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ABSTRACT
Crime investigation is a complex task involving vast amounts
of information and requiring many different types of expert
knowledge. Crime investigators would therefore benefit from
the use of decision support systems to help manage this in-
formation and to provide knowledge to help solve the more
complex problems. Current research efforts in this area have
focussed on the information management side of the prob-
lem and tend to steer clear of formalising expert knowledge.
This is understandable since conventional knowledge based
systems lack the robustness needed to cope with the vari-
ety of circumstances that can be encountered during crimi-
nal investigation. However, similar problems have been en-
countered in the physical systems domain and were tackled
by means of novel model-based reasoning techniques. This
paper explores the use of robust model-based reasoning ap-
proaches to model expert knowledge for crime investigation
and it presents a framework for such systems. The prelimi-
nary ideas presented in this paper are illustrated by means of
practical examples produced during ongoing work in the de-
velopment of a system for differentiating between homicidal,
suicidal, accidental and natural deaths.
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1 Introduction

The task of crime investigators is to discover crimes, their
perpetrators and sufficient evidence to enable a prosecution
whilst being economical with scarce resources and avoid
harming innocent people. Because potentially contradictory
goals need to be achieved and because complex, often spe-
cialist, information is being generated in the process, crime
investigations are difficult to manage. To aid in the manage-
ment of such complex tasks, decision support systems are
often proposed.

Many different approaches have been used in the past
to design and implement decision support systems. Conven-
tional rule-based systems are good at replicating the heuris-
tics experts use. Case based reasoning systems may recall
similar, previously solved cases and adapt their solutions to
the current requirements. Planning and scheduling systems
can assist in the operational management of a case. Despite

their differences, all of these approaches share the require-
ment that the content of all problem instances can be gen-
eralised and represented formally. But crime investigation
problems are too varied for this to be achievable.

The main questions to be addressed in crime investiga-
tion are: (i) what hypotheses are best supported by the avail-
able evidence, and (ii) what potential sources of evidence
best distinguish between competing hypotheses. These ques-
tions are similar to those answered by diagnostic systems.
However, they are particularly difficult in crime investiga-
tion. Even though the set of component elements (e.g. types
of crime, types of evidence, etc.) of crime investigation prob-
lems are by themselves are relatively limited, they can occur
in an almost infinite number of different combinations. Since
it is impossible to foresee all of these scenarios in advance,
an approach is needed to deal with the issue of robustness of
the decision support system.

Model-based reasoners have been devised to deal with
this issue of robustness (or the portability over different prob-
lem scenarios) [8]. Instead of employing problem specific
knowledge directly to solve a problem instance, they em-
ploy domain knowledge to create models of the problem at
hand and apply problem independent techniques onto those
models. In this way, model-based reasoners can handle a
wider variety of situations and hence, they are more robust.
This paper presents an analysis of how such model-based ap-
proaches can be applied to provide decision support for crime
investigation. Future work will build on these ideas through
the design of inference mechanisms that implement them.

2 Model-based Diagnosis

The aim of a diagnostic system is to determine the hy-
pothesised state of a system via a set of observable conse-
quences or symptoms of that state. Conventional rule-based
approaches perform this task by using expert knowledge to
relate observable pieces of evidence to plausible hypotheses.
In other words, such diagnostic systems simulate by means
of deduction what is essentially an abductive task. Therefore,
rule-based diagnosers are only practical in domains where
the potential problems that can be encountered are well un-
derstood. Many domains, including crime investigation, do
not fall into this category.

As opposed to conventional approaches, a model-based
diagnostic system employs a knowledge based system K that



can determine for a given system S whether it satisfies a hy-
pothesis h (i.e. S,K ` h) or whether a symptom e logically
follows from it (i.e. S,K ` e). Using K, the diagnostic
engine can determine which hypotheses in a set H are con-
sistent with the set of available symptoms E by searching:

{h ∈ H | ∃S, (∀e ∈ E, (S,K ` e)) ∧ (S,K ` h)}

Two main approaches are used to derive the knowledge base
K:

• Constraint propagation/satisfaction can be applied to a
mathematical model to discover the sets of conditions
with which certain sets of hypotheses and symptoms
are consistent. For example, these techniques are used
to determine which hypothesised faulty operating con-
ditions generate the undesirable symptoms in an engi-
neering system [2].

• Automated modellers are used to generate mathemati-
cal, or other, models describing hypothesised configura-
tions of the diagnosed system, and which may produce
the observed behaviour. For example, automated mod-
elling techniques have been used to find which plausible
configurations of an eco-system may be responsible for
observed disasters [7].

The constraint propagation/satisfaction algorithm
and/or the automated modeller generate two types of knowl-
edge: (1) inferences describing which symptoms and/or
hypotheses can be derived from which partial models, and
(2) which partial models describe an inconsistency. In
model-based diagnosis, this knowledge is stored in a truth
maintenance system (TMS), usually an assumption-based
truth maintenance system (ATMS).

In general, an ATMS [3] assists a problem solver by
maintaining which consistent sets of uncertain assumptions
justify which propositions. For this purpose, it takes a set
of assumptions (problem solver datums whose truth needs to
be established), a set of nodes (other problem solver datums
involved in the inferences) and inferences of the form:

n1 ∧ . . . nk → nc

where n1 . . . nk correspond to assumptions or nodes and nc

represents a node or falsehood (if nc = ⊥). Based on this
information, the ATMS can compute a label L(n) for each
node n. A label L(n) describes a disjunctive normal form
expression, ∨Ei∈L(n) ∧aij∈Ei

aij that is

• consistent: no conjunction ∧aij∈Ei
aij support false-

hood,

• minimal: there is no pair of sets E1, E2 ∈ L(n) such
that E1 ⊂ E2,

• complete: for every conjunction of assumptions E from
which the node n logically follows, a superset of E can
be found in L(n),

• sound: the node n logically follows from every conjunc-
tion of assumptions E in L(n).

This TMS contains the knowledge base K and it provides
an efficient way to determine from which set of consistent
scenarios a particular piece of evidence or hypothesis can be
derived.

3 Model-based Crime Investigation

For the process of crime investigation, the diagnostic tasks
are as follows. The system under diagnosis is a space of
plausible scenarios that is presumed to include unlawful ac-
tions, possibly a crime. The symptoms are the pieces of ev-
idence that are or can be collected by the investigators. And
finally, the hypotheses about the scenario, which must be de-
termined by the investigators, relate to important properties
of the crime, such as the type of the crime, the perpetrator,
etc.

A representative example of such a diagnosis task is dis-
crimination between homicidal, suicidal, accidental and nat-
ural death. Here, the scenario is a sequence of events leading
up to a dead body. The evidence (or symptoms) can vary
widely but include features of the dead body, DNA, trace
evidence, CCTV footage and witness statements. The hy-
potheses are “homicide”, “suicide”, “accident” or “natural
causes”. This problem presents itself whenever police offi-
cers encounter a dead body. It is often a non-trivial crime
investigation task because the evidence that enables the dif-
ferentiation is often very subtle and possibly even hidden. It
is further complicated by the fact that police officers often
have little experience in making this assessment, because in
most countries, death by homicide or suicide is far rarer than
death by natural causes.

For the human crime investigator, the most difficult as-
pects of this diagnosis task involve collecting and organising
a representative body of evidence and taking into consider-
ation a sufficiently large set of hypotheses. Miscarriages of
justice commonly occur when the investigation focuses on a
single hypothesis, or even a single corresponding scenario,
and evidence is predominantly collected to support only this
hypothesis. To help avoid such mistakes and the associ-
ated human and financial costs, a decision support system for
crime investigation can aid by considering a set of plausible
scenarios supporting alternative hypotheses whilst efficiently
guiding the evidence collection to discriminate between mul-
tiple hypotheses. To that end, a decision support system for
crime investigation requires the following functionalities:

• Constructing scenarios that support the body of evi-
dence. The crime investigation equivalent of models
matching hypothesised behaviours is scenarios describ-
ing sequences of events. Such scenarios can be com-
posed from recurring (and therefore reusable) compo-
nent events as well as the pieces of evidence (i.e. the
symptoms) each event is likely to produce.

• Ranking the scenarios in terms of plausibility. Because
scenarios are derived abductively from their observed
consequences, the decision support system will nor-
mally be able to generate multiple plausible scenarios.



Yet, not all scenarios are equally plausible and, there-
fore, uncertainty reasoning techniques should be em-
ployed to make these distinctions.

• Seeking out discriminatory pieces of evidence. Similar
to model-based diagnosis, crime investigation is an iter-
ative task: the available evidence is interpreted, prelimi-
nary conclusions as to the plausibility of the hypotheses
are drawn and, based on this analysis, new evidence is
searched to reach a more refined interpretation of the
evidence. By analysing how evidence stems from plau-
sible scenarios and how hypotheses are inferred from
these scenarios, model-based diagnostic techniques can
be employed to seek out what evidence would best dis-
criminate between the available hypotheses.

The remainder of this section will discuss each of these fea-
tures in more detail.

3.1 Scenario composition

Any approach to apply model-based reasoning techniques to
decision support systems for crime investigations is crucially
dependent on the development of models of the problem at
hand. Such models describe how evidence and hypotheses
are inferred and they should encompass the entire range of
plausible scenarios. One of the most widely used approaches
to generate such models, in areas such as physics, engineer-
ing, botany and ecology, is compositional modelling [5].

A compositional modeller derives a model from a
knowledge base of component models. Because the compo-
nent models are parts of scenarios, they are called scenario
fragments. Each scenario fragment describes how the state
of the world can change through an event. To that end, a
scenario fragment consists of a set of assumptions, a set of
prerequisite states, a set of consequent states and an event.
A scenario fragment formalises the knowledge that under the
set of assumptions, the prerequisite states imply that the event
occurs and the consequent states are become part of the world
model.

Definition 1 (Scenario fragment) A scenario fragment is a
tuple 〈A,Sp, Sc〉 where A is a set of assumptions, Sp is a
set of prerequisite states and events, and Sc is a set of conse-
quent states and events, such that

∧a∈Aa → (∧sp∈Sps → ∧sc∈Scsc)

The following examples may clarify these concepts:

ability(self-defence(V ))∧

assault(P, V ) → self-defence(V, P )
(1)

lethal-beating(P, V ) → homicide(V ) (2)

Scenario fragment (1) states that if a victim V is being
assaulted by a perpetrator P , and (s)he is capable of self-
defence, then V will defend against and assault by P . Sce-
nario fragment (2) describes that a lethal beating of V by P

implies that the death of V is a homicide case.

Not every combination of states will be possible in the
real world. To prevent the decision support system from con-
sidering such inconsistent combinations of states, a special
state, called the inconsistent state, ⊥ is introduced. Cer-
tain scenario fragments may contain ⊥ as a consequent state,
indicating that the combination of assumptions and prereq-
uisite states it contains is inconsistent. For example, pre-
suming that lethal-beating(A,B) denotes the event that A

beats B, causing the death of B, then (lethal-beating(P, V )∧
lethal-beating(V, V )), with P 6= V is such an inconsistency1.

In order to find the hypotheses that are consistent with
the available evidence (and, as discussed in section 3.2, how
plausible they are), a sound and complete inference mecha-
nism is required to compute those scenarios S from which
the available evidence E logically follows in the knowledge
base K (i.e. S,K ` E). An inference mechanism is deemed
sound if it only produces consistent scenarios supporting the
all the evidence. It is considered complete, if it can find all
the scenarios in the knowledge base that support the available
evidence.

A suitable complete and sound inference mechanism is
the ATMS. In general, the knowledge contained in the sce-
nario fragments can be entered into an ATMS as follows. By
means of a backward chaining search, all scenario compo-
nents supporting the available evidence can be determined in
the knowledge base. A conventional forward chaining search
can determine inconsistencies, hypotheses and potential, but
yet unexplored pieces of evidence. Once these inference pro-
cedures have been completed, sets of assumptions supporting
plausible scenarios can be computed.

Let n be node inferred as (∧e∈E) ∧ h → n, where h

is a single hypothesis and E is the set of available evidence.
Then, each set A ∈ L(n) is a set of assumptions from which
a plausible scenario follows that contains the hypothesis h as
well as the available evidence E. An example may clarify
these concepts.

Assume a scenario in which the dead body of a
victim V is found. The pathology report indicates that
V died from injuries caused by beating and that the
victim has irregular fingernails. The hypotheses set is
H = {homicide(V ), suicide(V )}. Figure 1 shows a
sample scenario, which can be generated by means of
the automated modelling approach discussed herein. This
scenario describes how V is assaulted by a perpetrator
P , which eventually causes V ’s death and V defends
him/herself (causing the irregular fingernails). This sce-
nario is derived from the set of assumptions: {moves-
to(V,L), moves-to(P,L), lethal-beating(P, V ), ability(self-
defence(V )), includes(defence(V, P ), scratching(V, P ))}.
This set of assumptions describes as set of possible, but un-
known, states and events causing the scenario.

Also shown in figure 1 is part of a scenario that defeats
the homicide hypothesis: V commits suicide through self-
beating. However, the latter scenario is expected to generate
certain pieces of evidence that may or may not be found.

1Although multiple beatings may contribute to the victims death, at most
one can be the direct cause.
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Figure 1. Sample scenario and related evidence and hypothesis

3.2 Ranking scenarios

Section 3.1 explained how a truth maintenance system can be
populated with a space of plausible scenarios describing al-
ternative hypotheses. Each of these scenarios presupposes a
number of assumptions. The assumptions describe unknown
events. Incomplete knowledge as to whether these assump-
tions are correct gives rise to uncertainty about whether or
not a scenario has occurred.

3.2.1 Prior likelihoods

Let ∧aij∈Ai
be a minimal and consistent set of assumptions

from which the entire set of evidence E and a single hypoth-
esis h logically follows: ∧aij∈Ai

aij ,K ` ((∧e∈Ee) ∧ h).
Then, the prior probability that corresponding scenario oc-
curs, given K can be expressed as P (∧aij∈Ai

aij ,K `
((∧e∈Ee) ∧ h)).

Calculating this probability is almost impossible. In
general, limited information is available to determine like-
lihood of the assumptions and the inferences based on them.
For example, the prior probability that people injure them-
selves is very hard to quantify. For the purpose of the type
decision support envisioned in this paper, it is best to keep
an open mind. It should therefore be sufficient to provide a
partial ordering over alternative scenarios. Therefore, some
simplifying assumptions will be made. Firstly, it is presumed
that no uncertainty arises from the logical inference. Hence

P (∧aij∈Ai
aij ,K ` ((∧e∈Ee) ∧ h)) = P (∧aij∈Ai

aij)

Secondly, it is presumed that important distinctions between
prior probabilities can be represented as partial orderings. In
crime investigation, the most important way of establishing

such an ordering is by deeming closed-world assumptions
more probable than their defeaters.

Many of the assumptions used in the scenario descrip-
tions are so-called closed-world assumptions. Closed-world
assumptions are presumptions that enable the model con-
struction algorithm to ignore uncommon complications. As
such, closed-world assumptions enable default reasoning
without entirely ignoring defeaters of the default. An ex-
ample of a closed-world assumption is the presumption that
the victim of an assault is capable of some form self-defence.
This is an important presumption in the investigation since it
implies that an assault on the victim can diagnosed by means
of defensive injuries (e.g. irregular fingernails in figure 1).
However, the absence of defensive injuries does not exclude
the assault scenario if one of the defeaters is presumed. For
example,

restrained(V ) → ¬ability(self-defence(V ))

states that if V is restrained, the aforementioned closed-
world assumption and its consequences is inconsistent.

Because ability(self-defence(V )) is the default as-
sumptions (in the absence of other information), it is ap-
propriate to presume that P (ability(self-defence(V ))) ≤
P (¬ability(self-defence(V ))).

3.2.2 Posterior likelihoods

By collecting more information in the form of evidence, the
probabilities can be better differentiated from one another.
The conventional approach to compute conditional probabil-
ities P (∧aij∈Ai

aij | E), where E denotes the set of available



evidence, is by means of Bayes law:

P (∧aij∈Ai
aij | E) =

P (E | ∧aij∈Ai
aij)P (∧aij∈Ai

aij)

P (E)
(3)

As with the prior probabilities, it is extremely difficult to ob-
tain good estimates for all the conditional probabilities in-
volved in (3). For some types of evidence, such as DNA
and trace evidence, good statistics are available for both
P (E | ∧aij∈Ai

aij) and P (E). For example, research ef-
forts into the distribution, transfer and shedding of fibres has
led to a body of statistics (i) on the likelihood of encoun-
tering given types of fibre in garments (i.e. P (e) where e

represents the discovery of certain fibres) and (ii) on the like-
lihood of encountering fibres after presumed types of contact
between garments, which may have led to fibre transfer (i.e.
P (e | ∧a∈Aa) where ∧a∈Aa describes the presumed events)
[6].

Yet, in general, it is difficult to produce such statistics.
The probabilities P (e) and P (e | ∧a∈Aa) are hard to quan-
tify in the case of many types of evidence. For some types
of evidence, such as witness statements, the important in-
fluencing factors, such as the reliability and objectivity of
witnesses, the exact conditions in which the observation was
made, and how well the witness remembers the events, are
difficult to measure. The interpretation of some other types
of evidence, such as CCTV footage and fingerprints, is done
by human experts who may not be able to produce accurate
statistics on the reliability of their work.

One way of dealing with this problem involves the use
of interval calculus [1] to compute ranges of probabilities
covering the entire span of plausible outcomes. Another ap-
proach of expressing such crude probabilities is discussed in
[4]. This work suggests the use of different classes of prob-
ability, one class being an order of magnitude greater than
the next. In this way, comparing products of probabilities is
reduced to counting the number probabilities of each class
and the result is dominated by distinctions between the more
reliable types of evidence.

In most cases, it is only practical to elicit probabili-
ties over subsets of assumptions and corresponding pieces of
evidence. Therefore, some independence assumption must
be made herein, as in any other diagnostic system. Let
e ⇒ A denote that the likelihood of a set of assumptions
A is affected by a piece of evidence e, or P (∧a∈Aa | e) 6=
P (∧a∈Aa), and let E(A) be the set of all pieces of evi-
dence that affect the likelihood of a set of assumptions, or
E(A) = {e | e ⇒ A}. Now, the simplifying presump-
tion can be made that if two assumptions have different sets
of pieces of evidence that potentially affect them, their prior
and posterior probabilities are independent from one another.
More formally, if E({ai}) 6= E({aj}), then P (ai ∧ aj) =
P (ai)P (aj) and P (ai ∧ aj | E) = P (ai | E)P (aj | E).
By partitioning the set of assumptions Ai underlying a plau-
sible scenario into a set {A1

i , . . . , A
k
i }, the likelihood of that

scenario can be computed as:

P (Ai | E) =
∏

A
j

i

P (∧
a∈A

j

i

a | E(Aj
i ))

Based on these notions, a partial ordering of scenarios
can be established. Ordering two scenarios involves compar-
ing the prior probabilities of the assumptions for which no
posterior probabilities can yet be computed (i.e. E(A) = ∅)
and comparing the combined posterior probabilities of all
other assumptions. Formally, a scenario supported by A1 no
more plausible than a scenario supported by A2 if:

[

P (∧a∈{a∈A1|E({a})=∅}) ≤ P (∧a∈{a∈A1|E({a})=∅})

]

∧

[

∏

A′

1
⊆A1,A′

2
⊆A2,E(A′

1
)=E(A′

2
)

P (∧a∈A′

1
a | E(A′

1)) ≤

∏

A′

1
⊆A1,A′

2
⊆A2,E(A′

1
)=E(A′

2
)

P (∧a∈A′

2
a | E(A′

2))

]

3.3 Discriminatory evidence

By means of the ideas presented in section 3.2, sets of plau-
sible scenarios can be ranked with respect to one another.
Such rankings can not only be used to determine which sce-
narios are most likely to describe the events that lead up to
the available evidence, but also to establish to guide the evi-
dence collection strategy.

To support the collection of evidence, diagnostic sys-
tems aim to reduce to the entropy (or chaos) in the existing
set of plausible hypotheses. In better understood domains,
the entropy ε(E) over the available hypotheses given a set of
evidence E is computed by:

ε(E) = −
∑

h∈H

P (h | E) ln P (h | E) (4)

But, as argued before, the probabilities in (4) are very hard
to quantify in general. By using the partial ordering of sce-
nario, entropy over the plausible scenarios supporting dif-
ferent hypotheses can be computed, however. Presume that
some heuristic is used to reduce the space of plausible sce-
nario to the most likely ones, and let c(h | E) be the total
number scenarios that are supports hypothesis h. Then, then
the current entropy can be computed as:

ε(E) =
∑

h∈H

c(h | E) ln c(h | E) (5)

An optimal decision making strategy is one that reduces
the expected future entropy as much as possible. Let xi be a
type of evidence that can be collected, and let Di be the set
of possible outcomes of pursuing a search for xi. For exam-
ple, if xi corresponds to searching for fingerprints at some
location, then Di might contain different sets of types of fin-
gerprint found (e.g. the victim’s fingerprint, an unknown fin-
gerprint found, etc.) as well as nothing found. The expected
entropy ε(xi), after searching for evidence type xi, can be
computed as follows:

ε(xi) =
∑

vij∈Di

P (xi : vij)ε(E ∪ {xi : vij}) (6)



where P (xi : vij) is the probability of outcome vij and ε(E∪
{xi : vij}) is the new entropy assuming that the outcome
would be vij . Given ε(xi) for all possible evidence collection
decisions, the optimal evidence collection strategy selects the
decision with the lowest expected entropy.

Note that, once again, some crude estimate of a proba-
bility is required. If there is no way of telling in advance what
P (xi : vij) is likely to be, P (xi : vij) can always be presume
to be equal to 1

|Di|
, where | Di | denotes the cardinality of

Di. In other case, e.g. when the room where fingerprints
are to be collected might have been cleaned after the crime,
rough estimates of the likelihoods of plausible outcomes are
obvious.

4 Conclusions and Future Work

The work presented in this paper is a first step in the develop-
ment of decision support systems that confront crime investi-
gators. More specifically, the paper has argued for the use of
model-based reasoning techniques to tackle this problem and
established their role. By its nature, the task of crime investi-
gation does not lend itself to be captured by a set of rules. The
overall task of determining which potentially unlawful events
have occurred requires consideration of unforseeable com-
binations of such events, and model-based reasoning tech-
niques have been devised with this challenge in mind.

Overall, three potential tasks for model-based diagnosis
have been identified and explored in this paper. In the first
instance, automated model construction approaches, such as
compositional modelling, can be used to construct plausi-
ble scenarios that explain the available evidence as well as
a possible hypothesis. Once a complete space of scenarios
has been constructed, it can be employed for further analy-
sis. In particular, the dependency of scenarios upon sets of
closed-world assumptions can be exploited to rank scenar-
ios in terms of their relative likelihoods. The partial ordering
imposed, in this way, over the scenario space can, in turn, be
used to compute an optimal evidence collection strategy.

The main drawback of the approach proposed herein is
the knowledge acquisition bottleneck that is commonly en-
countered in the deployment of knowledge intensive systems.
Indeed, any implementation will require a major knowledge
acquisition effort to generate complete and valid scenario
fragments. The effect of this issue can be somewhat lim-
ited by restricting the scope of the domain. As such, it is
anticipated that this work will be most useful in the construc-
tion of specialist tools for the analysis of certain types of ma-
jor crimes. Currently, a prototype is under development that
aims to distinguish between homicidal, suicidal, accidental
and natural deaths.

Aside from these implementational issues, a number of
important theoretical issues remain to be addressed by future
research. In particular, an approach to compute with crude
probabilities, suitable for crime investigation, must be for-
malised. This paper has identified two potential approaches,
but it is not yet clear which one is most suitable for express-
ing the type of uncertainty that crime investigators are con-

fronted with. The development of the prototype knowledge
base for the aforementioned application domain is expected
to improve our understanding of this problem.

Finally, the incorporation of an appropriate framework
for temporal reasoning (and to a lesser extent, for spatial rea-
soning) is necessary to refine the proposed scenario composi-
tion. The combination of events contained in a scenario may
be constrained by time durations in addition their relative or-
der. In a small number of cases, these time durations may be
very important. Consider, for example, the case where a per-
son dies due to a poisoning process that must have taken sev-
eral weeks or months. In order to differentiate between homi-
cide or accidental death in this case, it is important to know
whether significant other events have occurred throughout or
at a much smaller time intervals. Again, these issues must be
addressed in future work.
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