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Abstract. As has been stated elsewhere, norms are a valuable means of estab-
lishing coherent cooperative behaviour in decentralised systems in which there
is no central authority. Axelrod’s seminal model of norm establishment in popu-
lations of self-interested individuals provides some insight into the mechanisms
needed to support this through the use of metanorms, but considers only limited
scenarios and domains. While further developments of Axelrod’s model have ad-
dressed some of the limitations, in particular in considering its application to
different topological structures, this too has been limited in not offering an ef-
fective means of bringing about norm compliance in scale-free networks, due to
the problematic effects of hubs. This paper offers a solution, first by adjusting the
model to more appropriately reflect the characteristics of the problem, and sec-
ond by offering a new dynamic policy adaptation approach to learning the right
behaviour. Experimental results demonstrate that this dynamic policy adaptation
overcomes the difficulties posed by asymmetric distribution of links in scale-free
networks, leading to an absence of norm violation, and instead norm emergence.

1 Introduction

Norms are an effective means of governing the behaviours of different members of
decentralised open systems, such as P2P file-sharing systems in which cooperation
between members maintains benefits for all. However, individuals often take benefits
without contributing to the common good, the free riding phenomenon by which some
download files from others without uploading in return. In decentralised systems, the
absence of a central authority means that there is no consequence for such behaviours.
Many researchers ([4, 5, 10, 14, 12]) have proposed norms as a means of regulating
agent behaviour but, as shown by Axelrod [1], norms alone may not lead to desired
outcomes. In consequence, Axelrod proposed metanorms as a means of ensuring not
that norms are complied with, but that they are enforced. He showed that metanorms
are effective in fully-connected networks, but did not consider other kinds of topology.

Some work has already been undertaken on examining the impact of different topolo-
gies on norm establishment. For example, Savarimuthu et al. [9] consider the ultimatum
game in the context of a role model that provides advice on whether to change norms in
order to enhance performance, and provide experimental results for random and scale-
free networks. Delgado et al. [3] study norm emergence in coordination games in scale-
free networks, and Sen et al. [11] similarly examine rings and scale-free networks in a
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related context. Additionally, Villatoro et al. [13] explore norm emergence within lat-
tices and scale-free networks. While these efforts provide valuable and useful results,
the context of application has tended to be limited, with only two agents involved in a
single interaction, rather than a larger population. This simplifies the problem compared
to those in which the actions of multiple agents can impact on norm establishment.

Rather than adopting a fundamentally different model, in this paper we examine
the problem of norm establishment in Axelrod’s original model but extended to address
the issues arising in topological structures, and in particular scale-free networks, which
cause two significant problems. First, Axelrod’s model assumes a fully connected net-
work, and is predicated on that for certain aspects, such as how one agent observes
another’s actions. In a variably connected structure, this part of the model is thus not
meaningful and requires modification, causing some difficulties in establishing norms.
Second, in scale-free networks, which contain both heavily connected nodes (hubs)
and lightly-connected nodes (outliers), hubs strongly influence norm emergence since
they are involved in observation of, and interaction with, so many others in the network.
While the work of Galan et al. [6] addresses the first point, applying Axelrod’s model to
other networks, the approach requires inappropriate access to the strategy of others [8].

In response, this paper provides two key contributions: it addresses a weakness in a
previous technique for lattices and small-worlds to be consistent with the requirements
of agent autonomy, and it provides a dynamic policy adaptation mechanism that leads to
norm emergence in scale-free networks for which prior efforts have not succeeded. The
paper begins with a brief description of the metanorm model. Section 3 then considers
the problems that arise from the use of scale-free networks, and the adaptation of the
model to cope with their characteristics. Section 4 introduces our solution for achieving
norm emergence in this context and, finally, Section 5 concludes.

2 The Metanorms Model

Inspired by Axelrod’s model [1], our simulation focusses only on the essential features
of the problem. In the simulation, the agents play a game iteratively; in each iteration,
they make a number of binary decisions. First, each agent decides whether to comply
with the norm or to defect. Defection brings a reward for the defecting agent, and a
penalty to all other agents, but each defector risks being observed by the other agents
and punished as a result. These other agents thus decide whether to punish agents that
were observed defecting, with a low penalty for the punisher and a high penalty for the
punished agent. Agents that do not punish those observed defecting risk being observed
themselves, and potentially incur metapunishment. Thus, finally, each agent decides
whether to metapunish agents observed to spare defecting agents. Again, metapunish-
ment comes at a high penalty for the punished agent and a low penalty for the punisher.

The behaviour of agents in each round of the game is random, but governed by
three variables: the probability of being seen, boldness, and vengefulness. In each round,
agents have a fixed number of opportunities to defect, each of which has a randomly
selected probability of a defection being seen. Then, if an agent’s boldness exceeds the
probability of a defection being seen, the agent defects. Vengefulness is the probability
that an agent punishes or metapunishes another agent. Thus, the boldness and venge-
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Algorithm 1 The Simulation Loop
1. for each round do
2. interact()
3. learn()

fulness of an agent are said to comprise that agent’s strategy (or policy which we use
when referring more specifically to agent actions). After several rounds of the game,
each agent’s rewards and penalties are tallied, and successful and unsuccessful strate-
gies are identified. By comparing themselves to other agents on this basis, the strategies
of poorly performing agents are revised such that features of successful strategies are
more likely to be retained than those of unsuccessful ones. While successful strategies
for agents increase their scores, our aim, in contrast, is to find strategies that will estab-
lish norms in the community: i.e. where agents tend to abide by the norm (due to low
boldness) and tend to enforce and meta-enforce the norm (due to high vengefulness).

2.1 Evolution vs Learning

Axelrod’s evolutionary approach works well as a model to identify the fittest strategies
because all agents act in an identical context. With the introduction of a topology, each
agent possesses a potentially unique context defined by the agents to which it is con-
nected. As such, strategies are not freely interchangeable. An agent typically keeps its
strategy private, but adapts it in response to perceived effectiveness. Mahmoud et al.
addressed these concerns by means of a reinforcement learning mechanism [8]; since
we base our work on this starting point, we briefly describe those algorithms before
presenting our own contributions. As illustrated in Algorithm 1, the simulation consists
of several rounds, comprising an interaction phase and a learning phase, both of which
rely on the identification of different components in the makeup of the utility (or score),
which we introduce first. In order to assess and improve performance, each agent has
a measure of utility, represented by different scores: defection score (DS), punishment
score (PS), punishment omission score (POS) and total score (TS). DS is the utility
gained or lost from defecting, PS is the utility lost from punishing others, and POS is
the utility lost from not punishing defections. Finally, TS is the sum of these scores, in
addition to the loss of utility that is borne by agents as a result of others defecting.

The interaction phase is concerned with the interaction between agents. As shown in
Algorithm 2, each agent has various defections opportunities (o), in which it decides to
defect (to violate the norm) if its boldness is greater than the probability of its defection
being seen (So). As a result, the agent’s DS is increased by a temptation value T ,
while every neighbouring agent NB (all agents that are directly connected) is hurt,
reflected through a negative value H being added to the agent’s total score. However,
each hurt agent can observe the defection and react to it by imposing a punishment
with probability corresponding to the observing agent’s vengefulness. If an agent is
punished, then its DS is decreased by a value P , and the punishing agent’s PS is
decreased with enforcement cost E. If an observing agent does not punish then, in
turn, neighbours that observe this can metapunish the agent, again with probability
corresponding to vengefulness. This results in the metapunished agent’s POS being
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Algorithm 2 interact()
1. for each agent i do
2. for each opportunity to defect o do
3. if B

i

> S
o

then
4. DS

i

= DS
i

+ T
5. for each agent j 2 NB

i

: j 6= i do
6. TS

j

= TS
j

+H
7. if see(j,i,S

o

) then {j sees i}
8. if punish (j, i, V

j

) then {j punishes i}
9. DS

i

= DS
i

+ P
10. PS

j

= PS
j

+ E
11. else
12. for each agent k 2 NB

j

: k 6= i ^ k 6= j do
13. if see(k,j,S

o

) then
14. if punish (k, j, V

j

) then
15. PS

k

= PS
k

+ E
16. POS

j

= POS
j

+ P

decreased by P (and thus increased in magnitude), since the metapunishment is a result
of not punishing the defector, while the metapunishing agent’s PS is reduced by E.

In the learning phase (Algorithm 3), the various scores are used as a means of im-
proving performance in each round. Agents change their policies for action in the di-
rection that should result in better scores. Initially, TS is calculated by accumulating
the various component scores, and this is then used to determine whether to modify its
policy, by comparing TS with the average population score (since agents that perform
well should not change). If an agent’s defection score DS is positive then it increases
boldness, and decreases it if negative. Conversely, vengefulness is increased if PS is
better than POS, and decreases otherwise. These changes arise by adding or subtract-
ing a learning rate �. Moreover, to explore the policy space, an agent may completely
change its boldness and vengefulness values, determined by an exploration rate, �.

2.2 Metanorms, Lattices and Small Worlds
As Mahmoud et al. [7] demonstrate, applying this model to fully-connected networks,
lattices and small worlds results in norm emergence with different levels of success cor-
responding to the characteristics of the topologies. More specifically, the model always
results in a population of agents with low average boldness and varying degrees of high
average vengefulness. However, both lattices and small worlds have the attribute that
neighbourhood size determines the number of neighbours to which each agent must be
connected, and this appears to be important for convergence to norm emergence, with
larger neighbourhoods giving better vengefulness. Conversely, population size has no
effect on lattices, but in small worlds a larger population decreases vengefulness.

3 Scale-free Networks

The topologies considered above are similar in that each agent has exactly the same
number of connections, in contrast to scale-free networks [2], in which connections be-
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Algorithm 3 learn()
1. for each agent i do
2. TS

i

= TS
i

+ DS
i

+ PS
i

+ POS
i

3. if TS
i

< AvgSNBi
then

4. if explore(�) then
5. B

i

= random()
6. V

i

= random()
7. else
8. if DS

i

< 0 then
9. B

i

= B
i

� �
10. else
11. B

i

= B
i

+ �
12. if PS

i

< POS
i

then
13. V

i

= V
i

� �
14. else
15. V

i

= V
i

+ �

tween nodes follow a power law distribution. Thus, some nodes have a vast number of
connections, but the majority have very few connections, as illustrated in Figure 1(a).
These properties of scale-free networks suggest an imbalance in connections. In turn,
this has an impact on the results that can be obtained, due both to punishment and to
enforcement costs, which dramatically modify the dynamics of the system. To inves-
tigate this, we ran 1000 experiments on a scale-free network with 1000 agents, five of
which were hubs (having a large number of connections) and the others (which we call
outliers) with at least two connections to other agents in the population, and typically no
more than four connections (according to Barabasi’s algorithm [2]). Each experiment
was run for 1000 rounds (or timesteps), and parameters for the experiments were as fol-
lows (and are the same for all subsequent experiments reported in this paper): T = 3,
E = �2, P = �9, H = �1, � = 1

7 and � = 0.01. The results, shown in Figure 1(b),
indicate that all runs end with both average boldness and average vengefulness, so that
no norm is established. However, a detailed analysis of individual runs reveals that this
is because there is no significant change to the average vengefulness and boldness, with
both fluctuating around the average from the start of the run until the end.

By differentiating between hubs and outliers, some patterns are revealed, however.
In particular, the model succeeds in lowering the boldness of hubs, but their vengeful-
ness remains near average. Because hubs are connected to many other agents and are
punished many times for a defection, boldness decreases. Conversely, they also punish
many of these other agents for defecting, and consequently pay a very high cumula-
tive enforcement cost that causes them to lower their vengefulness. In turn, this lower
vengefulness causes them subsequently not to punish others and as a result to receive
metapunishment from other hubs, leading to an increase in vengefulness again. Over
time, this repeats, with vengefulness decreasing and then increasing back to the av-
erage, as shown in Figure 1(c). For the remaining, outlier, agents, changes to boldness
and vengefulness are indicative of overall boldness and vengefulness because they com-
prise the majority of the population. They are typically connected to one or more of the
hubs, and while they too defect and punish, they do so much less frequently than the
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hubs to which they are connected. Thus, their scores are higher than the scores of the
hubs; because those agents with higher scores do not learn from others (since there are
no higher scoring others to learn from), they do not change their strategies, and their
boldness and vengefulness remains close to the average, as shown in Figure 1(d). These
results demonstrate that Mahmoud’s algorithm is not effective in scale-free networks.
Importantly, as the burden of punishment falls largely on hubs rather than outliers, hubs
perform worst in the population. To address this, we modify the learning technique so
that it can cope with the nature of scale-free networks, as discussed next.

 

(a) A Scale-free network
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(b) 1000 Runs, 1000 Agents, 1000 Timesteps
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(c) Hubs in scale-free networks
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(d) Outliers in scale-free networks

Fig. 1. Scale-free network

3.1 Universal Learning

The algorithm proposed by Mahmoud suffers from the limitation that it requires knowl-
edge of the average score in the population in order for an agent to determine whether to
modify its policies. However, since the aim of that work is to eliminate the unreasonable
assumption of omniscience, by which agents are able to observe the private strategies of
others, as well as observing all norm violations and punishments, it makes little sense to
assume that agents have access to an average population score against which to compare
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themselves before deciding whether to modify their policies. For this reason, we con-
sider an alternative approach, in which agents always modify their policies to improve
performance, regardless of the behaviour of others, and only in relation to their own
score. This modification is simple, and involves removing line 3 of Algorithm 3 (we do
not show the new algorithm due to the simplicity of the change and space constraints).

Experiments with this new approach give the results shown in Figure 2(a). Surpris-
ingly, the results indicate norm collapse, as all runs end with high boldness and low
vengefulness. By analysing the performance of the different types of agents, we are
able to explain this behaviour; we illustrate by reference to a sample run for a hub in
Figure 2(c), and a sample run for an outlier agent shown in Figure 2(b).

Outliers have few connections, but are connected to one or more hubs. When agents
punish others, they pay an enforcement cost but risk metapunishment when they do
not. However, since these outliers have very low connectivity, the risk of metapunish-
ment is also very low, so they avoid punishing others and vengefulness consequently
decreases. Metanorms are thus not effective here because of the lack of connectivity
between agents. Outliers thus always have high boldness and low vengefulness levels.
In addition, as we will see, the vengefulness of hubs also drops and is never higher than
average, so agents can defect and gain benefit, without being punished by hubs. Outliers
thus increase their boldness, causing norm collapse in the whole population.

In contrast to outliers, hubs are highly connected and apply punishments to many
others, incurring high enforcement costs. To address this, they decrease their vengeful-
ness, resulting in metapunishment from the many nodes to which they are connected, in
turn causing hubs to increase vengefulness (but only to a mid-range level). In addition,
because of the high boldness of outliers, there is a high rate of defection in the popu-
lation, causing oscillation between mid-range and low vengefulness for the duration of
the run. Boldness of hubs is kept low, however, due to the amount of punishment that
the hubs are exposed to. Values for vengefulness and boldness are shown Figure 2(b).

3.2 Connection-Based Observation

Axelrod’s original model considers a probability of being seen, and in the context of
a fully connected network, this may be a reasonable basis on which to base a model.
However, in the kinds of topologies we are concerned with, such as those that reflect
the situations in peer-to-peer (P2P) networks or wireless sensor networks, for example,
observation of the behaviour of others arises from the direct connection between agents.
Thus, if a peer A is connected to another peer B, then A may be able to observe all
communication from B. As a result, if B defects by, for example, not sharing files
in the case of a file-sharing P2P network, this can be observed by A. To reflect this
property in our model, Axelrod’s probability of being seen requires replacing with the
notion that each agent observes all actions of its direct neighbours. This modification to
the model gives rise to rather different results. In particular, the results of running the
model on a scale-free network, in Figure 3(a), show that all runs end in low boldness
and low vengefulness, indicating that defection is very rare in the population because
of the low boldness. In addition, punishment is not common since agents rarely punish
defectors, due to their low vengefulness. To understand this better, the results of a 1000
timestep run, for outliers and hubs, are shown in Figures 3(c) and 3(b), respectively.
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(a) 1000 Runs, 1000 Agents, 1000 Timesteps
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Fig. 2. Universal learning

More specifically, Figure 3(c) shows that outliers start the run by decreasing both
vengefulness and boldness to a low level where they remain, with some small degree of
fluctation. Figure 3(b) suggests that hubs start the run by increasing their vengefulness
to a high level and decreasing their boldness to a very low level. After a few timesteps,
vengefulness decreases to a mid-range level, from which it decreases further to a low
level. However, it does not stabilise there, since it moves up again, and this pattern is
repeated throughout the run. Similarly, boldness initially decreases to zero and then
jumps to a low level, before decreasing back to zero. Hubs thus have a fluctuating mid-
range level of vengefulness, and a very low level of boldness.

There are two distinctive features that can be observed here, in contrast to the results
obtained by the universal learning approach. First, hubs reach a high level of venge-
fulness, which is limited to mid-range vengefulness in the previous approach. This is
mainly because the new technique raises the action observation probability to 100%,
which allows a high possibility for metapunishment to occur and, as a result, forces
hubs to increase their vengefulness to a high level. However, as before, this does not
persist because of the high enforcement cost observed with such a high level of venge-
fulness. Second, the boldness of outliers is low here, mainly due to the combination of
the high vengefulness among hubs and the 100% defection observation, which together
produce sufficient punishments to force outliers to decrease their boldness.
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(a) 1000 runs, 1000 agents, 1000 timesteps

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 101 201 301 401 501 601 701 801 901

Va
lu
e

Timestep

Boldness
Vengefulness

(b) Hubs

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 101 201 301 401 501 601 701 801 901

Va
lu
e

Timestep

Boldness

Vengefulness

(c) Outliers

Fig. 3. Connection-Based Observation

4 Dynamic Policy Adaptation

As we have seen, universal learning has a negative impact on results, causing boldness
to increase and vengefulness to decrease. However, a more important weakness is that
the learning rate is uniform in the face of differing punishment levels: all agents use
the same learning rate, regardless of how much utility gain or loss they suffer. Thus, for
example, an agent that incurs a punishment score of �10 must modify its vengefulness
to exactly the same degree as another agent whose punishment score is �999. While
the direction of change is appropriate, the degree of change does not reflect the severity
of the sanction; a more appropriate approach would change policy in line with perfor-
mance. In this view, a very badly performing agent should modify its policy much more
significantly than one that performs better. Dynamic policy adaptation can address this,
bringing about changes to vengefulness and boldness that reflect performance. The key
idea here is to measure the level of performance rather than just the direction, through
comparison of an agent’s actual utility, or score in our terms, and the maximum or min-
imum that could be obtained. We apply this to boldness and vengefulness in turn, but
first introduce some notation. Let NDD be the number of available defection decisions,
where each agent has multiple chances to defect in a single round (as specified earlier),
NBi be the number of i’s neighbours, T be the utility gained from a single defection,
and PC be the punishment cost representing the utility lost from being punished.
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4.1 Boldness

In terms of boldness, the relevant part of the total score is the defection score, which can
be either positive or negative, requiring consideration of both maximum and minimum
possible values. The maximum possible defection score MaxDSi arises when an agent
i always defects but is never punished, and the minimum defection score arises when
the agent always defects and is always punished by all of its neighbours, as follows.

MaxDSi = NDD ⇥ T (1)

MinDSi = NDD ⇥ (T + (NBi ⇥ PC)) (2)

Then, in order to determine the degree of change to an agent’s boldness, we must con-
sider three different situations. First, when the defection score is positive (so that bold-
ness should increase), the degree of change is determined by dividing the obtained de-
fection score by the maximum possible defection score. Second, when it is negative, (so
that boldness should decrease), the obtained defection score is divided by the minimum
possible defection score. Finally, if the defection score is zero, no change is required.

FactorBi =

8
><

>:

DSi
MaxdDSi

if DSi > 0
DSi

MinDSi
if DSi < 0

0 otherwise
(3)

Given this, we now need to determine how FactorB can be used to change an
agent’s policy. In order to avoid dramatic policy movements that could lead to violent
fluctuations, we limit the change that can be applied to a maximum value. In this case,
the maximum is the difference between two levels as in Axelrod’s original model, of
1
7 . Thus, an agent modifies its boldness in line with its DS, as follows, so that it can
maximally change its boldness by one level (or by 1

7 ) when FactorB is 1.

Bi = Bi +

8
><

>:

1
7 ⇥ FactorBi if DSi > 0

� 1
7 ⇥ FactorBi if DSi < 0

0 otherwise
(4)

4.2 Vengefulness

An agent modifies its vengefulness depending on whether it is valuable to punish others,
determined by comparing the utility lost from punishing others (the punishment score,
PS) against and the utility lost from not punishing them (the punishment omission
score POS). If PS is greater than POS, agents increase vengefulness and decrease it
otherwise. Clearly, the magnitude of this difference between these two values gives an
indication of the degree of change that should be applied to vengefulness. For example,
if PS is �24 and POS is �20, then the degree of decrease to V should be significantly
lower than when PS is �600 and POS is �20. We call this difference DiffV :

DiffVi = |PSi � POSi| (5)
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Since DiffV is 1 or more (when the values are not equal), it cannot be used directly to
update an agent’s V value, because V must always lie between 0 and 1. It must thus be
normalised so that it can be applied to V , for which we use a scaled value, FactorV ;
this is determined by dividing DiffV by the minimum of PS and POS. Since both
PS and POS are negative, their absolute value is used to obtain a positive value:

FactorVi =
DiffV

|min {PSi, POSi}|
(6)

While this always produces a value between 0 and 1, it does not provide the same
value for the same magnitude of difference. For example, if PS is �14 and POS is
�20, we want FactorVi to be the same as when PS is �6 and POS is 0. We can
achieve this by replacing the maximum of PS and POS with the maximum possi-
ble difference between PS and POS. This maximum difference is the difference from
0 (when there is no cost at all from punishing or from not punishing) to the greatest
possible magnitude of PS or POS. In what follows, HPS represents the highest pun-
ishment score (the maximum in magnitude, and lowest in numerical terms — we use
HPS to indicate the highest score to avoid ambiguity of minimum and maximum) that
can be received by an agent punishing all of its neighbours for defection, and metapun-
ishing all of its neighbours for not punishing all of their neighbours for defection.

To determine the value of HPS we need to consider both the punishment enforce-
ment cost and the metapunishment enforcement cost. First, the highest (maximum in
magnitude, but minimum numerically) punishment enforcement cost (HPEC) arises
when all of an agent’s neighbours defect and the agent punishes all of them:

HPECi = NDD ⇥NBi ⇥ EC (7)

where EC is the enforcement cost of a single punishment. Similarly, the highest meta-
punishment enforcement cost (HMPEC) arises when all of an agent’s neighbours do
not punish all of their neighbours for defecting, and the agent metapunishes all of them:

HMPECi = NDD ⇥NBBi ⇥ EC (8)

where NBBi is the total number of neighbours of all of agent i’s neighbours. HPS is
thus defined as the sum of these two scores:

HPSi = HPECi +HMPECi (9)

In the same way, HPOS is the highest (greatest in magnitude, lowest numerically)
score that can be obtained when an agent does not punish any defectors, but is meta-
punished by all of its neighbours.

HPOSi = NDD ⇥NBi ⇥ (NBi � 1)⇥ PC (10)

where the maximum number of defectors is all of an agent’s neighbours (NB), the
maximum number of metapunishers is the same but excluding the defecting agent, and
PC is the punishment cost obtained from being metapunished (which is the same as for
simply being punished). Given this, FactorV can be calculated by dividing DiffV by
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one of these values, as follows. If punishing brings a greater utility reduction than not
punishing (PS < POS), then we use the highest punishment score HPS. Conversely,
if PS > POS, then we use the highest punishment omission score HPOS. If there is
no difference, then there is no change and FactorV is equal to 0.

factorVi =

8
><

>:

DiffVi

HPSi
if POSi > PSi

DiffVi

HPOSi
if POSi < PSi

0 otherwise
(11)

This guarantees that the change made to V is always the same given the same dif-
ference in scores, since both HPS and HPOS are fixed for each agent. Moreover, this
approach allows hubs to change much less quickly than outliers, because the highest
(maximum in magnitude) scores for hubs are much higher than for outliers, so that the
results achieved by using FactorV , and dividing by the difference in scores obtained
for hubs, is much less than for outliers. As the learning algorithm suggests, an agent
increases vengefulness when it finds that not punishing is worse than punishing, and it
decreases vengefulness when the converse is true.

Vi = Vi +

8
><

>:

1
7 ⇥ FactorVi if |PSi| < |POSi|
� 1

7 ⇥ FactorVi if |PSi| > |POSi|
0 otherwise

(12)

4.3 Example
To illustrate, assume that a hub A is connected to 20 other agents, and that an outlier B is
connected to only 2 other agents (one being a hub). Like Axelrod’s seminal experiments
and without loss of generality, let NDD = 4 for all agents, since every agent has 4
chances to defect in each round. EC = �2 and is the same for all agents. Similarly,
PC = �9 and again is the same for all agents. The temptation value for all agents,
received when they defect, is T = 3. Finally, suppose that A’s neighbours have 50 other
distinct neighbours in total (summed over all neighbours), while B’s neighbours have
20 other distinct neighbours (again, over all). This is summarised in Table 1. Given these
values, we can determine the relevant values needed as follows. Starting with defection
scores and from Equations 1 and 2 respectively, we obtain the following:

MaxDSA = MaxDSB = 4⇥ 3 = 12

MinDSA = 4⇥ (3 + (20⇥�9)) = �708

MinDSB = 4⇥ (3 + (2⇥�9)) = �60

In terms of punishment values, from Equations 7, 8 and 9, we obtain the following:

HPECA = 4⇥ 20⇥�2 = �160

HMPECA = 4⇥ 50⇥�2 = �400

HPSA = �160� 400 = �560

HPECB = 4⇥ 2⇥�2 = �16

HMPECB = 4⇥ 20⇥�2 = �160

HPSB = �16� 160 = �176
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Agent Pos NB NBB MinDS MaxDS LevB HPS HPOS LevV
A Hub 20 50 -708 12 1/7 -560 -13680 1/7
B outlier 2 20 -60 12 1/7 -176 -72 1/7

Table 1. Example values for Agents A and B

Punishment omission scores using Equation 10 are as follows:

HPOSA = 4⇥ 20⇥ 19⇥�9 = �13680

HPOSB = 4⇥ 2⇥ 1⇥�9 = �72

Using this information (Table 1), we can determine the decisions for specific sit-
uations. For example, at the start of each run, the population has average mid-range
boldness and vengefulness (because of the uniform distribution function to generate
initial policies). Now, suppose that both A and B also have mid-range boldness and
vengefulness. If, after one round, both A and B defected twice (out of their four op-
portunities to defect), they each gain twice the temptation value T . However, since A
is a hub, suppose it is punished 22 times, much more than B, which is only punished
twice. This is because the defection score of a hub with mid-range boldness is typically
much worse than that of a similar outlier, mainly due to the difference in their number
of neighbours, and the midrange vengefulness in the population. Thus, A has a defec-
tion score of 2⇥ 3 from defecting, plus 22⇥�9 = �198 from being punished, giving
DSA = �192. Similarly, DSB = ((2⇥ 3) + (2⇥�9)) = �12.

Given these defection scores, the degree of change that each agent applies to its
boldness can be calculated as follows. First, from Equation 3, FactorBA = �192

�708 =

0.3 and FactorBB = �12
�60 = 0.2. Now, using Equation 4, and since both DSA and

DSB are negative, BA is decreased by 0.3⇥ 1
7 = 0.04, and BB by 0.2⇥ 1

7 = 0.03.
In addition, if A punishes 35 other agents and metapunishes 16 more, and B pun-

ishes 10 other agents and metapunishes 4 more, their punishment scores are deter-
mined by multiplying the number of punishments issued by the enforcement cost EC:
PSA = ((35+16)⇥�2) = �102) and PSB = ((10+4)⇥�2) = �28). Then, if A has
spared 27 defectors and has been metapunished 6 times for each instance of omitting
punishment, and B has spared only one defector and been metapunished just once, the
punishment omission scores are calculated by multiplying the number of metapunish-
ments by the punishment cost PC, as follows: POSA = (27⇥ 6⇥�9) = �1458 and
POSB = (1⇥ 1⇥�9) = �9. Thus, by Equation 11, FactorVA = |�102�(�1458)|

13680 =

0.1 and FactorVB = |�28�(�9)|
96 = 0.2. Then, since PSA > POSA, A increases

its vengefulness VA by 0.1 ⇥ 1
7 = 0.014 according to Equation 12). Similarly, since

PSB < POSB , B decreases its vengefulness by 0.2⇥ 1
7 = 0.03.

4.4 Experimental Results

To determine the effect of introducing dynamic policy adaptation, we ran experiments,
similar to the previous experiments, on the new model, and giving the results shown in
Figure 4(a). As can be seen in the figure, all runs result in populations with low average
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boldness and moderate vengefulness. As before, more detail on the evolution of aver-
age boldness and vengefulness for hubs and outliers was provided by examining runs
of individual agents, as shown in Figures 4(b) and 4(c) (only the first 100 timesteps are
shown for clarity), which confirm that outliers converge to a state of low boldness and
moderate vengefulness consistently, while hubs do so with intermittent deviations. As
before, hubs increase vengefulness and decrease boldness, though much more slowly
now. However, at regular intervals, there are sudden increases to boldness, accompa-
nied by a change in vengefulness, as a result of the exploration of the algorithm. This
phenomenon occurs in all models in this paper, and is visible here due to the limited
number of timesteps, but has no impact on the results of the dynamic policy adaptation.
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Fig. 4. Dynamic Policy Adaptation

5 Conclusion

Norm emergence is an important and valuable phenomenon that has applications to self-
organising systems such as peer-to-peer networks or wireless sensor networks in which
there is no interference from any central or outside authority. While there has been
much work on this phenomenon (as discussed earlier), and even some on its application
to different topological structures, there has been inadequate consideration of how to
establish norms in scale-free networks. Indeed, some mechanisms have been shown not
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to succeed in these topologies. In response, this paper provides an effective means of
overcoming the problems arising from asymmetric connections of hubs and outliers.

In particular, our results show that in scale-free networks, Axelrod’s basic metanorm
model is not effective, nor is Mahmoud et al.’s attempt to overcome this for other topolo-
gies. Our simulations suggest that poorly connected agents receive little discouragement
from defecting while hubs are discouraged from enforcing norms through high enforce-
ment costs. In response, we have modified the experimental setting to be more consis-
tent with the nature of distributed systems of partially connected nodes, bringing an
even more serious breakdown in norm emergence, but also subsequently addressed this
through a dynamic policy adaptation mechanism. In this way, agents are able to change
their policy in proportion to the punishments they receive, allowing them to adapt pro-
portionally, and to maintain the policy values that sustain norm establishment.
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