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Abstract—The use of social norms has proven to be effective
in the self-governance of decentralised systems in which there
is no central authority. Axelrod’s seminal model of norm
establishment in populations of self-interested individuals pro-
vides some insight into the mechanisms needed to support this
through the use of metanorms, but is not directly applicable to
real world scenarios such as online peer-to-peer communities,
for example. In particular, it does not reflect different topo-
logical arrangements of interactions. While some recent efforts
have sought to address these limitations, they are also limited in
not considering the point-to-point interactions between agents
that arise in real systems, but only interactions that are visible
to an entire neighbourhood. The objective of this paper is
twofold: firstly to incorporate these realistic adaptations to the
original model, and secondly, to provide agents with reputation-
based mechanisms that allow them to dynamically optimise the
intensity of punishment ensuring norm establishment in exactly
these limited observation conditions.
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I. INTRODUCTION

At the advent of the social networking era, interactions
in virtual environments are increasing dramatically yet, due
to the magnitude and speed of these interactions, their
regulation is becoming expensive, and even infeasible. Social
norms offer a means to provide for the self-organisation
of systems and societies, by delegating to the population
itself the power (and responsibility) to impose appropriate
behavioural standards [1], [2]. In this context, many have
been concerned with the development of mechanisms to
ensure the emergence of such social norms (e.g., [3], [4], [5],
[6], [7]). In particular, researchers from many scientific areas
have considered punishment as a key motivating element for
norms to be established [8], [9], [10], [11]. Here, punishment
is a second-order public good, typically incurring a cost
for the punisher, but bringing a potential benefit to the
population as a whole when correctly applied. While little
attention has been paid to the mechanisms that motivate
agents to bear the associated costs, some researchers [9],
[10] have provided cognitive explanations for the emergence
of punishment, suggesting that the salience of norms has an
impact on the defence of these norms.

This paper is compatible with such views, although here
we explore the alternative mechanism of metapunishment,
proposed by Axelrod [12] as a means of ensuring not that
norms are complied with, but that they are enforced, through
agents metapunishing those who fail to punish a defecting
agent.

Axelrod’s model adopts two strong assumptions (one
structural and another individual) that compromise the re-
semblance with the type of systems we are interested in sim-
ulating. First, the interactions among agents are fully acces-
sible to the rest of the population (including the interactions
themselves, the punishments and the metapunishments). Sec-
ond, punishment is considered static and unchanging despite
the existence of different levels of violations, or repetitions
of violations.

In this paper, we adapt Axelrod’s model so that interac-
tions become dyadic, in line with the peer-to-peer philoso-
phy (our domain of interest). While this reduces the available
information for the population as a whole, it increases the
privacy of individual agents and their behaviour. Assuming
that different levels of violations can only be deterred
with proportional intensities of punishment, which implies
proportional costs to the punisher, agents need mechanisms
to intelligently adapt the strength of punishment optimising
the self-governance costs.

Because of the limitations associated with the realistic
interaction topology, agents need to be given with more
complex mechanisms than originally to personalise and
optimise punishment. We have elsewhere considered the
possibility of experience-based adaptive punishment [13],
by which agents are able to determine an appropriate pun-
ishment for others based on their prior experience with
these others. Experiments with such techniques suggest that
it is indeed possible to achieve norm establishment with
varying levels of punishment, optimising the costs for self-
policing. However, in that model, agents interact only with
their direct neighbours, building up experience about them
through these interactions. In this paper, in contrast, we
generalise this so that agents can interact with any other
agent in the population, but this is hindered by a lack of
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experience about these others, since they vary rapidly and
are not limited to a small pool. While the consequence of
this approach is that experience-based adaptive punishment
loses much of its value, the use of reputation can offer a
solution in this new context. The main focus of this paper is
thus to consider the use of reputation in supporting adaptive
punishment in the context of dyadic interactions. Our results
show that reputation allows agents to overcome the lack of
direct experience of the broader set of agents involved in
order to determine the most appropriate level of punishment.

The paper continues in Section 2 with a review of the
metanorm model and its variants, as well as prior work on
adaptive punishment in restricted environments. Section 3
then describes the adaptation of this model to facilitate pair-
wise interactions at a distance, together with experimental
results. In turn, Section 4 builds on this with the integration
of reputation-based adaptive punishment and shows how this
addresses the problems arising by extending the model in
Section 3 to these more realistic scenarios. Finally, related
work is discussed in Section 5 and Section 6 concludes.

II. METANORM MODEL

Axelrod’s metanorm game is similar to the extended pris-
oner’s dilemma game (with the punishment phase), but also
includes a third phase in which agents can metapunish those
agents who have not punished defectors. Since punishment
is a second-order public good, the lack of punishment can be
understood as a second-order violation that can be corrected
through the use of metapunishment. Such metapunishment
is essentially an incentive mechanism for agents to maintain
punishment in an earlier stage of the process.1 The model
introduced here is an adaptation of the original model, and
can be divided into three different parts introduced in what
follows: the game dynamics, the agent model, and adaptive
punishment.

A. Game Dynamics
As has been described elsewhere, the metanorm model

aims to simulate a realistic distributed system in which a
community of self-interested agents is encouraged, without
being instructed to do so by a central authority, to adhere to a
behavioural constraint, or norm, that benefits the community
but not the individual agent adhering to the norm. The
simulation of this model provides an experimental setting
that enables the test of under which conditions a situation
arises in which the norm governs the behaviour of individual
agents.

Inspired by Axelrod’s model [12], our simulation focusses
only on the essential features of the problem. In the simula-
tion presented in Algorithm 1, agents play a game iteratively;
in each iteration, agents first make binary decisions in a

1In contrast to other cognitive explanations [9], Axelrod’s model rests
on the premise that the motivation for agents to punish is to avoid the costs
associated with metapunishment.

social dilemma situation to comply with the norm (providing
a benefit to the society) or to defect (benefiting from the
contributions of the other agents while avoiding the costs).
Defection brings a reward for the defecting agent called
temptation, and a penalty to all other agents called hurt.
However, each defector risks being observed by the other
agents2 in the population, and punished as a result. These
other agents thus decide whether to punish agents that were
observed defecting, with a low penalty for the punisher
known as enforcement cost and a high penalty for the
punished agent known as punishment cost. Agents that do
not punish those observed defecting risk being observed
themselves, and potentially incur metapunishment. Thus,
finally, each agent decides whether to metapunish agents
observed to spare defecting agents. Again, metapunishment
comes at a high penalty for the punished agent and a low
penalty for the punisher, through the punishment cost and
enforcement cost, respectively.

Now, in order to capture a key feature of computational
systems such as on-line virtual communities, we adapt
Axelrod’s classic model by introducing a topological struc-
ture [14] that determines observability among agents, so
that an agent’s neighbours are the only witnesses of its
interactions. If we apply this observability restriction to
punishment, then metapunishment is only imposed by a non-
punishing agent’s neighbour.

B. Agent Model

The decisions of agents are driven by two private vari-
ables: boldness, and vengefulness. Boldness determines the
probability that an agent defects, and vengefulness is the
probability that an agent punishes or metapunishes another
agent. These values are initialised randomly following a
uniform distribution. In each round, agents are given a fixed
number of opportunities to defect, in which boldness deter-
mines the probability that an agent defects, and vengefulness
is the probability that an agent punishes or metapunishes
another agent. Thus, the boldness and vengefulness of an
agent are said to comprise that agent’s policies. After several
rounds of the game, each agent’s rewards and penalties
are tallied, and successful and unsuccessful strategies are
identified. By comparing themselves to other agents on this
basis, the policies of poorly performing agents are revised
such that features of successful strategies are more likely to
be retained than those of unsuccessful ones.

1) Policy Learning Mechanism: A major problem with
Axelrod’s model is due to the evolutionary approach adopted
(as identified in [15], [16]). First, this evolutionary approach
causes norms to collapse in the long term due to the
noise created from the rapid combination of elimination and
multiplication of agents in the population, and the mutation

2Notice that in Axelrod’s original model each defector could potentially
be observed by any other agent in the population.
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Algorithm 1 interact()
1. for each agent i do
2. for each opportunity to defect o do
3. if defect (Bi) then
4. DSi = DSi + T
5. for each agent j ∈ NBi: j ̸= i do
6. TSj = TSj +H
7. if punish (j, i, Vj) then
8. DSi = DSi + P
9. PSj = PSj + E

10. else
11. for each agent k ∈ NBj : k ̸= i ∧ k ̸= j do
12. if punish (k, j, Vj) then
13. PSk = PSk + E
14. NPSj = NPSj + P
15. end if
16. end for
17. end if
18. end for
19. end if
20. end for
21. end for

involved in the process. Second, the original model assumes
the existence of a central authority with access to all agents’
scores in order to determine the evolutionary process, yet
this is unreasonable.

In consequence, we replace this original approach with a
reinforcement learning algorithm that limits accessibility to
global information, and instead allows agents to learn from
their own experience [17]. In this algorithm (Algorithm 2),
agents adapt their policies (boldness and vengefulness) at the
end of each round of the simulation through a form of q-
learning [18], a reinforcement learning technique embedded
in each agent. Here, agents track the utility gained or lost
from choosing the different actions available, and modify the
relevant action policy in the direction that either increases
or decreases the chances of performing these actions in the
future, which should improve their utility.

In particular, each agent keeps track of three different
scores: one related to boldness and the other two related
to vengefulness. The boldness-related score is the defection
score (DS) (since boldness is responsible for defection) and
is concerned with any utility gained (temptation) or lost
(punishment) from defection. Agents increase their boldness
if their defection score is greater than zero and decrease it
otherwise.

The vengefulness-related scores are the punishment score
(PS) and non punishment scores (NPS). The former is
the utility lost from punishment, which consists of the
cumulative enforcement cost that agents must pay when
punishing or metapunishing, while the latter is the utility loss
that results from the agent sparing another agent and can be
seen as any metapunishment that is applied to the agent as a
consequence. Agents increase their vengefulness if the NPS
is better than the PS and decrease it in the opposite case.

Algorithm 2 learn(γ, oneLevel)
1. TSi = TSi + DSi + PSi + NPSi

2. if explore(γ) then
3. Bi = random()
4. Vi = random()
5. else
6. δBi = BAdaptiveLearning(i,DSi, oneLevel)
7. if DSi < 0 then
8. Bi = max(Bi − δBi, 0)
9. else

10. Bi = min(Bi + δBi, 1)
11. end if
12. δVi = VAdaptiveLearning(i,PSi,NPSi, oneLevel)
13. if PSi < NPSi then
14. Vi = max(Vi − δVi, 0)
15. else
16. Vi = min(Vi + δVi, 1)
17. end if
18. end if

2) Adaptive Policy Learning: In our model, agents do not
adapt their policies in the same way: a policy that results in
a low utility is altered differently to a policy that is not as
bad. Therefore, agents change their policies proportionally
to their success, following the WoLF philosophy [19], so
that if the utility lost from taking a certain action is high,
then the change to the policy is greater, and if the utility lost
is low then the change to the policy is low.

In fact, the policy adaptation approach presented here is an
enhanced version of an earlier approach [20], which depends
on extreme cases (the best or worst scores that an agent
can possibly obtain) that might not actually occur in real
settings. As a result, this alternative approach depends on
cases that actually do occur during agent interactions. This
means that an agent changes its policies according to the
difference between its current utility and the best or worst
utility obtained in its history of interactions.

First, and with regard to boldness, the required
change to an agent’s boldness is calculated using the
BAdaptiveLearning function of Algorithm 3. Here, agents
keep track of two boldness-related historical variables:
HMaxDSi is the maximum obtained defection score in
i’s history of interaction, and HMinDSi is the minimum
obtained defection score in i’s history of interaction. These
two variables are updated according to the current obtained
defection scores DSi. Then, factorB, which determines
the change that should be made to an agent i’s boldness,
is calculated based on the division of DSi by HMaxDSi

if DSi is greater than zero, or on the division of DSi by
HMinDSi if DSi is negative.

Given this, we now need to determine how factorB
can be used to change an agent’s policy. In order to avoid
dramatic policy movements that could lead to violent fluctu-
ations, we limit the change that can be applied to a maximum
value. In this case, the maximum is the difference between
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Algorithm 3 BAdaptiveLearning(i,DSi, oneLevel)
1. if DSi < 0 then
2. HMinDSi = min(HMinDSi,DSi)
3. factorBi = DSi/HMinDSi

4. else
5. if DSi > 0 then
6. HMaxDSi = max(HMaxDSi,DSi)
7. factorBi = DSi/HMaxDSi

8. else
9. factorBi = 0

10. end if
11. end if
12. δBi = oneLevel × factorBi

13. return |δBi|

Algorithm 4 VAdaptiveLearning(i,PSi,NPSi, oneLevel)
1. differVi = |PSi − NPSi|
2. HMinPSi = min(HMinPSi,PSi)
3. HMinNPSi = min(HMinNPSi,NPSi)
4. if NPSi < PSi then
5. factorVi = differVi/HMinPSi

6. else
7. if NPSi > PSi then
8. factorVi = differVi/HMinNPSi

9. else
10. factorVi = 0
11. end if
12. end if
13. δVi = oneLevel × factorVi

14. return |δVi|

levels as in Axelrod’s original model, of 1
7 , which we make

a constant, oneLevel. Thus, an agent modifies its boldness
by δBi, which is calculated by multiplying factorB with
the maximum change of oneLevel, so that it can maximally
change its boldness by one level (or by 1

7 ) when factorB
is 1.

Second, with relation to vengefulness (as in the VAdap-
tiveLearning function of Algorithm 4), agents keep track
of two historical variables: HMinPSi is the minimum
obtained punishment score in i’s history of interactions;
and HMinNPSi is the minimum obtained non punishment
score in i’s history of interactions. Having the current
obtained punishment score PSi and non punishment score
NPSi, agents update the historical variables accordingly.
Then, factorV , which determines the change that should
be made to an agent i’s vengefulness, is calculated based on
division of differVi (the difference between PSi and NPSi)
by HMinPSi if PSi is better than NPSi or on the division
of differVi by HMinNPSi if PSi is worse than NPSi.

The very first change that to an agent’s policy is always
the maximum possible change, because there is nothing
in the history, and the current scores will be considered
as maximum or minimum scores for later steps. However,
these maximum or minimum scores can change if the agent
obtains better or worse scores in later interactions.

C. Adaptive Punishment

1) Adaptive Punishment and Static Punishment: In Ax-
elrod’s original model, punishment is static and determined
at design time, so that all norm violators receive punishment
with the same magnitude, implying a constant cost also for
the punisher.

As agents are rational and they seek to maximise their
utility, the reinforcement learning approach presented pre-
viously fits well in the model. However, the original vision
of punishment presented by Axelrod is inefficient for both
parties involved in this self-governance activity, and we
propose an improvement through an adaptive approach.
In Axelrod’s original model, the punishment applied to
defectors was fixed off-line. This eases the computational
costs involved, but lacks efficacy, since it does not consider
the degree of violation nor the frequency of violation. Both
of these two factors should be considered in order to specify
the appropriate punishment for defectors.

Our variation of the model allows the possibility of
managing the existence of different types of defectors,
classified not only by the intensity of their instantaneous
defection (producing a higher defection in one interaction)
but also by the frequency of defections (defection during
multiple timesteps). These different types of defections must
be responded to with appropriate values of punishment. This
adaptive adaptation of punishment results in an optimisation
process that positively affects both parties: (1) the punisher,
as it reduces the costs associated with punishment to the
minimum functional value, and (2) the punished, as it only
receives the necessary amount of punishment to be deterred
from future violations.3

For example, in the case of peer-to-peer (P2P) file sharing,
agents are able to download files from each other, with
the norm that these agents must upload the files they
have downloaded in order to share them with others and
to maintain their availability on the network. However,
since uploading consumes bandwidth, the absence of an
appropriate punishment can lead self-interested agents to
choose not to share files and preserve their bandwidth. In
the case of frequent occurrences of such selfish behaviour,
the efficiency of the whole P2P network is threatened. As
a possible solution, de Pinninck et al. [22] suggest that a
suitable punishment for such behaviour is to ostracise norm-
violators. Here, agents that violate the norm are blocked for
the same time period (as determined by the system designer)
for each occurrence of the violation, and the challenge is to
determine the most appropriate blocking period.

For example, while a long blocking period may cause
some agents to cease defection, others may do so with only
a very short blocking period, yet if the longer period is used,
then the network loses the participation of the latter for more

3It has been shown elsewhere that larger punishments than necessary can
have a detrimental effect on cooperation.[21]
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time than necessary. Conversely, the longer period may not
be sufficient to cause still more agents not to defect if the
utility gain from violation is much greater than the loss from
being blocked. Identifying the appropriate blocking period
can thus be crucial to the performance of the system, but is in
general impossible, simply because no single fixed blocking
period can be effective for all agents. In contrast, adaptive
punishment adapts punishment to suit the circumstances;
it can be increased when insufficient and decreased when
excessive. Agents that do not change their behaviour after
punishments can thus be punished for longer on subsequent
violations, until they start to comply, while agents that start
to comply occasionally (even if still violating) can have
their punishments decreased. In this way, the punishment
need not be fixed at design time, giving a more flexible
mechanism to deal with different types of agents according
to their behaviour.

2) Experience-Based Adaptive Punishment: As discussed
earlier, agents adapt their behaviour according to a utility-
maximising policy, where the adaptation is proportional to
the rewards associated with each action. Agents therefore
need to be provided with a punishment-optimising mech-
anism whose task is twofold: (1) calculate the appropriate
punishment to deter a defector from future violations; and
(2) lower the cost for the punisher, because of the propor-
tionality relationship between the cost of punishment and its
damage (by allowing the punisher to adapt the intensity of
punishment to be applied, the cost associated with it adapts
consequently).

Since agents can observe the degree of an instantaneous
defection, in order to calculate the appropriate punishment,
an agent needs to consider the past behaviour of the specific
violator. To achieve this, the identity and actions of the
various other interacting agents in the environment must be
recorded. Now, an agent’s memory is limited to a particular
window size so that only the most recent interactions are
recorded, and an agent whose behaviour changes is not
punished severely just because of defection in the distant
past. Then, if an agent continues to defect regularly, any
new punishment should be stronger than the previous one.
Similarly, a generally compliant agent that only recently
defected should be punished less that an agent that regularly
defects, to avoid using unnecessary power.

In relation to a particular agent j, there are two main
values that must be stored: the number of previous instances
of defection of agent j (ndj), and the number of previous
instances of compliance of agent j (ncj), both in the
context of the window size. From these values we obtain
the defection proportion (dpj), representing the percentage
of defections compared to the total number of decisions, by
dividing ndj by the total of ndj and ncj , as follows.

dpj =
ndj

ndj + ncj
(1)

However, the absolute number of defections itself has an
additional effect on punishment, since an agent that violates
a norm 10 times is more determined than an agent that
violates it just once. An agent that violates the norm 1 out of
10 times should be punished less than an agent that violates
the norms 10 out of 100 times. This is represented in what
we call the local defection view of agent i on agent j, and
is specified as follows:

LocalV iew : AGENT ×AGENT → R (2)

with:

∀agi, agj ∈ AGENT : LocalV iew(agi, agj) = dpj × ndj

where:
• agi is the punishing agent;
• agj is the defecting agent;
• dpj is the defection proportion of agent j in agent i’s

memory; and
• ndj is the number of defections of agent j in agent i’s

memory.
In order to allow agents to apply punishment with the

appropriate intensity, punishment needs to change according
to the defector’s previous history, optimising its cost. How-
ever, an initial punishment value is needed as a base that is
adapted depending on the type of defection. This punishment
unit (pu) is used to determine the punishment value, by
multiplying it by the defection proportion and the absolute
number of defections. Punishment is thus a function that
takes two agents and returns the punishment value applied
by the first agent to the second, as follows:

ExpPunish : AGENT ×AGENT → R (3)

with:

∀agi, agj ∈ AGENT,

ExpPunish(agi, agj) = LocalV iew(agi, agj)× pu

The value of metapunishment is calculated similarly,
with the number of defections representing the number of
instances of sparing defectors, and the number of instances
of compliance representing the number of instances of
punishing defectors.

The cost of punishment is fixed to 1 unit for punishers
reducing the utility of violators by 4 units (1:4 punishment
technology is used because it has been shown [23] to be
more effective in promoting cooperation).

III. THE METANORM MODEL AND ONE-TO-ONE
INTERACTIONS

As discussed above, Axelrod’s original model does not
capture the dyadic interactions that are essential for any
P2P-based environment. In order to enable its application
to such environments, the model needs to be modified so
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Figure 1. A one-to-one interaction between A and D

that it enables emergence of norms when the fundamental
principles of interaction are changed. In this section, we
explain how the model is modified in support of this and
the results that the new model brings.

A. One-to-One Interactions
Unlike the original model, agents in P2P environments

must be able to interact with any other agent in the network,
yet managing such location and connection between individ-
uals is challenging. When looking for particular services,
for example, consumers can ask central registries for infor-
mation about who can provide them with the service they
seek, information that can also be obtained by mobilising
neighbours in their social network. Indeed, networks are
an effective way to obtain information — for example pro-
vided through word-of-mouth — and represent an alternative
source, with respect to traditional methods. While conven-
tional approaches in multi-agent systems, such as registries
or matchmakers, partially address this problem [24], in
highly dynamic environments, there is a valuable amount of
information that cannot be stored in centralised repositories.
In some cases, much of this information (such as up-to-date
details about the quality of service or the availability of the
service) may be accessed only by using social networks of
interaction. In this paper, a hybrid approach is proposed:
similarly to the white pages of UDDI [25], our agents query
a central server to obtain pointers to service providers, and
then all other important information about the service is
provided by the service providers themselves. The operation
of the system is similar to that implemented by Napster.

This can be seen as an agent asking any other agent about
a specific file in a peer-to-peer file sharing system. Since the
two interacting agents might not be directly connected (they
are not neighbours), the interaction takes place through a
route that links the two agents but involves various other
agents along the way, each of which is capable of observing
all communications involved in the interaction. Such a
scenario is illustrated in Figure 1, which shows an interaction
between two agents A and D, where agent A is the service
consumer requesting a service from agent D. The dashed
line represents the interaction that is taking place through a
path involving both agents B and C, which are the observers.

With regard to punishment decisions, the changes to
the interaction protocol and the observability of interaction
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Figure 2. Potential punishments in a one-to-one interaction between A
and D

affect some decisions, especially in relation to punishment
and metapunishment. First, punishment is only applied by
the party that is requesting the service if the service provider
defects and does not actually provide the service. This is
because the service consumer is the only agent capable
of punishing since it is the only agent that is directly
affected by the defection. However, other observers record
the defection in order to be able to make relevant decisions
about subsequent interactions in the future. Second, and
as a result of the aim of incentivising agents to respond
appropriately to defections, any agent that observes the
consumer not punishing the provider for defecting is able
to metapunish the consumer. Figure 2 shows the example
introduced in Figure 1, but now in relation to punishment
and metapunishment. Since agent D is the service provider
for agent A, D is a potential defector (according to its
likelihood of defection or boldness) towards A. As a result,
A is a potential punisher (according to its likelihood of
punishing or vengefulness) towards D. In addition, and
because they are observers of the interaction, both agents
B and C are potential metapunishers (again, according to
their likelihood of punishing or vengefulness).

B. Experience-Based Adaptive Punishment Results

In light of these modifications, and for the model to
reflect the one-to-one interaction scenario, a set of ex-
periments was undertaken to show the effect of this new
arrangement on the effectiveness of the model in achieving
norm establishment (where norm establishment is defined
as resulting in a situation in which there is a majority
of agents with high vengefulness and low boldness). In
these experiments, the population of agents consists of 1,000
agents whose initial boldness and vengefulness are generated
by using a uniform distribution function. With regard to the
underlying structure of the system, the focus of our work is
on scale-free networks, since it is more representative of the
domain of interest (peer-to-peer networks). Agents are thus
located in a scale-free network (that represents theoretical
social networks [26], [27]) generated using the Barabási-
Albert (BA) model [28], with a starting value of the basic
punishment unit being −1, which is presented with other
parameter values as shown in Table I. A final remark is that
since communication cost is irrelevant to the phenomenon
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Table I
EXPERIMENTAL SET UP

Number of agents 1,000
Number of timesteps 1,000,000
Temptation value 3
Hurt value −1
Enforcement cost −2
oneLevel 1

7
γ 0.01
pu −1
Memory Window Size 20

under investigation, it is assumed that communication that is
required for agents to exchange information is free. Figure
3 illustrates the results obtained from 1,000 independent
runs, where each point represents the final average boldness
and vengefulness of the whole population. This shows that
in all runs, the population ends with both high boldness
and high vengefulness, which means that agents in this
population defect frequently (since they have high boldness)
and also punish and metapunish regularly (since they have
high vengefulness).

Having analysed the results, it is clear that agents are
still defecting, despite the punishments applied, because
these punishments do not exceed the utility gain that agents
receive from defecting (via the temptation value), and are
thus not effective. This is because a punishing agent has
insufficient experience with the defecting agent due to lim-
ited chances of frequent interaction and the limited memory
window size of each agent, preventing the punisher from de-
termining an appropriate punishment to apply to the defector.
However, because metapunishment is possible by multiple
observers, it guarantees that the level of vengefulness is still
high enough for punishment and metapunishment to take
place.

This explanation is supported by Figure 4, which shows
the total punishment applied in each round, and the total
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Figure 3. Results for 1,000 agents in a scale-free network
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Figure 4. A Comparison between Temptation and Punishment Levels in
Each Round

temptation gained in the same round. (Note that, for clarity,
we have plotted the results of only the first 50 rounds, even
though there are actually many more.) The figure shows that
the total temptation (utility agents gain from defecting) is
significantly higher than the punishment (utility agents lose
from defecting), reinforcing our claim that punishment is
ineffective.

IV. REPUTATION-LIKE TECHNIQUE

Unlike Axelrod’s original model in which all agents are
connected, and all can observe and thus punish others,
this new model provides observers only along the path of
interaction. As shown above, in this constrained context,
experience-based adaptive punishment alone is not adequate
to achieve norm establishment due to the limited experience
of agents with each other. To address this, agents need more
information about those involved in the interactions. They
can seek such information from other agents that are known
to have more experience with the relevant agent, in a fashion
that can be seen as a form of reputation for that agent.
Agents can then make use of this reputation to determine
a more appropriate punishment decision.

Clearly this relies on agents providing truthful reports of
the behaviour of others; we could argue that it is in the
population’s self interest to establish the norm, so that agents
are intrinsically motivated to provide reliable information
and not lie. However, it is out of the scope of this paper to
investigate the effects of non-reliable (cheating) agents. In
what follows, therefore, we outline the simple mechanism by
which an agent establishes reputation for use in determining
appropriate punishments. The key point to note is that this
is intended not as a sophisticated contribution to work on
reputation, but as an illustration of how reputation (even in
a very simple form) can help to support regulation.
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A. Reputation Model
The basic idea of the reputation model is that agents

aggregate the information they obtain from others with the
information that they already have as a result of their own
individual experience. Thus, if agent A decides to punish
agent D for defecting, it first sends a request to all agents
along the path of interaction, asking for information about
D. Then, all other agents (B and C in our example) calculate
the defection proportion of D and send it back to A. Having
received these different values, A then aggregates them
with its own assessment of defection proportion to form a
total defection proportion. The aim is to augment the rather
limited local view of defection for D with a global view that
takes into account a broader range of experience to give a
more appropriate punishment.

Now, since the method of calculating the local view of
defection has already been introduced in Section II-C2, we
here introduce the GlobalV iew that returns the sum of local
views of all agents in the path of interaction (excluding
the two main interacting parties), and dividing this by the
number of agents on the path (to maintain a value between
0 and 1). Here, PATH is the set of all possible paths
(essentially sets of agents along those paths) in the network.

GlobalV iew : AGENT × PATH → R (4)

with:

∀agi, agj ∈ AGENT, p ∈ PATH, agk ∈ p, agi, agj /∈ p :

GlobalV iew(agj , p) =

∑|p|
k=1 LocalV iew(agk, agj)

|p|
where:

• agi is the punishing agent;
• agj is the defecting agent;
• p is the the path of interaction involving all other

agents;
• agk is an observing agent that belong to P
• LocalV iew(agk, agj) is the local view by agent k

of defection of agent j (calculated using the function
defined in formula 2); and

• pu is the basic punishment unit used in the model.
This global view can now be used to specify the method

of determining the total defection view, which incorporates
both the local and global view of the defecting agent and
can be calculated as follows.

TotalV iew : AGENT ×AGENT × PATH → R (5)

with:
∀agi, agj ∈ AGENT, p ∈ PATH :

TotalV iew(agi, agj , p) =

LocalV iew(agi, agj) +GlobalV iew(agj , p)
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Figure 5. Reputation-based results for 1,000 agents in a scale-free network

B. Reputation-Based Adaptive Punishment
In this reputation-based punishment technique, the value

of punishment is calculated similarly to experience-based
punishment, but with the replacement of the local defection
view with the total defection view, as follows.

RepExpPunish : AGENT ×AGENT → R (6)

with:

∀agi, agj ∈ AGENT :

RepExpPunish(agi, agj) = TotalV iew(agi, agj)× pu

C. Results
Given this new reputation-based model, we ran experi-

ments to show the effect of the technique on the defection
rate. These experiments were set up like those introduced
earlier (using the parameters in Table I), and provided results
indicating the successful application of levels of punishment
appropriate to establishing the norm. A sample result of one
experiment involving 1,000 runs is shown in Figure 5, in
which there is a noticeable improvement in the results. First,
the population still has a high level of vengefulness, which
means that punishment and metapunishment are active.
Second, and most importantly, the level of boldness has
dropped significantly, because agents that are faced with a
defecting agent can gather much more information about
this agent. As a result, their punishment can be much more
appropriate in limiting the opportunities for this agent to
defect in the future.

As before, Figure 6 shows the total temptation and punish-
ment in each round. This time, however, the results indicate
that punishment does indeed exceed temptation, suggesting
that punishment is much more appropriate in preventing
agents from defecting. Interestingly, the punishment values
vary significantly over time, also indicating that they are
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continually adjusted in line with experience to give the level
most suitable for the circumstances.

V. RELATED WORK

Even though Axelrod’s simulation model is limited, he
provides a good and valuable explanation for the emergence
of cooperation and the stability of punishment. Since then
however, many others [8], [2], [11] have been concerned
about the evolution of altruistic punishment, and some au-
thors in particular have empirically shown that the existence
of punishment allows for the emergence and stability of
cooperative strategies within human populations. Indeed, in
the last decade, an important body of work concerned with
mutiagent systems and punishment has developed, analysing
all aspects related to the regulation of normative behaviour
[29].

Prior work in this area has mainly addressed the use
of different forms of punishment in order to obtain the
desired system behaviour. For example, de Pinninck et
al. [30] takes the use of reputation to its most extreme,
by allowing agents to definitively remove interactions with
norm-violators. Here, ostracism leads to satisfactory results
in the presented P2P example, but this approach suffers from
the weakness that the norm-violators lose all possibility of
interaction, and are not allowed to adapt and alter their
behaviour after punishment. In the context of applying a
punishment to alter the behaviour of the punished agent,
Villatoro et al. [9] introduces a simple heuristic for adaptive
punishment in a prisoner’s dilemma setting. This adaptive
punishment approach obtains good results but involves adap-
tation time.

In contrast, the contributions of this paper are distinct in
providing a monetary punishment that alters the behaviour
of agents; this punishment is dynamically calculated and
adapted for each specific agent, based on its previous be-
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haviour. The information required to do so is either obtained
through direct interactions or communicated by other peers;
by allowing this communication, agents avoid the gap of
the adaptation found in [9], providing the most suitable
punishment instantly.

VI. CONCLUSION AND FUTURE WORK

Norm emergence is an important and valuable phe-
nomenon that has applications to self-organising systems
such as peer-to-peer networks and wireless sensor networks
in which there is no interference from any central or outside
authority. While there has been much work on this phe-
nomenon (as discussed earlier), punishment has generally
been considered to be static (though with some exceptions).
In response, our work in this paper focusses on adaptive
punishment and its use for achieving norm establishment. To
this end, we used a previously adapted version of Axelrod’s
metanorm model, and investigated the effect of adaptive
punishment on establishing the norm in the context of
limited observability.

In particular, our results show that experience-based adap-
tive punishment fails to stop agents defecting when obser-
vation is limited. This is due to agents not having enough
information about each other, so they are not able to estimate
efficient punishments. However, by introducing reputation
into the model to provide extra information, this does not
remain the case. Reputation enriches agents’ information,
and allows them to determine appropriate punishment deci-
sions that are able to regulate agent behaviour and prevent
them from defecting. While our reputation model is very
simple, it is perfectly adequate for our aim of investigating
the use of reputation in building an adaptive punishment
mechanism. Having seen that reputation can be valuable in
the development of such a mechanism, our future work will
focus on investigating the use of more complex reputation
models and their effect on improving the efficiency of
adaptive punishment even further.
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