of Axelrod’s
investigation that are unreasonable in real-world domains,
and (ii) proposed BV learning as an alternative mechanism
for norm establishment that avoids these limitations.

Through this approach we have shown that not only it is
possible to avoid the unrealistic assumption of knowledge of
others’ strategies, but also that we can avoid norm collapse,
even with observation constraints on metapunishment, by
enabling individuals to incrementally change their strategies.
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